Mountain Watersheds: Outdoor Hydro-Climatic Laboratories for **Detecting and Understanding Climate Warming**

DANNY MARKS

Northwest Watershed Research Center USDA-Agricultural Research Service Boise, Idaho USA

American River Basin (5400 km²), Sierra Nevada April 1, 2009 Estimated SWE Volume

Assumed Stationary Climate:

Actual Warming Climate:

Historical Data Relationship: Interpolated from SNOTEL data Satellite Estimate: SWE Reconstruction, MODIS data

Observatories – a decade of improvement:

- * What should we measure?
- * How should we measure it?
- * Where should we measure it?

It all depends on: What the observatory objectives are Where the site is located...

GRADIENTS are Critical!

Snowcover Measurement Sites

Northwest watershed research center

North American Cordilleran Transect

WCRB: Wolf Creek Research Basin, Yukon Territory, Canada

- MCRB: Marmot Creek Research Basin, Alberta, Canada
- RCEW: Reynolds Creek Experimental Watershed, Idaho, USA
- WGEW: Walnut Gulch Tombstone, Arizona, USA
- ARB: NSF MRI Project, American River Basin, Sierra Nevada, California, USA

Northwest watershed research center

Utilizing Long-Term ARS Data to Compare and Contrast Hydro-climatic Trends from Snow and Rainfall Dominated Watersheds

D.C. Goodrich, et al.

Very Different Hydro-Climatic Environments

NORTHWEST WATERSHIED RESEARCH CENTER

(208) 422-0700

Basin-wide deployment of hydrologic instrument clusters - American R. basin

Strategically place low-cost sensors to get spatial estimates of snowcover, soil moisture & other water-balance components, **Including:** <u>Temperature,</u> Humidity, <u>Wind &</u>

Network & integrate these sensors into a single spatial instrument for water-balance Precipitation measurements.

What is Changing:

Temperature – increasing: +2 to +2.5C over the past 50 years!

Precipitation – unclear: Annual Volume Unchanged? Phase has changed Discharge – unclear: Annual Volume Unchanged? Earlier Spring Flows Reduced Summer Flows Humidity – increasing during storms

Soil Moisture – changing: increase in winter decrease in summer

95%

USDA 800 Park Blvd., Suite 105 Boise, Idaho 83712

Temperature Trends at RCEW & WGEW in the US

USDA Boise, Idaho 83712 (208) 422-070

Temperature Trends at Marmot Creek in Alberta

Northwest watershed researce center

Temperature Trends Along the North American Cordilleran Transect

		T _{min}		T _{max}	
	Elev.	Slope	Trend	Slope	Trend
Station	(m)	(°C/dec)	sig. ^a	(°C/dec)	sig. ^a
RC-High	2,093	0.45	**	0.35	**
RC-Mid	1,652	0.57	**	0.29	**
RC-Low	1,200	0.36	**	0.20	*
WG-CC		0.29	***	0.26	**
MC-UC	1777	0.42	**	0.10	*

a MK-TFPW test significance level: * for $\alpha = 0.05$, ** for $\alpha = 0.01$, and *** for $\alpha = 0.001$

> NORTHWEST WATERSHED RESEARCH CENTER USDA 800 Park Blvd., Suite 105 Boise, Idaho 83712 (208) 422-0700

RCEW (239 km²):

- 32 climate stations
- 36 precipitation stations
- 5 EC systems
- 14 weirs (nested)
- 6 soil microclimate stations
- 4 hill-slope hydrology sites
- 4 instrumented catchments
- 3 instrumented headwater basins:

USC (0.25 km², 186m relief) ephemeral, groundwater dominated, annual precipitation 300-500mm

<u>RME</u> (0.38 km², 116m relief) perennial, surface water dominated, annual precipitation 750-1000mm

Johnston Draw (1.8 km², 380m relief) ephemeral, rain-snow boundary, annual precipitation 500-600mm

USDA Bole, Idaho 83712 (200) 422-6700

Annual Precipitation

No Significant **Trend**

> watershed research center OR THREE 1 USDA 800 Park Blvd., Suite 105 Boise, Idaho 83712 (208) 422-0700

Annual Stream Discharge

No Significant Trend

Northwest watershed research center

% Annual Stream Discharge, by Month

March, April, May & June (78-95% of Annual Flow)

Northwest watershed research center USDA 800 Park Blvd., Suite 105 Boise, Idaho 83712

(208) 422-0700

Northwest WATERSHIED PRESEAPCH CERTER

(208) 422-0700

90%

NORTHWEST WATERSHED REPEARCH CENTER USDA 800 Park Blvd., Suite 105

Conclusions:

Annual precipitation & discharge are unchanged

- However, early spring flows are increased
- Summer flows are significantly reduced
- Climate is warming
 - All temperatures have increased
 - Minimum temperatures increased the most
- More precipitation falls as rain
 - Smaller change at high elevation
 - Large change at low elevation
- Strong elevation effect
 - Effects availability of water in summer
 - More area at lower elevation
 - Increase in winter ROS events

Changes in the Rain/Snow Transition Elevation 1968-2006 Water Years

RCEW 1968-2006 Mass – Weighted Rain/Snow Elevation:

RSE computed for Individual Storms

Rain Level: $T_d = +1C$; +108 m decade⁻¹ Snow Level: $T_d = 0C$; +100 m decade⁻¹

Both significant at 95% level

R/S Transition Zone is between these

