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Abstract

Camera traps (CTs) are an increasingly popular method of studying animal

behavior. However, the impact of cameras on detected individuals—such as

from mechanical noise, odor, and emitted light—has received relatively little

attention. These impacts are particularly important in behavioral studies in

conservation that seek to ascribe changes in behavior to relevant environmen-

tal factors. In this article, we discuss three sources of bias that are relevant to

conservation behavior studies using CTs: (a) disturbance caused by cameras;

(b) variation in animal-detection parameters across camera models; and (c)

biased detection across individuals and age, sex, and behavioral classes. We

propose several recommendations aimed at mitigating responses to CTs by

wildlife. Our recommendations offer a platform for the development of more

rigorous and robust behavioral studies using CT technology and, if adopted,

would result in greater applied benefits for conservation and management.
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1 | INTRODUCTION

Detecting changes in species behavior in response to
environmental stimuli is key to understanding the mech-
anisms behind individual and, ultimately, species
responses to global change, including land use changes,
habitat and biodiversity loss, and climate change (Wong
& Candolin, 2015). Behavioral change can serve as an
early warning sign for demographic impacts (Wiley &
Ridley, 2016), shed light on species adaptations to chang-
ing environments (Rabaiotti & Woodroffe, 2019), and
highlight potential conservation interventions (Anthony
& Blumstein, 2000). Advances in technology, declining
costs, methodological versatility, and the potential for
collecting a substantial amount of data with compara-
tively little survey effort, mean that remotely activated
camera traps (CTs, hereafter) are becoming increasingly
popular in studies of animal behavior (Burton et al., 2015;
Caravaggi et al., 2017; Sanz & Morgan, 2007). For example,
CTs have been used to describe activity patterns (e.g.,
Rowcliffe, Kays, Kranstauber, Carbone, & Jansen, 2014),
foraging (e.g., Delgado-V, Arias Alzate, Botero, & Sanchez
Londono, 2011), social behavior (e.g., Leuchtenberger,
Zucco, Ribas, Magnusson, & Mourao, 2014), denning
(Bridges, Vaughan, & Klenzendorf, 2004), and anti-
predator behaviors (Carthey & Banks, 2016). Changes to
these behaviors can affect individual survivorship and fit-
ness and, given sufficient frequency and effect size, popu-
lation dynamics. However, all these analyses assume
behaviors of detected species are independent of the detec-
tor (i.e., CTs). The degree to which this assumption is met
or violated is rarely considered or articulated. This prob-
lem has the potential to affect conclusions and conserva-
tion measures derived from behavioral analyses.

Behavioral studies of wildlife conducted via direct
human observation are subject to observer bias, that is,
the tendency of observers to interpret behaviors in the
light of their own prior knowledge, expectations, and
feelings. Indeed, field studies of behavior are often under-
taken, and observations filtered, by researchers with a
priori preconceptions about the focal animal's ecology
and environment. Conversely, CTs allow researchers to
escape at least some of those biases by recording direct
observations of wildlife, for extended periods of time and
at multiple locations simultaneously, without requiring a
potentially confounding human presence in the field
(apart from activities required for camera deployment
and maintenance). Researchers' activities and presence
may have long-term consequences for the local ecology
or focal species' behavior (Hobaiter et al., 2017), and
human observers may bias data collection where
researchers choose which individuals to obtain data from
or when to record footage, or when an observed animal

reacts to the observer. In contrast, CTs collect data from
any animals moving through the detection zone, and are
thus likely to be less biased—or, at worst, systematically
biased based on measureable factors—with regard to
sampling of individuals. Each detection thus becomes a
voucher specimen from which recorded behavior can be
reviewed by several researchers, allowing enhanced repli-
cability and even reduced data processing time by engag-
ing volunteer citizen-scientists through internet-based
platforms (Hsing et al., 2018). Cameras also allow the col-
lation of standardized data from spatially and/or tempo-
rally independent studies (e.g., Caravaggi et al., 2018;
Kalan et al., 2019; Stewart et al., 2016), facilitating more
broadly applicable ethological inferences on how species
respond to various stimuli. This approach is exemplified
by successful projects on citizen science platforms (e.g.,
Chimp&See, www.chimpandsee.org; MammalWeb, www.
mammalweb.org; Snapshot Serengeti, www.zooniverse.
org/projects/zooniverse/snapshot-serengeti). There, public
volunteers can contribute to large-scale efforts for identify-
ing and classifying species, individuals, and behaviors
from thousands of CT photos and videos (Kalan
et al., 2019). It is then possible to assess degrees of inter-
observer reliability (Martin & Bateson, 1986) and aggregate
classifications from multiple participants to improve accu-
racy in resulting datasets (Hsing et al., 2018; Swanson
et al., 2015). CT data can also be archived for future refer-
ence (e.g., eMammal, https://emammal.si.edu/).

