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A B S T R A C T   

Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radi-
ation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases 
snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in 
western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds trans-
ported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, 
where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several 
studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied 
has not been compatible with studying mountain icefields that are extensive but contain substantial internal 
variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net 
shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the 
Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to 
generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirec-
tional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflec-
tance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's 
Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 
0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 
0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual 
spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 
2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded 
rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and 
this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during 
low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia 
Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to 
analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible 
using other approaches.   

1. Introduction 

High mountain regions form the headwaters of major river basins 
around the world, and they provide critical water supplies for nearly 
40% of the global population (Viviroli et al., 2020). The Canadian 
Rockies are situated on a triple point continental divide that forms the 
headwaters of the Saskatchewan-Nelson, Fraser and Columbia, and 
Peace-Athabasca-Mackenzie rivers, which flow to the Atlantic, Pacific, 

and Arctic oceans, respectively, and provide vital water sources for vast 
regions of North America. This mountain range is crowned with per-
manent snow and glaciers, and amongst other processes, the absorption 
of solar radiation in spring and summer governs the annual volume of 
available meltwater that forms streamflow and the subsequent down-
stream water supply. 

Climate change has decreased glacier volume and area (Tennant and 
Menounos, 2013) and increased the amount of water released by these 
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major icefields steadily (Bolch et al., 2010; Hopkinson and Young, 
1998). In addition, climate change is also affecting environmental 
conditions that lead to wildfires (Jolly et al., 2015). An increase in the 
frequency and intensity of wildfires has been noted in western Canada 
(Hanes et al., 2019) and globally (Seidl et al., 2017). Besides localized 
impacts, the spread of smoke has a cascading effect that has trans-
continental impacts (Baars et al., 2019; Chen et al., 2019), but larger 
smoke particles are deposited as soot in a more regional context (Kim 
et al., 2005). Intense wildfire seasons occurred in British Columbia (BC) 
in the summers of 2017 and 2018 (Kirchmeier-Young et al., 2019). The 
prevailing westerly wind flow in the region in association with the 
wildfires in the central BC forests rapidly spread smoke across Canada, 
and soot was deposited on the nearby Canadian Rockies. An increase in 
soot deposition from wildfires can decrease snow and ice albedo and 
increase the shortwave radiation absorption and melt of these surfaces 
(Ebrahimi and Marshall, 2016). In this study, the term “snow and ice” is 
used interchangeably to describe snow (albedo typical range: 0.40 to 
0.85), firn (0.30 to 0.55), and ice (0.20 to 0.65) (Cuffey and Paterson, 
2010). 

Several studies have analyzed the hydrological implications of in-
creases in the deposition of dust and soot over snow and ice on small 
scales (e.g., Doherty et al., 2010; Kaspari et al., 2015; de Magalhães 
et al., 2019; McKenzie Skiles et al., 2018; Nagorski et al., 2019), using 
either intensive fieldwork or automatic weather station (AWS) obser-
vations. A recent small-scale study showed evidence of substantial al-
bedo spatial variations due to dust deposition, which, together with 
complex interactions between slope and aspect, have an impact on the 
scalability of melt rate calculations (Schirmer and Pomeroy, 2020), and 
this is also expected to apply to soot deposition. Large-scale studies have 
used coarse-resolution modelling (1◦ to 2.8◦) (e.g., Flanner et al., 2009, 
2007; Yasunari et al., 2013) or remote sensing spatiotemporal analysis 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) (~ 
500 m) (e.g., Lee and Liou, 2012; Mortimer and Sharp, 2018; Painter 
et al., 2012; Williamson and Menounos, 2021), which cannot detect 
small-scale variations that may be important in a mountain environ-
ment. Small- and large-scale studies have inherent disadvantages. For 
example, although small-scale studies are essential for enhancing our 
understanding of snow and ice albedo, they lack the spatial coverage of 
large-scale studies. Therefore, employing high spatial resolution optical 
imagery (i.e., with a 20 to 30 m spatial resolution) would help in solving 
both scale and coverage issues and providing sufficient spatial detail to 
enable snow and ice energy fluxes to be described, while using a spatial 
coverage that can enable the consistent monitoring of large mountain 
icefields at one overpass. 

In addition to scale and coverage effects, studies monitoring snow 
and ice albedo also need to consider that their reflectance varies with 
solar and viewing angles due to anisotropy. Snow and ice surfaces differ 
from most vegetation-soil systems in that their reflectance is higher 
when the sun is in the opposite direction of the sensor (when forward- 
scattering occurs), rather than being higher when the sun is behind 
the sensor (during which backward-scattering occurs) (Jiao et al., 2019). 
Anisotropy can be represented using a bidirectional reflectance distri-
bution function (BRDF). The BRDF for vegetation-soil systems is well 
represented by the RossThick-LiSparseReciprocal (RTLSR) kernel model 
(Li et al., 2001; Roujean et al., 1992; Wanner et al., 1995), which is 
currently used in the MODIS albedo retrieval algorithm (MCD43A1) 
(Lucht et al., 2000; Schaaf et al., 2002) that is used to monitor Earth's 
albedo worldwide, and it has been successful for some snow and ice 
applications (Li et al., 2018; Mortimer and Sharp, 2018; Wang et al., 
2016). However, the RTLSR model is not optimal for describing the 
reflectance behavior of snow and ice surfaces because it favors the 
representation of backward-scattering instead of forward-scattering. 
Jiao et al. (2019) enhanced the RTLSR model by adding a snow 
kernel, which improved the BRDF representation of surfaces covered by 
pure snow. It is also possible to retrieve the BRDF of snow (Lee and Liou, 
2012) using empirical look-up-tables (LUTs) (Stamnes et al., 1988), but 

this information cannot account for variations in albedo due to soot 
deposition. 

Downscaling techniques have been employed to resolve scale issues 
from MODIS to Landsat/Sentinel-2 spatial resolution. Shuai et al. (2011) 
developed the precursor of currently applied albedo downscaling tech-
niques. Shuai et al.'s (2011) technique relies on the translation of 
spectral similarity between MODIS and Landsat homogenous pixels into 
BRDF similarity. Although this technique was ground-breaking, it did 
not retrieve high spatial resolution albedo over snow-covered surfaces 
due to radiometric limitations of pre-Landsat 8-OLI high spatial reso-
lution operational sensors. Wang et al. (2016) later applied this tech-
nique to snow-covered surfaces to analyze the effects of wildfire on early 
spring boreal forest albedo, since the improvements on Landsat 8-OLI 
radiometric resolution reduced saturation over snow pixels. Sentinel-2 
has reduced the saturation of snow pixels even more, and therefore, Li 
et al. (2018) were able to use Sentinel-2 albedo retrievals over snow for 
the first time. All these applications have used the RTLSR model with 
some success, but the use of a snow and ice BRDF model downscaled to 
high resolutions has not yet been employed to assess the impacts of 
wildfires on snow and ice albedo and net shortwave radiation (K*). 
Several studies have addressed the estimation of land surface energy 
balance at Landsat spatial resolution or finer, including K*, but they are 
either applied to evapotranspiration (e.g., Bastiaanssen et al., 1998; 
Allen et al., 2007) or are heavily empirical and do not account explicitly 
for the effects of BRDF on K* estimation (e.g., Duguay, 1995; Painter 
et al., 2013; Wang et al., 2014). 

