Changes in the velocity of an approaching object are tracked by a locust motion-sensitive visual interneuron

J.R. Gray, T.P. Stott, E.G. Olson and R.H. Parkinson
NNOVATION.CA
University of Saskatchewan

6) Velocity changes modulate responses to looming

Overlays of DCMD responses to a velocity decrease (orange) or increase (cyan) with time-adjusted esponses to associated constant velocities. Black $300 \mathrm{~cm} / \mathrm{s}$ grey $=50 \mathrm{~cm} / \mathrm{s}(\mathrm{A})$ or $550 \mathrm{~cm} / \mathrm{s}(\mathrm{B}, \mathrm{C})$. Red line is TOC, blue line is shifted TOC for C_{300}

Response delay and comparison of time matched firing rate properties in response to constant and decreasing velocities. A) Response delay (δ, see 3B,C) for the valley in I_{180} (cyan) and the first peak in D_{46} (orange). B) Firing rate at the time of the valley in response to a decreasing velocity (orange) and at the corresponding time (calculated for each locust) in response to C_{50} (grey). C) Slope of line from the time of the valley to the time of the second peak for D_{460} and over the same time for C_{50}. D) Number of spikes from the valley to TOC for D_{460} and over the same time for C_{50}. Dark and light shades for each colour represent data from simple and flow field
background conditions, respectively.

Summary/Conclusions

Object shape affects the relationship between object expansion and peak DCMD firing times, subsequently affecting the threshold angle for evoking the peak

An instantaneous velocity decrease evokes a temporary decrease in the DCMD firing rate.

An instantaneous velocity increase advances DCMD peak firing.

Effects of velocity changes are likely mediated through delayed effects on inhibitory circuits.

[^0]
[^0]: References and Acknowldegements RRind, F. C. and Simmons, P. J. (1992). Orhtopteran DCMD neuron: a
 reevaluation of responses to moter approaching objects. J. Neurophysiol. 68, 1654-1666.
 ${ }^{2}$ Gabbiani, F., Krapp, H. G. and Laurent, G. (1999). Computation of obj approach by a wide-field motion-sensitive neuron. J. Neurosci. 19, 1141

