Sensory bursts in a single motion sensitive pathway of the locust
Glyn A. McMillan and John R. Gray

1. ABSTRACT
The descending contralateral movement detector (DCMD) is part of a neuronal pathway that is specifically tuned to small looming objects1 and has lateral projections that synapse with motor neurons involved in collision avoidance2. DCMD responses are typically described in terms of rate coding3,4, yet responses to looming often display observable oscillations in mean firing rates and tight clustering of spikes in raw traces; an indication of the presence of bursting. We tested 20 locusts with 30 looming stimuli known to generate bimodal responses. We found frequent and shorter inter-spike intervals (ISIs) ranged from 1-4ms, while longer less frequent ISIs ranged from 20-40ms. A subsequent burst analysis revealed inter-burst frequencies of ~25Hz (within the range of the wingbeat frequency of a flying locust5). We propose that the DCMD employs a bimodal coding strategy to relay information regarding looming objects.

2. EXPERIMENTAL SETUP
A

![Image](https://example.com/image1)

B

![Image](https://example.com/image2)

3. LOOMING RESPONSES

![Image](https://example.com/image3)

4. ISOLATION OF DCMD ACTIVITY AND QUANTIFICATION OF BURSTS

![Image](https://example.com/image4)

5. DISTRIBUTION OF DCMD SPIKES PROVIDE EVIDENCE OF BURSTING

![Image](https://example.com/image5)

6. ISI HISTOGRAMS AND AUTOCORRELATIONS SHOW BIMODAL DISTRIBUTIONS

![Image](https://example.com/image6)

7. CONCLUSIONS
- Evidence of bursting (particularly up to 200ms before TOC) based on distribution of spikes and autocorrelations: peak burst ISI and autocorrelation occurred around 40ms (or 25Hz).
- Results suggest a behavioural implication of bursting: previous studies have shown that low DCMD firing rates that occur around 200ms before TOC may trigger avoidance steering responses in rigidly tethered locusts6.
- Given that the average wingbeat frequency of a flying locust is ~25 beats/s, our findings provide evidence to drive future experiments to test if DCMD bursting may have a role in gaiting non-rhythmic sensory input (object motion) to coordinate rhythmic modulation of wing kinematics linked to avoidance behaviour.

8. REFERENCES

9. ACKNOWLEDGEMENTS
Funding provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation, and the University of Saskatchewan.