The purpose of this paper is to assess the impact of soot deposition 
from wildfire on albedo and K* over the Columbia Icefield in the Ca-
nadian Rockies. The specific objectives of this study are to: develop a 
generalized method that permits high spatial resolution albedo re-
trievals over mountains with snow and ice cover; use the method to 
determine the temporal and spatial evolution of the impacts of soot on 
the albedo of a mountain icefield; and apply these results to determine 
the spatial persistence of shortwave radiative forcing of wildfire soot on 
mountain snow and ice surfaces, including consideration of the impact 
of slope and aspect. To achieve these objectives, an albedo retrieval 
framework that uses a BRDF reflectance model coupled with a down-
scaling technique is developed to retrieve snow and ice albedo at a 
Sentinel-2 20 m spatial resolution. High spatial resolution albedo re-
trievals over glacierized mountain snow and ice can contribute to the 
spatiotemporal monitoring of albedo changes induced by climate 
change, such as those caused by wildfire soot deposition. 

2. Material and methods 

2.1. Study area 

The study area is the Columbia Icefield, which sits astride the con-
tinental divide in the Canadian Rockies (Fig. 1). This icefield is the 
largest in the Rocky Mountains (Heusser, 1956) and it is extremely 
important for providing the water resources of four major North 
American river basins: Saskatchewan-Nelson, Fraser, Columbia, and 
Peace-Athabasca-Mackenzie. It is particularly important for sustaining 
flows in late summer, when glacier melt contribution to streamflow is 
high. The icefield had an area of 205.5 km2 in 2009, a 23% decline from 
1919, with the most rapid rate of decline from 2000 to 2009 (Tennant 
and Menounos, 2013). Elevations range from ~1700 to 3700 m above 
mean sea level (a.m.s.l.), as estimated by the National Aeronautics and 
Space Administration's (NASA) Shuttle Radar Topography Mission 
(SRTM). The icefield's current mean annual temperature is − 4 ◦C and 
total annual precipitation is 1277 mm (Tennant and Menounos, 2013). 
The lower-right corner inset map in Fig. 1 shows the area of interest 
(AOI) for MODIS data sampling, which was expanded to provide a 
higher number of snow and ice pixels for the MODIS BRDF modelling; 
however, all high spatial resolution albedo analyses were focused on the 
Columbia Icefield surface. 
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The study was conducted between July 1 and September 15 during 
2016, 2017, 2018, 2019, and 2020. During these periods, the AWSs of 
the Athabasca Glacier (2177 m a.m.s.l.) and Athabasca Moraine (1966 m 
a.m.s.l.) measured air temperature, relative humidity (Rotronic HC2- 
S3), precipitation (Ott Pluvio with Alter wind shield, only in the Atha-
basca Moraine AWS), short-and longwave radiation (Kipp and Zonen, 
CNR4), and albedo. The Athabasca Glacier AWS albedometer is at 1.59 
m above the glacier ice, and has a 150◦ field of view from the upwelling 
shortwave radiometer, resulting in a 110 m2 footprint (Fig. 1). Although 
the albedometer and Sentinel-2 400 m2 footprints do not exactly match, 
both footprints cover the same lower glacier ice surface and are within 
an autocorrelated distance of 50 m (Arnold and Rees, 2003). A timelapse 
camera facing the Athabasca Glacier was also used in the analysis. These 
stations are operated by the University of Saskatchewan Centre for 
Hydrology to provide information on the glacier and proglacial surface 
meteorological conditions. Three Alter-shielded weighing precipitation 
gauges (Saskatchewan River Crossing 2, Job Creek, and Southesk) from 
the Alberta Agriculture and Forestry's Alberta Climate Information 
System (ACIS) were used to fill missing precipitation data using an in-
verse distance weighing interpolation method. Precipitation at Atha-
basca Moraine AWS was corrected for snowfall undercatch following the 
methods of Harder and Pomeroy (2013) for phase determination and 
Smith (2007) for Alter shield undercatch of snowfall. The average and 
accumulation values during the 2.5-month annual study periods are 
shown in Table 1. Note that hereafter [ ] is used as a convention to 
represent albedo as a unitless quantity and that numerical dates will be 
presented in the YYYY-MM-DD format. 

2.2. General workflow for high spatial resolution albedo retrieval 

Fig. 2 illustrates the general workflow used to retrieve high spatial 
resolution snow and ice albedo estimates. This workflow builds upon 
that presented in Shuai et al. (2011) and Li et al. (2018), in which the 
main difference is associated with testing two different BRDF models. 
The subsequent sections of this paper describe details of the method 
employed, but a brief overview is given as follows: the method first uses 
inverse modelling based on two different BRDF model approaches to 
retrieve the parameters fiso(λ), fvol(λ), and fgeo(λ), for the RTLSR model; 
and with addition of fsnow(λ), for the snow kernel model, or fk(λ) – the 
subscript k representing each kernel. These parameters are used to 
calculate BRDF reflectance based on Sentinel-2 near-nadir geometry 
information (i.e., directional illumination and directional reflectance), 
black-sky (i.e., directional illumination and hemispherical reflectance), 

Fig. 1. Study area map showing the Columbia Icefield, its outlet glaciers, the AWS used in the study, and terrain contour lines from SRTM (Feb. 2000). The map inset 
in the lower-right corner shows the AOI for Sentinel-2 cloud screening and MODIS pixel sampling. The map inset in the lower-left corner shows the Athabasca Glacier 
AWS albedometer footprint in red and the Sentinel-2 grid in black – the high spatial resolution RGB image is from Esri satellite basemap (image date: 2020-06-25). 
The map also shows the glacier mean aspect and boundaries used to compute spatial averages. Small south-facing glaciers were called S1 to S4. RGB coloured 
Sentinel-2 image is from 2018-08-08. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Meteorological conditions during the July 1 – September 15 study period from 
2016 to 2020. The mean albedo was calculated excluding episodes of fresh snow 
to represent the annual albedo of glacier ice.  

Variable 2016 2017 2018 2019 2020 

Mean temperature [◦C] 5.9 7.7 6.5 6.6 6.9 
Mean relative humidity [%] 72 61 66 70 65 
Total precipitation [mm] 144 91 142 131 116 
Mean incoming shortwave [W/m2] 192 207 208 206 221 
Mean incoming longwave [W/m2] 305 297 300 304 302 
Mean albedo [ ] 0.29 0.26 0.27 0.22 0.25  
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and white-sky (i.e., hemispherical illumination and hemispherical 
reflectance) spectral albedos. The model with the best BRDF estimates 
(RTLSR or snow kernel) is then used to calculate the ratios between 
black-sky/nadir and white-sky/nadir. At this point, the ratios are stored, 
and the processing of Sentinel-2 images begins. In this respect, Sentinel- 
2 top-of-atmosphere (TOA) reflectance images are first atmospherically 
corrected using the Sen2Cor v2.8 model (Mueller-Wilm et al., 2019), 
and 15 unsupervised classifications are performed, varying the number 

of cluster classes from 6 to 20. This iterative process aims to find a 
number of cluster classes that represents reflectance seasonality for the 
icefield every 15 days; therefore, all the remaining high spatial resolu-
tion steps are generated 15 times. This cluster classification defines the 
degree of homogeneity for the selection of MODIS pixels and the sam-
pling of previously defined black-sky and white-sky ratios. In this step, 
the ratio based on MODIS is sampled only for pixels that are covered by 
more than 60% of the same Sentinel-2 cluster class, following the 

Fig. 2. Flowchart showing the general framework used in the retrieval of high spatial resolution albedo.  
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method of Shuai et al. (2011) and Li et al. (2018). This process ensures 
that the ratio is sampled only for relatively homogenous pixels, but the 
ratio is applied to all 20 m Sentinel-2 surface reflectance pixels. For 
example, the MODIS ratio computed for cluster class number 1 is applied 
to all Sentinel-2 pixels classified as cluster number 1. This downscaling 
technique generates two Sentinel-2 spectral albedo retrievals, black-sky 
and white-sky, for each number of cluster classes. A narrow-to-broad 
band conversion function is applied to retrieve spectrally integrated 
black-sky and white-sky albedos. Finally, these two retrievals are line-
arly interpolated based on the ratio between the surface-observed 
shortwave irradiance (at Athabasca Glacier AWS) and theoretically 
modelled shortwave irradiance, resulting in the blue-sky albedo. 