Although CTs provide many advantages, biases per-
sist (Hofmeester et al., 2019). These biases are particu-
larly key to behavioral studies in conservation, wherein
we seek to ascribe changes in behavior to anthropogenic
impacts in the environment (e.g., Stewart et al., 2016).
Cameras can be their own source of anthropogenic
impact. Here, we review and discuss three sources of bias
that are of particular relevance to behavioral conserva-
tion studies conducted via CTs and how they might affect
the reliability of behavioral inferences: (a) disturbance
caused by cameras; (b) variation in animal-detection
parameters across camera models; and (c) biased detec-
tion across individuals and age, sex, and behavioral
classes.

2 | DISTURBANCE CAUSED BY
CAMERAS

While CTs mitigate several methodological risks, the
impacts of CT technology itself on wildlife have been
given limited attention (but see Séquin, Jaeger, Brussard,
& Barrett, 2003; Schipper, 2007; Gibeau &
McTavish, 2009; Meek et al., 2014; Meek, Ballard, Flem-
ing, & Falzon, 2016; Kalan et al., 2019). For instance,
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contrary to the common labeling of CTs as nonintrusive
or noninvasive (e.g., Bahaa-el-din & Cusack, 2018;
Hackett et al., 2007; Karanth & Nichols, 2010; Long, Mac-
Kay, Zielinski, & Ray, 2008; Monterroso, Alves, & Fer-
reras, 2011; Velli, Bologna, Silvia, Ragni, & Randi, 2015),
CTs are mechanical devices that emit light and sound,
carry human scent, and have a tangible and novel pres-
ence in the environment. Indeed, some behavioral stud-
ies actually use CT systems as a source of experimental
disturbance against which animal responses can be mea-
sured (e.g., Kalan et al., 2019; Suraci et al., 2017). It is no
surprise, then, that a wide range of species have been
observed to detect and investigate CT units (see Figure 1
for examples). CTs that use visible light to illuminate
wildlife are more likely to be detected than those that use
infrared and, as a result, have greater potential to disrupt
natural behavior (Meek et al., 2014; Wegge, Pokheral, &
Jnawali, 2004), particularly for wary species such as
wolves, Canis lupus (Gibeau & McTavish, 2009) or coy-
otes, Canis latrans (Larrucea, Brussard, Jaeger, &
Barrett, 2007). Further, Apparent differences in diurnal
versus nocturnal behaviors need to be evaluated particu-
larly carefully since nocturnal illumination ranges are
typically reduced. Moreover, the sound produced by CTs
may be undetectable by humans, but often elicits a reac-
tion from other species (Meek et al., 2016).

Similarly, a CT represents a new visual and chemical
element in the environment that is often detectable by
wildlife (e.g., Kalan et al., 2019; Larrucea et al., 2007). Ani-
mals vary in their response to scent (e.g., Kalan et al., 2019;
Muñoz, Kapfer, & Olfenbuttel, 2014) and it is possible that
human scents on equipment will affect the behavior of
some species or individuals more than others. This influ-
ence may be exacerbated by clearing immediate vegetation
to reduce false triggers, potentially leaving behind addi-
tional cues of recent human presence. Many CT studies
use bait or lure to bring animals into the camera's detec-
tion zone, thus increasing the probability of detecting par-
ticular species, typically carnivores, and have the potential
to alter species behavior (Braczkowski et al., 2015, 2016;
Burton et al., 2015; Holinda, Burgar, & Burton, 2020; Mills,
Fattebert, Hunter, & Slotow, 2019). Bait designed to attract
carnivores can also result in the avoidance of the camera
location by prey species, resulting in fewer detections
(Rocha, Ramalho, & Magnusson, 2016). Hence, both
baited and unbaited cameras could have particular impli-
cations for observations of species that use odor for com-
munication, navigation, or to detect predators and/or prey
(Mills et al., 2019). Moreover, we consider it possible that
the use of attractants could increase local potential for
human–wildlife conflicts if animals come to associate the
attractant and camera system with humans (sensu New-
some, & Van Eeden, 2017).

