Basics of a Flow Cytometer

http://www.usask.ca/pharmacy-nutrition/research/groups/FlowCytometryUserGroup/Home.php

What is Flow Cytometry

- flow cytometry is the measurement of cells/particles in a flow system, which delivers the cells/particles (0.2 to 150 μm) singly past a point of measurement.
- Points to consider
 Flow
 Light
 Detection

What can a Flow Cytometer Tell Us About a Cell/Particle?

- Relative size by
 Forward Scatter
- Relative granularity or internal complexity by Side Scatter

- Right angle light detector Side Scatter detector (SSC) Forward Scatter dectector (FSC) Light Source www.2010.igem.org
- Research question by Relative fluorescence intensity (ie marker)

Examples of application of forward and side scattering

 Nanodiamond and titanium oxide particles in cellular uptake studies using HeLa cells increases the side scatter with little effect on forward scattering

What is Fluorescent Light?

- The fluorochrome absorbs energy from the laser
- The fluorochrome releases the absorbed energy by emission of photons of a longer wavelength

FACSCalibur

Fluidics

Introduces and focuses the cells for interrogation

Optics

• Generates and collects the light signals

Electronics

• Converts the optical signal to digital signal, processes the signal and communicate with the computer

www.bdbiosciences.com

Hydrodynamic focusing

- Slower moving sample stream is injected into a faster moving sheath stream
- Surface tension and laminar flow causes the sample to be "wicked off" into a narrower faster moving stream within the sheath stream (stream within a stream)
- Alignment of cells within this stream are controlled by velocity of the two streams

Optics

Excitation/Emission

- 2 lasers (488 and 635nm)
- 4 filters BP and LP (FL1 to 4)

Electronics

- Pulse height (H), area
 (A) and width (W)
- Converts analog signals to proportional digital signals

Practical Flow Cytometry Haematology Diagnostics

www.bdbiosciences.com

www.bdbiosciences.com

Plot Stats (Cell Quest Pro)

M. Poorghorban and Dr. Badea research

Types of Plots

Flow Cytometer Setup

- Set the forward and side scatter detectors for your untreated, unstained cell population of interest
- Set fluorescence detectors sensitivities
- Using more than one fluorescence marker? Do you need to correct spectral overlap with compensation?
- Collect data from your samples

Setting FSC and SSC

• Set forward and side scatter detectors to untreated cells.

Setting Fluorescence Detectors

 Set FL1 and FL2 detectors so that the auto fluorescence from unstained cells are set within the first log decade (10⁰ to 10¹)

Compensation

- When analysing more than one color be careful of spectral overlap
- Digital FACS have software for this.

Flowcyt.salk.edu

Flowcyt.salk.edu

A. Doig et al. Practical Flow Cytometry in Haematology Diagnosis

- Isolate populations of interest
- Gating an area will make your analysis more specific
- Can remove dead cells and debris
- Cannot discriminate between cells with the same scattering properties

Gating Example

Smear of peripheral blood

www.labome.com

Isolating populations of interest

Cannot discriminate between cells with the same scattering properties

A. Doig et al. Practical Flow Cytometry in Haematology Diagnosis

Back Gating Example

A. Doig et al. Practical Flow Cytometry in Haematology Diagnosis

Applications

- Immunophenotyping / Intracellular antigens measurement
- <u>DNA/RNA: cell cycle, aneuploidy,</u> <u>endoreduplication, kinetics</u>
- DNA base ratios
- Chromatin structure
- <u>Apoptosis (DNA degradation, mitochondrial</u> <u>membrane potential, permeability</u> <u>changes, caspase activity</u>)
- Membrane potential
- Membrane fluidity
- Membrane fusion/runover
- Intracellular calcium (ions) flux
- Intracellular pH
- Sulfhydryl groups/glutathione
- <u>Cell viability</u>
- Cell tracking and proliferation
- Intracellular reactive oxygen species (Oxidative burst)
- Cell proliferation
- Cell enumeration
- <u>Cell volume and morphological complexity</u>
- Cell pigments (f.ex. chlorophyll or phycoerythrin)

- Drug delivery
- Multidrug resistance (MDR)
- Phagocytosis
- Pathogen-host cell adherence
- Differentiation
- Identification of "stem cells"
- Reticulocyte, platelet etc analysis
- Microparticles analysis
- Assessing infection/transfection levels
- Monitoring of the electropermeabilization of cells
- Cytotoxicity assay
- Enzymatic activity
- Cell activation
- Protein-protein interactions (FRET, split-GFP)
- Protein modifications, phospho-proteins
- Activation of signalling pathways
- Cytokine Secretion
- Sorting (f.ex sperm sorting for sex preselection)
- Karyotyping
- Telomere length

Build Your Own Flow Cytometer

36th Annual Course in Flow Cytometry, Brunswick Maine, 2012