2.3. BRDF modelling 

Traditionally, the BRDF is modelled using the RTLSR kernel model 
(Li and Strahler, 1992; Roujean et al., 1992; Wanner et al., 1995), which 
was initially developed to model the BRDF for vegetation-soil systems R 
(θ,ϑ,φ,λ)v. The original RTLSR model comprises the following three 
kernels, 

R(θ,ϑ,φ, λ)v = fiso(λ)+ fvol(λ)Kvol(θ,ϑ,φ)+ fgeo(λ)Kgeo(θ, ϑ,φ), (1)  

where fiso(λ), fvol(λ), and fgeo(λ) are the parameters of each model kernel 
representing isotropic, volumetric, and geometric scattering, respec-
tively. Isotropic scattering occurs only when both sensor and illumina-
tion source are at nadir, i.e., solar zenith (θ) and sensor zenith (ϑ) = 0, 
and there are thus no angular effects (Shuai et al., 2011). Volumetric 
scattering is caused by the Lambertian reflectance of multiple small el-
ements inside a volume that represents a vegetation canopy, and geo-
metric scattering is caused by the reflectance of the protrusions and their 
shadows cast on the surface; Kvol(θ,ϑ,φ) and Kgeo(θ,ϑ,φ) are the volu-
metric and geometric kernels, respectively. The model is also a function 
of the relative azimuth (φ), the angle between the sensor and the illu-
mination source in the azimuth dimension, and it is wavelength 
dependent (λ) (Roujean et al., 1992). The formulae to calculate the 
volumetric and geometric kernels can be found in Li and Strahler (1992), 
Roujean et al. (1992), and Wanner et al. (1995). 

To better represent the BRDF properties of snow and ice, the snow 
kernel model of Jiao et al. (2019) was also adopted, and this adds 
another kernel to the RTLSR equation, 

R(θ, ϑ,φ, λ)s = fiso(λ)+ fvol(λ)Kvol(θ, ϑ,φ)+ fgeo(λ)Kgeo(θ,ϑ,φ)
+ fsnow(λ)Ksnow(θ,ϑ,φ).

(2) 

In this context, the snow kernel Ksnow(θ,ϑ,φ) is modelled to represent 
the surface reflectance for a layer of semi-infinite, weakly absorbing, 
plane parallel, turbid media (Jiao et al., 2019). Under this assumption, 
Ksnow(θ,ϑ,φ) is given by, 

Ksnow(θ, ϑ,φ) = R0(θ, ϑ,φ)(1 − α⋅cosξ⋅exp( − cosξ) )+ 0.4076α − 1.1081,
(3)  

where R0(θ,ϑ,φ) is the surface reflectance at zero absorption, 

R0(θ, ϑ,φ) =
K1 + K2(cos(θ) + cos(ϑ) ) + K3cos(θ)⋅cos(ϑ) + P(ξ)

4(cos(θ) + cos(ϑ) )
, (4)  

and 

P(ξ) = 11.1e− 0.087(180− ξ) + 1.1e− 0.014(180− ξ), (5)  

where K1 = 1.247, K2 = 1.186, K3 = 5.157, and ξ is the phase angle (in 
degrees). It is important to note that all angle calculations are conducted 
in radians, except for ξ, which is in degrees and is calculated as follows, 

cos(ξ) = sin(θ)sin(ϑ)cos(φ) + cos(θ)cos(ϑ). (6) 

Furthermore, α is a correction parameter intended to alleviate 
modelling errors of snow forward-scattering under large view zenith 

angles (>60◦), and it is defined as 0.3 based on a sensitivity analysis 
performed by Jiao et al. (2019). 

The parameters fiso(λ), fvol(λ), fgeo(λ), and fsnow(λ) are retrieved by 
solving a weighted linear equation system. These parameters are the 
system's unknowns that are multiplied by each kernel, resulting in the 
observed MODIS (Terra satellite MOD09GA product) surface reflec-
tance. The number of equations in the system is equal to the number of 
available MOD09GA observations within the 16-day window. The ker-
nels and observations were weighted by the percentage of the grid cell 
area covered by each observation and by the temporal distance from the 
day of interest. A Laplace distribution was used for the temporal weights 
in which the weights vary from 0.5 (farthest day) to 1 (day of interest), 
following Wang et al. (2018). The parameters were retrieved by 
attempting to minimize the least-squares error between the observed 
MOD09GA surface reflectance ρ(θ,ϑ,φ,λ) and the BRDF reflectance R 
(θ, ϑ,φ,λ)v or R(θ,ϑ,φ,λ)s, modelled using the approach described in Eqs. 
(1)–(6), inside a 16-day window. The weighted linear least-squares 
method was constrained to only allow for the retrieval of positive pa-
rameters, following Lewis (1995). The same retrieval period of the 
MODIS operational product (16 days) is used. This window is defined to 
provide enough pixels for the retrieval to succeed, and in most cases, 
cloud cover occurs on multiple days within that period. The output is an 
image for each parameter at a MODIS 500 m spatial resolution for a 
specific date (the 9th day of the 16 days): fiso(λ), fvol(λ), fgeo(λ), and 
fsnow(λ). Note that the MOD09GA surface reflectance was corrected to 
resemble a reflectance that would have been observed with Sentinel-2A 
and 2B's spectral response following Pearlman et al. (2003) and Scarino 
et al. (2016). More information on the correction of spectral response 
between MODIS-Terra and Sentinel-2A and 2B can be found in Appendix 
A. MOD09GA surface reflectance was also corrected to alleviate topo-
graphic effects using the Sun-Canopy-Sensor + C method following 
Soenen et al. (2005). This correction was made to have both MODIS and 
Sentinel-2 images at the same surface reflectance flat-surface reference. 
Both the RTLSR and the snow kernel approaches were tested for the 
ability to retrieve BRDF within the study area and period. The addition 
of the snow kernel to an operational framework to retrieve BRDF has not 
been addressed in previous studies. 

2.4. BRDF quality control 

The MODIS BRDF parameter retrieval quality control can be divided 
into three main steps. First, a minimum of five observations, one extra 
observation per number of parameters (fiso, fvol, fgeo, and fsnow), was 
required to retrieve the BRDF parameters and make sure the linear 
system is overdetermined (Verstraete et al., 1996; Wang et al., 2007). A 
minimum of four observations was adopted for the RTLSR model. The 
retrieval of parameters with a number of observations lower than 7 was 
allowed, as long as it passed the thresholds of the next step, which ensure 
that sufficient angular information is available for a successful model 
inversion. Second, the RMSE and Weight of Determination (WoD) were 
calculated and used to remove pixels that did not meet certain thresh-
olds. The thresholds used were 0.08, 1.65, and 2.50 for RMSE, WoD of 
directional-hemispherical reflectance at nadir and 45◦ solar angle (WoD- 
WDR), and WoD of bi-hemispherical reflectance (WoD-WSA), respec-
tively, as recommended by Shuai et al., 2008. RMSE and WoD-WDR 
were calculated for directional reflectances using the angular informa-
tion of available observations inside the 16-day window. Third, if more 
than 50% of the BRDF retrieval AOI pixels did not pass step 2's threshold, 
the high spatial resolution albedo processing was interrupted. This last 
step is necessary to make sure that enough pixels are available to 
calculate the AN ratio and transfer enough BRDF information to the high 
spatial resolution pixels. The R2 was also retrieved for comparison with 
other studies. The R2 was computed from the relationship between the 
MODIS surface reflectance and the surface reflectance modelled using 
the retrieved BRDF parameters for the same MODIS observation geom-
etry inside the 16-day window. The quality control metrics for the 
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RTLSR and snow kernel models were compared, and the best model was 
used to proceed with the high spatial resolution albedo retrieval. 

