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Ø  Examination of Ti K- and Sn L3-edge XANES spectra shows that the Ti-O bonds become more 

ionic while the Sn-O bonds becomes more covalent in Gd2Ti2‑xSnxO7 (and Y2Ti2‑xSnxO7) with 

greater Sn content 

Ø  A greater understanding of the effect of covalency on the metal-oxygen bonds has been achieved 

Ø  GA-XANES spectra of damaged Gd2Ti2‑xSnxO7 samples shows that significant distortions of the 

Ti and Sn-sites occurs with increasing Sn content 

Ø  XANES studies of materials before and after being damaged can assist in developing crystalline 

oxides for the sequestration of  nuclear waste elements 
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Crystal structure of Gd2Ti2-xSnxO7 [5]  Powder XRD 

Ø  Increase in unit cell with greater Sn content 

Ø  Sn4+=0.690Å, Ti4+=0.605Å [6] 
Ø  Decrease in super structural peak intensities with 

greater Sn content due to the increased average 
scattering power of Sn  [7] 
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Sn L3-edge XANES 
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Beamline:  PNC/XSD-CAT 20-BM beamline at the APS 

Data Collection (XANES): 13 element Ge detector, or a single element Vortex detector  

Calibration:  Ti K-edge: Ti metal (4966 eV), Sn L3-edge:SnO2 powder (3929 eV) 

Synthesis:	  

Powder XRD: Phase purity and lattice constants were analyzed using a PANalytical Empyrian powder XRD  

XANES:	  

DOS calculations: Partial DOS calculated using LMTO - atomic spheres approximation, 512 k-points [8]  

Implantation: Sintered pellets were irradiated with 2 MeV Au1- ions to a fluence of 5×1015 ions/cm2 using 
the Tandetron accelerator at Interface Science Western (ISW), University of Western Ontario  
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There has been a great interest in recent years to use titanate and stannate pyrochlores as host 
materials for the immobilization of radioactive elements (actinides), especially plutonium. To develop 
these materials, the effect of composition on the structural stability and electronic properties of these 
materials needs to examined[1]. Gd2Ti2-xSnxO7 (0≤x≤2) was synthesized by the ceramic method and 
investigated by X-ray absorption near edge spectroscopy (XANES), which allows for the study of the 
effect of elemental substitution on bonding and the electronic structure of materials[2,3]. Examination 
of metal K- and L3‑edge XANES spectra from the Gd2Ti2-xSnxO7 system allowed for the elucidation of 
how the metal-oxygen bond covalency effects the electronic structure of these materials with increasing 
Sn content. As x increases, the Ti-O bonds become more ionic while the Sn-O bonds become more 
covalent, leading to changes in energy and intensity of the collected spectra. 

Glancing angle XANES (GA-XANES) was performed to study the damaged surface layer of 
Gd2Ti2‑xSnxO7 pellets after being irradiated by a beam of high‑energy Au1- ions. GA‑XANES allows for 
the investigation of the metal oxidation state, bonding environment, and coordination number (CN) of 
the damaged surface layer[4]. The investigation of these materials by GA-XANES after irradiation 
suggests that a significant distortion occurs at the Ti- and Sn-site with a change in CN and bonding 
environment being observed. 
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A3 : Intersite hybrid transition (Ti 4p-O 2p-Ti’ 3d) 

Main edge (B and C) : Ti 1s à Ti 4p transition 

Ø  Intensity of the A2  and A3 features decrease with 

greater Sn content 

Ø  Decrease in the number of unoccupied next‑nearest 

neighbour Ti d-states [9] 

Feature B shifts to higher energy in Gd2Ti2-xSnxO7 and 

Y2Ti2-xSnxO7 with increasing Sn concentration 

Ø Ionic character of Ti-O bond increases and Ti develops 

a  more positive charge (χsn  = 1.8  > χTi = 1.5) [10] 

Ø Shift of Feature B confirmed by examination of Ti 4p 

partial DOS calculations from Y2Ti2-xSnxO7 
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Feature A: Sn 2p3/2 à Sn 5s transitions 

Feature B: Sn 2p3/2 à Sn 5d transitions 

Feature C:  Multi-scattering resonances 

Ø  Intensity of feature B decreases with increasing 

covalency of the Sn-O bond 

Ø  Sn-O bond becomes more covalent with greater Sn 

content (χsn  = 1.8  > χTi = 1.5); fewer unoccupied 

Sn 5d – O 2p states to excite to [10] 

Feature B shifts to lower energy with greater Sn content in Gd2Ti2-xSnxO7 and Y2Ti2‑xSnxO7   

Ø  Increase in Sn‑O bond covalency with greater Sn content; greater screening of Sn nuclear charge  

Ø  Confirmed by examination of Sn 5d partial DOS from Y2Ti2-xSnxO7 

Ti K-edge: 
Significant changes with decreasing glancing angle 

Ø  Intensity of  A increases with decreasing CN 

Ø  Loss of symmetry increases 4p/3d mixing [11] 

Ø  Feature C decreases in intensity and feature B decreases 

in energy with decreasing CN 

Ø  Ti  CN decreases with decreasing X-ray penetration depth 

Ø  A decrease of the Ti CN is observed in the damaged 

samples as compared to the undamaged samples 

Sn L3-egde: 

Features B and C decrease in intensity and all features 

become broader in the spectra from the damaged 

samples vs the undamaged samples 

Ø  Decrease in degeneracy of the Sn-O states with 

changing CN and bonding environment 

Comparison of materials implanted with the same dose 

of Au1- ions shows that the system becomes more 

prone to damage with increasing Sn concentration 
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