3 | VARIATION BETWEEN
CAMERA MODELS

There is considerable variation in the physical design,
structure, and technical specifications of CT models
(Rovero, Zimmermann, Berzi, & Meek, 2013; Rovero &
Zimmermann, 2016; Trolliet et al., 2014). For example,
CTs vary in the sensitivity of their passive infrared detec-
tion band, leading to marked differences in how animals
are detected given their speed, position, time of day, and
ambient temperature (Rovero et al., 2013; Rovero & Zim-
mermann, 2016). Variation between and within models
when using different settings can result in differences in
animal detectability due to variation in trigger speed, sen-
sitivity, detection zone, and field of view (Apps &
McNutt, 2018; Glen, Warburton, Cruz, & Coleman, 2014;
Meek, Ballard, & Fleming, 2015), leading to missed detec-
tions (Wellington et al., 2014; Lepard et al., 2019). More
importantly, for behavioral studies, such variation can
affect detectability of behavioral states within a species,
such as oversampling resting and undersampling fleeing,
that could, subsequently lead to spurious conclusions
about behavior. Similarly, there is considerable variation
in the amount of noise—including ultrasonic sound
when still images are taken—produced between camera
models, almost all of which is within the hearing range
of most mammals (Meek et al., 2014). Any noise pro-
duced by a camera could therefore increase the probabil-
ity of the unit being detected by an animal and influence
subsequent behavior. Variance in noise emission between
individual cameras is a further potential confounding fac-
tor that remains untested.

There appears to be no substantial difference in the
wavelengths of infrared illumination produced between
many CT models. However, contrary to the claims of
some manufacturers that animals cannot see infrared
light, many animals are in fact able to see the infrared
illumination used by many CTs in low light (Meek
et al., 2014) and the flash produced by some units is
bright enough to be visible to humans under some condi-
tions (T. R. Hofmeester, personal observation).

Differences between camera models may be particu-
larly relevant when recording video footage. When
camera units are set to record video, for instance, the
detected animal is illuminated for a longer length of
time, thus increasing the likelihood of the camera being
detected. While still images have been favored in the
majority of CT studies—due to faster trigger speeds,
recovery times, and easier processing—advances in
technology have led to improved video performance
and a corresponding increase in video use, particularly
for behavioral studies (e.g., Caravaggi et al., 2017; Sanz
& Morgan, 2007; Tattoni, Bragalanti, Groff, &
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Rovero, 2015). It is important, therefore, that
researchers choose the most appropriate camera model
and settings for their study species, taking into account

relevant biological factors such as auditory and visual
acuity, as well as mechanical traits inherent to the cam-
eras themselves.

FIGURE 1 Examples of mammals detecting camera traps and/or olfactory cues associated with camera traps. (a) Chimpanzee, Pan

troglodytes; (b) African elephant, Loxodonta africana; (c) sitatunga, Tragelaphus spekii; (d) moose, Alces alces; (e) Eurasian lynx, Lynx lynx;

(f) polar bear, Ursus maritimus; (g) roe deer, Capreolus capreolus; (h) African leopard, Panthera pardus; (i) mountain gorilla, Gorilla beringei;

(j) red fox, Vulpes vulpes; (k) wolverine, Gulo gulo; (l) grizzly bear, Ursus arctos; (m) spotted hyena, Crocuta crocuta; (n) red deer, Cervus

elaphus; (o) grey wolf, Canis lupus. Images provided by Ammie K. Kalan (a–c,i), T. R. H. (d,e), D. R. (f,o), S. G. (g,n), A. C. (h,j), J. T. F. (k,l),

A. G. (m). Visit https://doi.org/10.6084/m9.figshare.c.4593902.v1 for selected source videos
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4 | DETECTION BIAS