2.5. Retrieval of Albedo-to-Nadir ratios 

It is necessary to calculate three sets of reflectance to retrieve blue- 
sky albedo at a Sentinel-2 spatial resolution. These are all calculated 
at a MODIS spatial resolution of 500 m, as fiso, fvol, fgeo, and fsnow are 
calculated using its surface reflectance. First, R(θ, ϑ,φ,λ)s is calculated 
using viewing and illumination angles from Sentinel-2, as given by Eqs. 
(2)–(6). These angles are available at Sentinel-2 XML metadata at a 5 km 
spatial resolution, but they are resampled to the MODIS resolution using 
bilinear interpolation. Note that hereinafter each kernel will be repre-
sented by the subscript k and that the calculation of R(θ,ϑ,φ,λ)v is the 
same as for R(θ,ϑ,φ,λ)s, but without the fsnow(λ)Ksnow(θ, ϑ,φ) term. Sec-
ond, the BRDF reflectance integrated in the view zenith and relative 
azimuthal angles is calculated by integrating each kernel Kk(θ,ϑ,φ) to 
further generate black-sky albedo Rbs(θ, λ), 

hk(θ) =
1
π

∫ 2π

0

∫ π/2

0
Kk(θ, ϑ,φ)sin(ϑ)cos(ϑ)dϑdφ, (7)  

Rbs(θ, λ) = fiso(λ)+ hvol(θ)⋅fvol(λ)+ hgeo(θ)⋅fgeo(λ)+ hsnow(θ)⋅fsnow(λ). (8) 

Third, each Kk(θ,ϑ,φ) kernel is integrated in the solar, view zenith, 
and relative azimuthal angles to further generate white-sky albedo 
Rws(λ) (Lucht et al., 2000), 

Hk =
2
π

∫ π/2

0

∫ 2π

0

∫ π/2

0
(Kk(θ, ϑ,φ)sin(ϑ)cos(ϑ) )sin(θ)cos(θ) dϑdφdθ, (9)  

Rws(λ) = fiso(λ)+Hvol⋅fvol(λ)+Hgeo⋅fgeo(λ)+Hsnow⋅fsnow(λ). (10) 

Following calculation of these radiometric quantities, the Albedo-to- 
Nadir (AN) ratios for black-sky abs(θ, λ) and white-sky aws(λ) albedo can 
be calculated (Shuai et al., 2011), 

abs(θ, λ) = Rbs(θ, λ)
/

R(θ, ϑ,φ, λ)s, (11)  

aws(λ) = Rws(λ)
/

R(θ, ϑ,φ, λ)s. (12)  

2.6. Sentinel-2 image processing 

Prior to conducting the processing to retrieve high spatial resolution 
albedos, it was necessary to correct the Sentinel-2 TOA reflectance for 
atmospheric attenuation and scattering. Sentinel-2 TOA reflectance 
images, with less than 30% cloud-shadow coverage within the MODIS 
sampling AOI shown in Fig. 1 for the study period, were selected using a 
Google Earth Engine (GEE) cloud-shadow screening. GEE was used to 
identify the image ID that was later downloaded from the Sentinel-2 
Copernicus website (https://scihub.copernicus.eu/). Table 2 shows the 

images available for the study and certain associated characteristics for 
each year. In this respect, there was reduced wildfire activity in 2016, 
2019, and 2020, but there were intense wildfire seasons in 2017 
(throughout all summer months) and 2018 (concentrated in August). To 
define cloud clover (cloud probability >50%), the GEE cloud-shadow 
screening method uses the Sentinel-2 Cloud Probability Collection, 
generated from the s2cloudless algorithm (https://github.com/sentinel 
-hub/sentinel2-cloud-detector), and identifies cloud shadows based on 
low near-infrared (NIR) reflectance values searched in a 1.5 km pro-
jection distance from the cloud edge. An additional 100 m buffer was 
added to the cloud-shadow mask to avoid edge effects. More information 
about the cloud-shadow screening algorithm can be found at https://de 
velopers.google.com/earth-engine/tutorials/community/sentinel-2-s2 
cloudless. 

The Sentinel-2 images were downloaded as TOA reflectance and 
were further atmospherically corrected using the Sen2Cor v2.8 model 
(Mueller-Wilm et al., 2019). In Sen2Cor parameterization, the ozone 
concentration was set automatically using the ozone concentration ob-
tained from auxiliary data, and the best LUT that described the con-
centration was then searched for. The best aerosol LUT was also 
determined automatically, in which the algorithm calculates the path 
radiance for different aerosol loads in the blue and red bands and 
compares it to dark invariant pixels, which are typically forested vege-
tation. A correction for water vapor (WV) absorption was also applied. 
This correction compares the retrievals from the 864 nm band (region of 
low WV absorption) to the 945 nm band (region of high WV absorption) 
and corrects the radiance based on that difference. Furthermore, cirrus 
influence was corrected using information from the 1373 nm band. The 
Sentinel-2 surface reflectance was also corrected for topographic effects 
during the atmospheric correction process. Sen2Cor v2.8 performs a 
Minnaert-like topographic correction on the surface reflectance that 
increases the reflectance in faintly illuminated sloped terrain. A b 
exponent of 0.5 was adopted for the topographic correction following 
Mueller-Wilm et al. (2019). 

2.7. Retrieval of Sentinel-2 blue-sky albedo 

The AN ratio was calculated using MODIS imagery only. These ratios 
were then applied to Sentinel-2 surface reflectance ρS2(θ,ϑ,φ,λ) for the 
retrieval of black-sky αbsa(θ,λ) and white-sky αwsa(λ) spectral albedos at a 
20 m spatial resolution, following the method of Shuai et al. (2011) and 
Li et al. (2018). This method assumes that spectral similarity between 
coarse and fine resolution homogenous pixels can be translated into 
BRDF similarity. Therefore, spectral Sentinel-2 surface reflectance was 
used to retrieve albedo at a finer spatial resolution, assuming that the 
albedo to nadir variation is similar for spectrally homogenous surfaces 
inside a MODIS pixel. A cluster surface classification is utilized to define 
the degree of homogeneity inside a MODIS pixel. This classification 
needs to be performed using the six bands of the reflective spectrum of 
Sentinel-2, in which the ratio is only sampled from MODIS when a 
respective Sentinel-2 cluster class covers more than 60% of a MODIS 
pixel. 

As the number of cluster classes for surface classification can be a 
sensitive parameter, it was defined based on the observed albedo at the 
Athabasca Glacier AWS. The associated sensitivity is caused mostly by 
the temporal variability of reflectance, which is high in icefields as they 
respond to snowfall, melt, and soot deposition events. The optimal 
number of classes was therefore determined every 15 days by consid-
ering from 6 to 20 cluster classes, optimised using the albedo RMSE. The 
five 15-day periods between Jul. 1 and Sept. 15 would yield five 
different numbers of cluster classes. For example, at the first iteration, 
the number of cluster classes was set to 6, 7, 8, 9, and 10 for images 
within the Jul. 1–15, Jul. 16–31, Aug. 1–15, Aug. 16–31, and Sept. 1–15 
periods, respectively, and the RMSE between the Sentinel-2 and Atha-
basca Glacier AWS albedo was calculated. At the next iteration, the 
number of cluster classes was set to 7, 8, 9, 10, and 11, and the RMSE 

Table 2 
Number of available Sentinel-2 images, number of selected images by the cloud- 
shadow screening, and the characteristics of each year.  

