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Background 

• Snowmelt runoff from Rocky Mountains is an important 
water resource  

  

• High uncertainty in the future hydrological response to 
climate and/or landcover change  

 

• Important to be able to better understand and predict 
likely changes for future water management 

 

– Requires robust and physically based models for 
simulating snow processes     

 



Variability of Alpine Snow Processes 

• Complexities in terrain and vegetation affect snow 
accumulation, redistribution, and melt  

  

– High spatial variability in snow water equivalent 
(SWE) 

– Large variation in energy for snowmelt during the 
spring  

 

• Leads to a patchy snowcover as the spring progresses 

 

• Significantly affects timing, rate, and magnitude of 
meltwater generation      

 



Areal Snowcover Depletion (SCD) 

• Melt rate computations applied to a distribution of SWE 
yield snowcovered area (SCA) over time (SCD curve)  
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Problems with SCD Approach in Alpine Terrain 

• The approach assumes uniform melt rate over the SWE 

distribution 

– Energy balance melt rate computations depend on 

snowpack state (e.g. depth, density, SWE, 

temperature, etc.) 

– Melt rates are not uniform in alpine terrain 

 

• Further problems with new snowfall part way through 

melt  

  



Study Objectives 

• Develop new theoretical framework for areal snowcover 
depletion (SCD) and meltwater generation  

 

• Test framework using observations in alpine basin 

 

• Determine how variability of SWE and snowmelt energy 
affect areal SCD and meltwater generation 

 

• Incorporate framework within hydrological model and 
examine influence of variability on hydrograph 

  



Development of Theoretical Framework  

• Framework for areal SCD based on lognormal 

distribution  
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Development of Theoretical Framework  
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• Framework handles other important aspects of spatial 

snowmelt and new snowfall during spring 



Field Study Site  

• Marmot Creek 

Research Basin, 

Kananaskis Country, 

Alberta  

 

 

 



Field Study Site  

• Focused data collection at Fisera 

Ridge and Upper Middle Creek   
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Field Methods and Observations 

• Data collection over three years (2007-09) involved: 

– Meteorological observation 

– Snow surveys 

– Daily terrestrial photos 

– Lidar snowcover mapping 

– Streamflow measurement 
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Field Methods and Observations 

• 100’s of snow surveys over 3 years  

• Setup and maintenance of many 

instruments and met stations 

• Dozen’s of manual stream discharge 

measurements 

 



Terrestrial Oblique Photo Correction 
 

1) Viewshed mask created from camera perspective  

2) DEM projection in camera coordinate system 

3) Correspondence established between DEM cells and image pixels 

4) Image reprojection in DEM coordinates 
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May 7, 2007 May 10, 2007 May 14, 2007 May 17, 2007 May 19, 2007 May 22, 2007 May 26, 2007 May 29, 2007 May 31, 2007 June 2, 2007 June 4, 2007 June 7, 2007 June 10, 2007 June 13, 2007 June 18, 2007 June 21, 2007 June 24, 2007 June 27, 2007 July 1, 2007 July 4, 2007 July 9, 2007 July 13, 2007 

Areal Snowcover Observations 

Time lapse digital photography used to 

monitor areal SCD  

 



Snowmelt Modelling and Validation 

• Snowpack evolution simulated using the Snobal energy 

balance model within Cold Regions Hydrological Model 

(CRHM) platform                                     

                                      

 

 

Active layer 

Lower layer 

  LvE     H     K↑    K↓    L↓    L↑     P    E 

Soil layer  

  G         R 

  U 

  U 

Shortwave and longwave radiation inputs 

corrected for slope, aspect, skyview fraction 

using algorithms in CRHM  

(Qm = LVE + H - K↑ + K↓ + L↓ - L↑ + G - dU/dt)    

 



Snowmelt Modelling and Validation 

• Model performs well for depth, SWE, internal energy                                   
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Effects of Snow Mass and Internal Energy 

• Differences in initial state have large influence on 

computation of snowmelt timing and rate                                   
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Spatial – Temporal Snowmelt Variability 
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Landscape Disaggregation for SCD Simulation  

• SWE values 

on different 

slopes fit 

theoretical 

lognormal 

distribution 
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Simulation of Areal SCD over Landscape 

• Framework 

applied to 

predict areal 

SCD 

• Results were 

improved by 

considering 

separate 

distributions 

and melt rates 

on each slope  
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Influence of “Inhomogeneous” Snowmelt 

• Earlier and more rapid melt of 

shallow snow on some slopes 

led to an initial acceleration of 

SCD 
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• Variability in melt over landscape and SWE dist’s. affects 

location, extent, and timing of meltwater generating area  
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• Process-based and conceptual model with spatial structure 

based on topography, land cover, and SWE distributions 

                                      

Hydrological Model Development 
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• Model is capable of producing reasonable hydrographs with 

correct volume of runoff 

                                      

Model Evaluation for Snowmelt Hydrograph 
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• Various simulation approaches were used to examine 

influence on the basin hydrograph 

                                      

Hydrograph Sensitivity Analysis 
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• Other approaches were used to examine effects of forest 

canopy and soil depth, and inhomogeneous melt  

                                      

Hydrograph Sensitivity Analysis 
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• Novel framework that allows for physical, yet spatially 

simple snowmelt and SCD simulation 

 

– Incorporation of sub-grid distributions of internal 

energy for melt computation 

 

• Application of the framework, together with a hydrological 

model showed the influence of the spatial variability of 

both SWE and snowmelt energy on areal SCD and 

snowmelt runoff in an alpine environment 

 

 

                                      

Key Conclusions, Significance 



• Important to take inhomogeneous melt into account for 

areal SCD simulations 

 

– Implications for remote sensing, climate models and 

modelling applications using depletion curves 

 

• Effects are not as important for snowmelt runoff and 

hydrograph simulation, as other processes tend to 

overwhelm the response 

 

– Still important to account for spatial variability of 

snowmelt energy on the slope, and land cover scale 

 

                                      

Key Conclusions, Significance 
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