EP 317.3 MIDTERM TEST (3 WRITTEN PROBLEMS)

Instructor: Yansun Yao
10:00 ~ 11:20 AM, February $24^{\text {th }}, 2015$

ANSWER ALL QUESTIONS. MARKS PER EACH QUESTION ARE INDICATED.

Physical Constants:
Elementary charge: $e=1.602 \times 10^{-19} \mathrm{C}$
Avogadro's number: $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Wiedemann-Franz-Lorenz coefficent: $C_{\mathrm{WFL}}=2.44 \times 10^{-8} \mathrm{~W} \Omega \mathrm{~K}^{-2}$

1. Potassium Chloride (KCl) has an ionic crystal structure (see figure below). When the crystal is in equibrium, the lattice parameter (a) is 0.629 nm .
(a) Find the number of K atoms and the number of Cl atoms per unit cell. (10\%)
(b) Draw the (100) and (110) planes of the KCl crystal and determine the total number of atoms (add K and Cl together) per cm^{2} on the (100) and (110) planes. (20\%)
(c) The potential energy E per $\mathrm{K}^{+}-\mathrm{Cl}^{-}$pair as a function of interatomic separation r can be written as the sum of an attractive potential energy $(P E)$ and a repulsive $P E$,

$$
E(r)=-\frac{A}{r}+\frac{B}{r^{9}}
$$

where A and B are constants. When the crystal is in equibrium, $E(r)$ becomes minimum. Find the ratio B / A. (10\%)
2. Electrical and thermal conductivity. Electron drift mobility in silver has been measured to be $56 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ at $27^{\circ} \mathrm{C}$. The atomic mass and density of Ag are given as $107.87 \mathrm{~g} \mathrm{~mol}^{-1}$ and 10.50 $\mathrm{g} \mathrm{cm}^{-3}$, respectively.
(a) Assuming that each Ag atom contributes exactly one conduction electron, calculate the resistivity of Ag at $27^{\circ} \mathrm{C} .(\mathbf{1 0 \%})$
(b) Compare your calculated resistivity with the measured value of $1.6 \times 10^{-8} \Omega \mathrm{~m}$ at the same temperature and suggest reasons for the difference. (10\%)
(c) Calculate the thermal conductivity of silver at $27^{\circ} \mathrm{C}$. If you did not obtain an answer for (a), use $\rho=2.0 \times 10^{-8} \Omega \mathrm{~m}$. ($\mathbf{1 0 \%}$)
3. Linear \mathbf{H}_{4} molecule. Consider a linear, equal-spacing chain of four hydrogen atoms representing a hypothetical H_{4} molecule. Each hydrogen atom has a 1 s atomic wavefunction. This molecule has a center of symmetry O midway between the second and the third atom, and all molecular wavefunctions must be either symmetric or antisymmetric about O.

(a) Sketch schematically the atomic wavefunction $\psi_{1 s}(r)$ as a function of distance from the nucleus. (4\%)
(b) Using the linear combination of atomic orbitals (LCAO) method, sketch schematically all four molecular orbitals. (16\%)
(c) Order the energies of the molecular orbitals you just drew and briefly explain your reasoning. (10\%)