Year # Available 
Images 

# Images <
30% 

Characteristics 

2016 7 1 Reduced fire activity and no Sentinel- 
2B images 

2017 15 5 Active fire season throughout the 
summer months 

2018 30 81 Active fire season concentrated in 
August 

2019 29 3 Reduced fire activity 
2020 30 7 Smoke present in season's last 3 days  

1 There was <30% cloud-shadow cover in the image of 2018-08-18; however, 
it was covered by visually identified dense smoke for the majority of the MODIS 
sampling AOI, and it was thus not considered in this study. 
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was calculated again. This process was repeated until the RMSE for all 
combinations of cluster numbers for the five periods was calculated. The 
cluster number with the smallest RMSE was used to represent the 
number of cluster classes for each 15-day period (Fig. 3). The remote 
sensing Sentinel-2 albedos used for the number of cluster classes sensi-
tivity analysis and evaluation are a direct extraction from the pixel at the 
Athabasca Glacier AWS, and the majority of the upwelling shortwave 
radiometer field of view is bounded by this pixel (Fig. 1). 

The AN ratio was sampled for each of these classes by extracting the 
mean of all >60% MODIS pixels for black-sky abs(θ, λ) and white-sky 
aws(λ) albedos, and it was applied to the Sentinel-2 pixels classified as 
the respective cluster class as follows, 

S2bsa(θ, λ) = abs(θ, λ)⋅ρS2(θ, ϑ,φ, λ), (13)  

S2wsa(λ) = aws(λ)⋅ρS2(θ, ϑ,φ, λ). (14) 

To focus on the albedo over snow and ice, a mask with a normalized 
difference snow index (NDSI) higher than 0.4, 

NDSI =
ρS2(559 nm) − ρS2(1, 610 nm)

ρS2(559 nm) + ρS2(1, 610 nm)
, (15)  

and a reflectance at ρS2(559 nm) > 0.1 (Klein et al., 1998), was created. 
For the narrow-to-broadband conversion, the coefficients developed by 
Li et al. (2018) for Sentinel-2 and snow-covered surfaces were used as 
follows, 

αbsa(θ) = − 0.0001 − 0.1992⋅S2bsa(492 nm)+ 2.3002⋅S2bsa(559 nm)

− 1.9121⋅S2bsa(665 nm)+ 0.6715⋅S2bsa(864 nm)

− 2.2728⋅S2bsa(1, 610 nm)+ 1.9341⋅S2bsa(2, 186 nm).

(16) 

It is also of note that the central wavelength varies slightly between 
the two satellites, Sentinel-2A and 2B, but the same narrow-to- 
broadband coefficients were used. White-sky albedo, αwsa, was calcu-
lated similarly, but using S2wsa(λ) spectral white-sky albedos. The 
Sentinel-2 blue-sky albedo, αblue, was linearly interpolated between 
αbsa(θ) and αwsa by computing the ratio between diffuse and total 
shortwave irradiance SKY(θ), using observations from the Athabasca 
Glacier AWS, 

αblue(θ) = (1 − SKY(θ) )⋅αbsa(θ)+ SKY(θ)⋅αwsa, (17)  

where SKY(θ) was calculated following Ellis and Pomeroy (2007) as 

SKY(θ) = 1.1 − 1.09kT , (18)  

and kT was calculated as the ratio between the measured shortwave 
irradiance and the modelled TOA shortwave irradiance at 13:00:00 
central standard time (CST) for a specific date (Ellis and Pomeroy, 
2007). Finally, albedos higher than one and lower than zero were not 
considered in the analysis. 

2.8. Net shortwave radiation 

Positive K* is defined here as the amount of shortwave radiation 
entering the surface of snow and ice, and it was retrieved using 
measured shortwave irradiance at the Athabasca Glacier AWS at the 
nearest available 15-min measurement from Sentinel-2 overpass time. 
The total shortwave irradiance at the station was extrapolated for the 
entire Columbia Icefield utilizing the Sentinel-2 albedo and Allen et al. 
(2006) method to correct for slope and aspect, resulting in the K*. Slope 
and aspect was calculated from the SRTM 30 m digital elevation model. 
Spatial extrapolation was based on the assumption that there would be 
no considerable change in atmospheric attenuation to the surface be-
tween the elevation of the AWS (2177 m a.m.s.l.) and higher elevations 
within the Columbia Icefield (~ 3700 m a.m.s.l.). The AWS measured air 
temperature and relative humidity used in the K* method were also 
taken at the nearest available 15-min measurement from Sentinel-2 
overpass time. The slope and aspect correction method of Allen et al. 
(2006) used here employs a multiplicative factor (ƒ) that enhances or 
diminishes observed irradiance. The ƒ factor is 1 when the slope and 
aspect do not influence irradiance, and less or more than 1 when this 
influence decreases or increases, respectively. The ƒ factor is a function 
of direct (ƒB), diffuse (ƒia), and reflected radiation (ƒi). The turbidity 
coefficient (Kt) from Allen et al. (2006) was set to 0.75 when smoke was 
identified by the timelapse camera; otherwise, the coefficient was set to 
1. To compute spatial averages, the Columbia Icefield was discretized 
into the high-elevation snow plateau, northeast-facing, southwest-fac-
ing, and southeast-facing glaciers (Fig. 1). Further discretization into 
low (≤ 16◦) and high (> 16◦) slope glaciers was applied to analyze the 
effects of slope and aspect on K*. The number of cumulative smoky days 
(CSD) shown in Table 4 was used as a proxy for known upwind fire 
activity, and it was defined by supervised visual classification of three 
photos taken per day by the timelapse camera and confirmed by visual 
observations in the field. A day is considered smoky when any of the 
three photos have light or dense smoke, and CSD were accumulated 
continuously during the five analyzed summers. 

3. Results and discussion 

3.1. BRDF modelling evaluation 

The comparison between the RTLSR and the snow kernel BRDF 
models revealed that, although the mean RMSE is slightly better for the 
RTLSR (RTLSR: 0.047, snow: 0.049, and t-test p-value: 0.6186) and the 
mean R2 is slightly better for the snow kernel (RTLSR: 0.80, snow: 0.82, 
and t-test p-value: 0.0732), the differences between their means are not 
statistically significant. This represents that in terms of RMSE and R2 

there is not a statistically significant difference between using the RTLSR 
and the snow kernel to model BRDF in this region. On the other hand, 
the WoD-WDR and WoD-WSA metrics were one to three orders of 
magnitudes higher for the snow kernel. Only two dates had a mean 
WoD-WDR within the thresholds recommended by Shuai et al. (2008), 
and no date was able to meet the WoD-WSA thresholds for the snow 
kernel model (Fig. 4). The WoD-WDR (RTLSR: 0.371, snow: 23.589, and 
t-test p-value: 0.0118) and WoD-WSA (RTLSR: 3.948, snow: 593.716, 
and t-test p-value: 0.0001) means difference were statistically signifi-
cant in this case. The snow kernel model has not yet been applied in an 
operational framework that relies on limited satellite/sensor angular 
sampling, only in situations in which ample angular information was 
available (Jiao et al., 2019). There are most likely two factors at play for 
the increased snow kernel BRDF estimates uncertainty. First, using the 
snow kernel implies that the minimum number of observations needs to 
be higher once one kernel is added to the RTLSR BRDF model, and the 
WoDs are sensitive to the number of observations (Lucht and Lewis, 
2000). This can be particularly important in an already data-scarce re-
gion due to high cloud cover frequency. Second, it is possible that the 
addition of the snow kernel to the BRDF model under the available 

Fig. 3. Example of the number of cluster classes selection strategy. Each row is 
a year and each column is a 15-day period. 
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angular sampling introduces excessive random noise to be able to reli-
ably retrieve the BRDF parameters (Lucht and Lewis, 2000). Given the 
above evaluation metrics and the inability of the snow kernel to generate 
high quality BRDF pixels in terms of WoDs, the RTLSR BRDF model was 
adopted to retrieve high spatial resolution albedo, as it has already been 
employed with satisfactory results over snow and ice (Li et al., 2018; 
Mortimer and Sharp, 2018; Wang et al., 2016). 