While cameras sample a population without making a
priori decisions about which individuals to sample, study
design and methodological protocols (e.g., camera array
structure, or camera sensitivity and trigger-speed set-
tings) may, nevertheless, bias which animals are detected
(Larrucea et al., 2007) and which behaviors are recorded.
Indeed, the application of different sampling methodolo-
gies (e.g., systematic versus [pseudo-]random placement)
can result in very different detection probabilities (e.g.,
Cusack et al., 2015; Després-Einspenner, Howe, Drapeau,
& Kühl, 2017; Kays et al., 2020; Kolowski &
Forrester, 2017; Rovero et al., 2013; Srbek-Araujo & Chi-
arello, 2013). For example, anthropogenic features such
as roads can act as corridors facilitating species' move-
ment or represent disturbances to be avoided, inflating or
deflating the number of detections depending on species-
specific responses to the feature (Di Bitetti, Paviolo, & de
Angelo, 2014; Rovero & Zimmermann, 2016). Further-
more, CTs sample a vanishingly small fraction of the ter-
ritory of many target species, perhaps just a few square
meters. Even where locations have been selected as being
of particular interest to the species (e.g., food or water
sources), it remains probable, simply as a function of
encounter rate between the individual and the relatively
insignificant area of coverage of even the immediate area
around the CT, that many encounters at CT locations are
missed.

Movement is a fundamental component of detection
for mammals (Broadley, Burton, Avgar, & Boutin, 2019;
Neilson, Avgar, Burton, Broadley, & Boutin, 2018; Stew-
art, Volpe, & Fisher, 2019) and CT data have been found
to be biased against detecting small, fast-moving species
(Glen et al., 2014). Within-species differences in site fidel-
ity, for example, around specific resources, decreases use
of space and, hence, increases the probability of detection
at specific camera locations (e.g., Sanz & Morgan, 2007).
The same can be true of interspecific interactions (Fisher,
Wheatley, & Mackenzie, 2014). Similarly, intraspecific
variation in behavior and the frequency with which cer-
tain behavioral classes are expressed, for example, move-
ment versus mating behavior, can affect the detectability
of individuals and, as a result, which behaviors are
recorded. Some taxa, indeed, individuals, may be intrinsi-
cally more neophobic or neophilic toward novel cues
(Glickman & Sroges, 1966), including CTs (Kalan
et al., 2019). There may even be differences between age
and sex classes within species (Braczkowski et al., 2015).
Some species such as wolverines, Gulo gulo (J. T. Fisher,
personal observation) and elephants, Elephantidae, may
seek out and even attack CTs, whereas others such as
wolves appear to avoid them (Gibeau & McTavish, 2009).

Indeed, the detection of CTs by target species may
subsequently impact the detection of those individuals
by the CTs, as well as the behavior captured. For
example, species with binocular vision, such as pri-
mates, are more likely to detect and, hence, respond to
devices when they are facing and traveling toward the
CT rather than away from or parallel to it (Kalan
et al., 2019). For some studies, it may be necessary to
allow animals to become habituated to CTs over a lon-
ger period of time before reliable data can be
collected.

Species' behaviors can also vary seasonally (Caravaggi
et al., 2018; Larrucea et al., 2007; Popescu, de Valpine, &
Sweitzer, 2014) and annually, resulting in time-varying
patterns in diurnal activity (Frey, Fisher, Burton, &
Volpe, 2017), movement (Broadley et al., 2019), habitat
use (Kalle, Ramesh, Qureshi, & Sankar, 2014), and social
behaviors (Hongo, Nakashima, Akomo-Okoue, &
Mindonga-Nguelet, 2016). For example, gregarious spe-
cies are more likely to be detected by CTs (Treves,
Mwima, Plumptre, & Isoke, 2010), but group sizes can
vary throughout the year. Environmental variation such
as differences in habitat structure, altitude, or vegetation
(Hofmeester et al., 2019), could result in certain behav-
iors being more frequently detected in some habitats or
under different environmental conditions. It is also worth
considering that behavior relative to cameras could vary
with predictor variables of interest, such as human dis-
turbance (as observed for wolverines; Stewart et al., 2016)
or perceived predation risk, and also according to sam-
pling design (e.g., cameras set on-trail versus off-trail, or
at specific microhabitat features).

5 | WHAT ARE THE SOLUTIONS?