Table 3 shows the results of the MODIS RTLSR BRDF modelling 
evaluation. The values of Table 3 are the mean for all the 6 MODIS 
bands. The RMSE remained below or equal to 0.08 for all the 24 BRDF 
estimates; however, both WoD-WDR and WoD-WSA have exhibited es-
timates that had insufficient angular information for a successful fk(λ) 
parameter retrieval. These dates had average WoD values that surpassed 
the thresholds recommended by Shuai et al. (2008). Table 3 and Fig. 5 
show that by removing pixels that surpassed the quality control criteria 
for RMSE, WoD-WDR, and WoD-WSA of 0.08, 1.65, and 2.50, respec-
tively, some BRDF estimates became unusable for the high spatial res-
olution albedo estimation. In contrast, 2017-08-26 and 2019-09-05 
could still cover more than 50% of the MODIS BRDF AOI, even pre-
senting a mean WoD-WSA above the threshold, and thus, were kept for 
high spatial resolution albedo estimation. 

In general, late-spring and early-fall BRDF estimates presented a 
lower number of high quality pixels that could be used for high spatial 
resolution albedo estimation. This decrease in BRDF retrieval quality 
happens because cold temperatures are more prominent during these 

periods, increasing cloud-cover and reducing the amount of MOD09GA 
surface reflectance observations. Previous studies have resolved cloud 
cover limitations by adopting a minimum of seven observations per pixel 
to produce a BRDF estimate (e.g., Roy et al., 2008; Schaaf et al., 2002); 
however, this restriction was not followed to avoid missing any 
reasonable retrievals, which could occur when using fewer than seven 
observations. Adopting the latter approach is particularly important in 
mountain regions where orographic lift contributes to cloud formation 
and increases cloud-cover frequency (Da Ronco and De Michele, 2014). 
Retrieving a BRDF estimate with less than 7 observations was also 
performed to preserve the semi-empirical nature of the BRDF retrievals 
(Schaaf et al., 2002), which is important for capturing changes in the 
anisotropy of snow and ice due to wildfire soot deposition, rather than 
using a magnitude inversion (empirical), as seen in the MODIS opera-
tional product (Strugnell and Lucht, 2001). It is worth mentioning that 
the WoDs were calculated to ensure sufficient angular information was 
present to retrieve the BRDF parameters with a minimum of 4 
observations. 

BRDF reflectance modelling from MODIS using the RTLSR approach 
yielded a mean R2 ≥ 0.65 for all bands. However, there was some dif-
ference between the highest mean R2 values from the visible, NIR, and 
shortwave infrared (SWIR) bands, 0.87, 0.82, and 0.69, respectively 
(Fig. 4). These R2 values show that the quality of the BRDF estimates 
decreases with the band wavelength size, but still provides reasonably 
good results for the SWIR bands. The higher uncertainty can be related 

Fig. 4. Comparison between the ability of the snow kernel and RTLSR approaches to model the BRDF of the study area. The evaluation metrics RMSE, WoD-WDR, 
WoD-WSA, and R2 are presented as the average of all 6 MODIS bands for each date. QC non-compliant pixels are also included in calculating the averages. The R2 was 
calculated by comparing MODIS observed and modelled surface reflectance inside the 16-day windows. The dashed lines are the thresholds determined by Shuai 
et al. (2008). The WoD-WDR and WoD-WSA plots are cutoff at 10 and 20, respectively, to observe the RTLSR values. The arrows indicate that the bars continue to 
increase until the values above them. 
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to the SWIR bands' spectral albedo higher sensitivity to snow grain size 
(Gardner and Sharp, 2010). Nonetheless, the lower SWIR quality seems 
to not have an impact on the high spatial resolution albedo retrievals for 
the purpose of this study, as reflectance beyond NIR is not affected by 
soot deposition (Gardner and Sharp, 2010; McKenzie Skiles et al., 2018). 

3.2. Albedo retrieval evaluation 

The cloud-shadow screening algorithm provided good results for 20 
out of the 24 retrievals. However, on four occasions, the cloud-shadow 
screening algorithm failed: three times in relation to shadows over 
snow and once due to a thin cloud. The former occasions were corrected 
using a directional buffer opposed to the sun azimuth to mask visually 
identified cloud shadows over snow, and the latter occasion was cor-
rected using a simple buffer until the thin cloud was completely masked 
out of the Columbia Icefield. The original and modified cloud-shadow 
masks for the four occasions are presented in Appendix B. 

In previous studies, the number of cluster classes used for unsuper-
vised classification was determined arbitrarily from 10 to 20 classes (Li 
et al., 2018; Shuai et al., 2011). However, Shuai et al. (2011) indicated 
that this parameter could be sensitive to the final Sentinel-2 albedo 
retrieval, and we also found this here to a certain degree. Therefore, a 
procedure was conducted to determine the most suitable number of 
cluster classes. The high spatial resolution part of the albedo retrieval 
algorithm was run multiple times with the number of cluster classes 
varying from six (the number of bands used in the cluster classification) 
to 20. To the authors' knowledge, this procedure has not yet been 
employed by any of the high spatial resolution albedo studies. Fig. 6 
shows the sensitivity of albedo retrieval to the number of cluster classes, 
together with the Athabasca Glacier AWS observed albedo and the al-
bedo value for the selected number of cluster classes. It is worth noting 
that since the BRDF quality control excluded half of the high spatial 
resolution images, only 12 images are shown hereinafter. The results 
show that the sensitivity of albedo to the number of cluster classes 
generally did not exceed 0.05, except for 2018-08-21. This date's 
increased sensitivity is most likely related to the degree of aerosols in the 
atmosphere, as this was the haziest date within the high spatial 

resolution images. The identified sensitivity suggests that adopting a 15- 
day period number of cluster classes is generally sufficient for repre-
senting the spatiotemporal variability of reflectance, and the four 15- 
day period numbers of cluster classes selected by the iterative process 
were 17, 13, 20, and 14 (also shown in Table 4). Note that although 20 
cluster classes was selected for the Aug. 15 to 31 period, this value might 
not be representative enough since this number has been selected solely 
by the image with the lowest deviation from the 2018-08-21 site- 
measured albedo. In addition, no image was available for the Jul. 1 to 
15 period. 

Fig. 7 shows a scatterplot of the evaluation of albedo retrieval using 
the number of cluster classes selected by the iterative process. The re-
trievals explained 68% of the Athabasca Glacier AWS albedo variability, 
with a p-value of 0.0033, bias of 0.019, and RMSE of 0.026. These 
evaluation statistics compare well with other high spatial resolution 
remote sensing albedo studies that found an R2 value of 0.78 (Shuai 
et al., 2011) and bias and RMSE values ranging from − 0.029 to 0.001 
and 0.025 to 0.043 (Li et al., 2018; Shuai et al., 2011; Wang et al., 2016), 
respectively. Most likely the 32% variability in site-measured albedo 
that is not explained by the high spatial resolution estimates is caused by 
spatial representativeness errors due to the difference in footprint size 
between the Athabasca Glacier AWS albedometer (110 m2) and the 
Sentinel-2 pixel (400 m2), and the low number of observations. Clearly, 
the remote sensing albedo retrieved on 2018-08-21 (isolated point on 
the scatterplot's upper right corner) is exerting a strong influence in the 
calculated R2. It is worth mentioning that the scatterplot and statistics 
were computed without 2017-08-26 and 2018-08-13 because the AWS 
was not operating and because the cloud-shadow screening removed the 
image area where the Athabasca Glacier AWS is located, respectively, 
totalling 10 data pairs. These findings also show that the BRDF model 
employed in this study provides a good representation of the spatio-
temporal variation of albedo in this high-elevation icefield. 

3.3. Sentinel-2 blue-sky albedo retrievals 

Given the scarcity of high spatial resolution albedo estimates, the 
inter-annual comparisons of albedo and K* were made by matching one 
image of each soot-impacted year (2017, 2018, and 2019) with the 
closest day of the year image of 2020. The selected dates are 2017-08-06 
and 2020-08-05; 2018-08-13 and 2020-08-05; and 2019-09-05 and 
2020-09-11. This assumption is reasonable since it is considered that the 
differences between years impacted (2017, 2018, and 2019) and a 
control year not impacted by soot deposition, which in this case is 2020, 
can be attributed to soot deposition, apart from fresh snowfall. There-
fore, this analysis focussed on changes between the control year and the 
minimum albedo and maximum K* encountered during the 2017, 2018, 
and 2019 years. The albedo and K* minima and maxima will still be 
retrieved from all the 12 high spatial resolution images, except for 2018- 
08-21, since the bias for this image is large. 

Fig. 8 only shows the images used for inter-annual comparisons for a 
better visual analysis. The lowest snow albedo (0.4 to 0.5) was observed 
in 2018 for the plateau's southern section; however, the plateau was 
superimposed by a layer of high albedo snow cover (0.6 to 0.9) due to 
fresh snowfall in the northern higher elevations. A layer of fresh snow-
fall was also present in 2019, but the remaining low albedos are of in-
termediate values (0.5 to 0.6), as was the case for the entire plateau in 
2017. Snow albedo recovered to 0.6 to 0.7 values in 2020, which appear 
to be more spatially homogeneous within the plateau. Glacier albedos 
were the lowest in 2018 and 2019, with widespread values <0.2. Glacier 
albedos between 0.3 and 0.4 became more frequent in 2020, and more 
incursions of the snowline into the glacier boundaries also indicate an 
overall albedo increase. The albedo spatial variability demonstrated in 
Fig. 8 reinforces the need to use high spatial resolution albedo to 
determine snow and ice energetics and further hydrological applica-
tions. Coarse resolution remote sensing and modelling would not be able 
to properly reproduce this spatial variability. Although the timeseries of 

Table 3 
RTLSR BRDF model evaluation metrics RMSE, WoD-WDR, WoD-WSA, R2, and 
percentage of pixels excluded by the quality control method inside the BRDF 
sampling AOI (% QC NA). All the metrics are presented as the average of all 6 
MODIS bands for each date. QC non-compliant pixels are also included in 
calculating the averages.  

Date RMSE WoD-WDR WoD-WSA R2 % QC NA 

2016-09-12 0.073 2.565 11.647 0.75 74.0 
2017-07-04 0.050 0.290 3.576 0.80 68.1 
2017-07-29 0.045 0.147 8.746 0.79 61.0 
2017-08-06 0.035 0.077 1.002 0.84 13.4 
2017-08-11 0.035 0.142 1.633 0.85 17.0 
2017-08-26 0.051 0.461 2.727 0.70 42.9 
2018-07-14 0.049 0.267 4.624 0.80 88.1 
2018-07-17 0.051 0.243 3.480 0.79 69.5 
2018-07-27 0.050 0.270 3.907 0.78 64.3 
2018-07-29 0.049 0.257 3.904 0.79 63.6 
2018-08-08 0.036 0.166 4.453 0.83 82.2 
2018-08-13 0.033 0.085 1.037 0.83 5.3 
2018-08-21 0.031 0.164 1.840 0.84 16.8 
2018-09-05 0.080 0.548 7.279 0.71 90.0 
2019-07-22 0.056 0.332 8.151 0.80 61.4 
2019-08-28 0.062 0.334 4.702 0.70 83.6 
2019-09-05 0.044 0.522 4.567 0.80 49.3 
2020-07-26 0.044 0.128 1.841 0.82 27.0 
2020-07-28 0.041 0.132 2.165 0.84 39.8 
2020-07-31 0.037 0.101 1.588 0.88 12.8 
2020-08-02 0.038 0.108 1.645 0.86 15.5 
2020-08-05 0.041 0.140 2.120 0.83 33.2 
2020-09-09 0.054 0.641 5.803 0.75 57.6 
2020-09-11 0.045 0.774 2.307 0.78 32.7  
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observed and remote sensing albedo demonstrate that the retrievals 
represent the temporal variation of albedo reasonably well, there is a 
small positive bias in the remote sensing retrievals (Fig. 9). This bias is 
substantially exacerbated on 2018-08-21. The presence of light smoke 
was observed by the timelapse camera during 2018-08-21, and it ap-
pears to greatly influence this albedo retrieval. Another evidence of poor 

retrieval for 2018-08-21 is that the cloud-shadow screening algorithm 
mistakenly identified light smoke over the edges of the Athabasca and 
Saskatchewan glaciers as thin clouds; these pixels were excluded from 
the analysis. 

Although these results are able to represent high spatial resolution 
albedo properly in this complex environment, there are some limitations 

Fig. 5. MODIS RTLSR BRDF RMSE maps with the Sentinel-2 snow and ice cover displayed in the black lines. The snow and ice polygons were simplified for clarity. 
White spaces are pixels that did not pass the BRDF quality control. 
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at sites with particularly rugged terrain and landcover heterogeneity. 
Since the Sentinel-2 20 m spatial heterogeneity is dampened at the 
MODIS 500 m pixel, scaling issues can arise. Jiao et al. (2018) have 
found that decreasing the resolution of BRDF estimates from POLDER to 
MODIS can reveal additional BRDF shapes. Román et al. (2011) have 
found that the uncertainty (RMSE) associated with downscaling BRDF at 
MODIS resolution to a 30 m resolution varies from 0.0097 to 0.1717, 
depending on the view zenith angle and wavelength. The present study's 
uncertainty due to landcover heterogeneity is expected to be smaller 
than that of Román et al. (2011) since their results are from a mixed 
agricultural landscape; however, the present study's mountain region 
should introduce uncertainty due to terrain heterogeneity. Schaaf et al. 
(1994) found that topography can cause an overestimation of the 
retrieved BRDF shapes for rugged terrains. Combal and Isaka (2002) 
have shown that even small topographic variations can introduce 

change to BRDF estimates when the sun and view zenith angles are high 
for high (10%) and coarse (3–5%) spatial resolution imagery. The 
topographic correction performed using Sen2Cor v2.8 and to the MODIS 
surface reflectance should alleviate this issue as it converts the reflec-
tance of rugged terrain to a flat surface. 