While CTs are a powerful tool for research and conserva-
tion, improved understanding of their detection biases
and their impacts on behaviors of sampled individuals is
necessary to avoid inaccurate inferences from CT data
sets. The extent of these biases remains poorly under-
stood yet their potential importance cannot be under-
stated, especially when the impact of the detection
process is misconstrued as resulting from the environ-
mental stimuli under investigation. To avoid erroneous
conclusions (particularly false positives), it is incumbent
upon CT researchers to ensure that study designs antici-
pate potential sources of bias and measure or mitigate
them whenever possible. Where there is considerable
uncertainty in the degree, or even direction, of potential
biases, further focused research should be undertaken to
measure and model that uncertainty in a study's specific
context.
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At present there is little we can do in the field to miti-
gate the immediate impacts of the novel cues we intro-
duce by placing CTs in the environment on observed
behavior. Indeed, novel cues may even be necessary to
achieve sufficient detection rates to support analyses. We
therefore propose the following recommendations for
mitigating CT detection bias and improving the measure-
ment of behavior in species and ecosystems of conserva-
tion importance. First, test for the period over which
animals become habituated to CTs and truncate data for
behavioral inferences accordingly, bearing in mind that
even low-impact observational methods of habituation
for direct observation may change natural behavior for
years, or even decades (e.g., chimpanzees: Hobaiter et al.,
2017). Second, test the impacts of olfactory cues on the
behavioral patterns of focal species and classes (e.g., age,
sex) within those species (e.g., du Preez, Loveridge, &
Macdonald, 2014). Third, use white-light flashes only
when the light is absolutely needed to illuminate focal
behaviors: supplementary triggers or illuminators may
reduce the need for visible illumination. In such
sequences, the first record alone should be used in behav-
ioral analysis, with a subsequent truncation of data until
habituation returns. Fourth, exclude from analyses any
pronounced responses to CTs that disrupt or change
behaviors of interest. Fifth, measure additional relevant
factors (e.g., habitat structure, climate, seasonality) and
use these as covariates in statistical analyses.

Finally, researchers can mitigate the problems identi-
fied herein by acknowledging and accounting for such
issues in their statistical analyses of camera data. By
recording site, species, seasonal, or age-class responses to
the camera specifically—in addition to the “natural”
behaviors of ecological focus being studied—and includ-
ing these in analyses as covariates, researchers may parti-
tion these sources of variance, subsequently identifying
“nuisance” variables. Factors underlying relative, inter-
specific detectability, such as variation in detectability
between individuals of different sexes (Srbek-
Araujo, 2018), ages (Kalan et al., 2019), or social status
(Séquin et al., 2003), should be explicitly tested in an
appropriate experimental and statistical framework. Par-
titioning false absences (i.e., the failure to detect species,
even when present) using occupancy models (MacKenzie
et al., 2017) is already a focus for many CT researchers
(Burton et al., 2015). In probing the apparent problem of
false absences further, new insights into the ecological
and behavioral factors affecting detectability have been
revealed (Stewart et al., 2019; Stewart, Fisher, Burton, &
Volpe, 2018). We suggest that, at a minimum, all behav-
ioral studies using CTs must demonstrate how they have
accounted for species' responses to CTs in analysis by
partitioning variance introduced by the factors described,

above. Explicitly state the assumptions underlying behav-
ioral CT studies, and any potential violations thereof. We
encourage researchers to undertake investigations into
the reasons why differential behavioral responses to these
anthropogenic cues can occur, as these may yield valu-
able insights. In this sense, the CT becomes a part of the
experiment, as well as the detector.

It is impossible that we, as observers of a system, will
ever remove ourselves fully from that system. However,
our presence is a part of the variable environment ani-
mals encounter, and, hence, a contributor to the variance
in species' behaviors. Minimizing the specific effects of
remote detection methods such as CTs will at least
remove some of the variance attributed to observation,
prevent directionality in that variance and hence bias,
and increase confidence in our conclusions. Failing to
account for inter- and intra-specific variability in behav-
ioral responses to CTs could lead to spurious conclusions
about behavior, particularly where behaviors are
assumed to apply across populations, but only a subset of
individuals or behaviors are detected. As a result, conclu-
sions used to inform conservation decisions may not be
well founded. By adopting and building on our recom-
mendations, researchers can ensure that behavioral stud-
ies utilizing CT technology are more rigorous and robust,
deliver more accurate data, and yield greater applied ben-
efits for conservation and management.
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