3.4. Wildfire soot influence on snow and ice albedo and energetics 

Large temporal and spatial variations in the icefield albedo are 
evident, as shown in Figs. 8 and 9; however, the albedo was highest for 
the snow plateau and lowest for the northeast-facing glaciers (Figs. 8 and 
10). In addition to soot deposition, the main factors governing albedo 
change for the snow plateau were melt and fresh snowfall, and for 
glacier albedos, melt was more important. The effect of melt was also 
observed on the snow plateau; this area has a higher albedo at the 

Fig. 6. Sensitivity to the number of cluster classes. Each boxplot represents the albedo values at the Athabasca Glacier AWS pixel calculated with a number of cluster 
classes varying from 6 to 20. The green and orange points represent the Athabasca Glacier AWS observed albedo and the pixel albedo value for the selected number of 
cluster classes, respectively. The selected number of cluster classes is labelled above each boxplot. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 4 
Sentinel-2 image IDs, cloud-shadow cover inside the BRDF sampling AOI (%), number of classes from cluster surface classification, CSD (inclusive), prior 48-h pre-
cipitation at Athabasca Moraine AWS, and precipitation phase if snowfall occurred (R: rain and S: snow).  

Sentinel-2 Image ID Cloud-shad. cover # cluster classes CSD 48-h precip. (mm) Precip. phase R/S (mm) 

20160912T184952_20160912T185015_T11UMT 3.87 – 0 12.68 11.423/1.253 
20170704T184919_20170704T185934_T11UMT 15.39 – 0 0 – 
20170729T184921_20170729T185816_T11UMT 3.37 – 7 0 – 
20170806T185919_20170806T190802_T11UMT 2.03 13 10 0 – 
20170811T185921_20170811T190305_T11UMT 0.13 13 12 0 – 
20170826T185909_20170826T190150_T11UMT 8.68 20 17 0.67 – 
20180714T184921_20180714T185034_T11UMT 22.12 – 25 8.12 – 
20180717T185921_20180717T185917_T11UMT 0.12 – 25 0 – 
20180727T185921_20180727T185917_T11UMT 25.30 – 26 0.06 – 
20180729T184919_20180729T185102_T11UMT 3.53 – 27 0.14 – 
20180808T184909_20180808T185846_T11UMT 0.56 – 32 0 – 
20180813T184921_20180813T185918_T11UMT 29.11 13 35 22.49 – 
20180821T185909_20180821T185909_T11UMT 16.67 20 43 0 – 
20180905T185911_20180905T190544_T11UMT 0.45 – 47 0.27 0.254/0.018 
20190722T185921_20190722T190551_T11UMT 1.16 – 48* 0.08 – 
20190828T184921_20190828T185739_T11UMT 3.46 – 48 2.62 – 
20190905T185919_20190905T190714_T11UMT 4.53 14 48 1.18 – 
20200726T185921_20200726T190505_T11UMT 1.74 17 48 0.79 – 
20200728T184919_20200728T184920_T11UMT 3.07 17 48 0 – 
20200731T185919_20200731T190527_T11UMT 3.48 17 48 0 – 
20200802T184921_20200802T185701_T11UMT 25.96 13 48 0.33 – 
20200805T185921_20200805T190700_T11UMT 0.74 13 48 0 – 
20200909T185929_20200909T190120_T11UMT 0.02 – 48 0 – 
20200911T184951_20200911T185837_T11UMT 10.41 14 48 0 –  

* The extra smoky day in 2019 is a result of accumulation from a smoky day after the last 2018 retrieval. There was no wildfire activity in 2019. 
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beginning of July, but fresh snowfall can restore the snow albedo even in 
mid-August, as seen on 2018-08-13. The spatially-averaged snow 
plateau albedo was minimal (0.528) on 2017-08-11 and maximal 
(0.664) on 2020-07-26. The greatest recovery from soot-induced snow 
plateau albedo decrease was found between 2018-08-13 and 2020-08- 
05 from 0.556 to 0.606, respectively. Note that the albedo in 2018 
could have been even lower, since the soot-induced decreased albedo 
values in the southern section of the plateau are in the 0.4 to 0.5 range. 
The increased albedo in the northern snow plateau section was due to 
fresh snowfall that was registered as rainfall at the Athabasca Moraine 
AWS (Table 4). Although fresh snowfall increased albedo in part of the 
snow plateau on 2018-08-13, there was still a 0.050 overall decrease 
caused by the remaining soot-affected area when compared with 2020- 
08-05. These findings highlight the rapid snow plateau albedo response 
to soot deposition and recovery due to fresh snowfall. 

However, the influence of seasonal melt is more evident with respect 
to glacier surfaces, because they less frequently experience substantial 
summer snowfall episodes. Therefore, albedo will be at its lowest at the 
final retrieval of the season, unless snowfall occurs. Albedo was lowest in 
2019-09-05 for NE (0.261) and SW (0.278) glaciers, and, surprisingly, in 
2020-09-11 for SE glaciers (0.258). The difference from the second- 
lowest SE glacier albedo (2018-08-13) was only 0.004, and the albedo 
from 2019-09-05 (lowest for all other aspects) was not representative for 
this aspect due to the widespread presence of NA pixels (Fig. 8), which 
indicates that albedo in 2019 could have been lower than in 2020 
following the trend of the remaining glaciers. Albedo was highest in 
2020-07-26 for all glaciers (NE: 0.396, SE: 0.446, and SW: 0.476). All the 
glaciers presented the highest soot-induced albedo decrease recovery 
from 2018 to 2020. The highest difference in albedo (0.148) was 
observed for SE glaciers. Both NE and SW glaciers presented low soot- 
induced albedo values in 2019, even when there was no wildfire activ-
ity. These findings suggest that glacier albedo decreases during the 
wildfire season, but persistent low albedo is still observed the following 
year, even when wildfire activity ceases. This effect can be explained by 
bioalbedo feedback theory, in which albedo is further decreased due to 
glacier algae feeding on the carbon from wildfire soot deposition (Cook 
et al., 2020; Di Mauro et al., 2020). Algae deposited in cryoconite for-
mations were found in field investigations in the summer of 2019 in the 
Athabasca Glacier (northeast). The following year, glacier albedo 
reached its highest levels without the occurrence of widespread summer 
snowfall, which suggested that it had recovered to pre-2017 levels. The 
albedo annual mean values from Athabasca Glacier AWS for the same 

date and time of the retrievals also show similar inter-annual variabil-
ities, but with a more modest recovery to higher albedos in 2020. It is 
important to note that the albedo decrease near the snow line is highly 
variable and dependent on each year's hydrometeorological conditions 
that govern melt dynamics and snowfall occurrence. 

Other studies have also found snow albedo to decrease by 0.1 to 0.2 
when subject to deposition of black carbon (Flanner et al., 2007; Hadley 
and Kirchstetter, 2012; Kokhanovsky et al., 2018), and a 20% decrease 
with simulated black carbon and dust (Zhang et al., 2017). In the current 
study, the snow plateau inter-annual albedo difference between 2018 
(extreme wildfire season) and 2020 (no wildfires) was 0.050. The study 
of Mortimer and Sharp (2018) noted a decreasing trend of 0.0029 per 
year in the summer ice albedo of high arctic glaciers in relation to 
accelerated melt due to warming temperatures; however, in the current 
study, the difference in albedo between 2018 and 2020 was 0.148 for 
southeast-facing glaciers. 

There are considerable differences in irradiance over the season at 
this fairly high latitude icefield, depending on slope and aspect. To 
analyze these differences, the albedo was converted into K* in W/m2 

(Figs. 10 and 11). The results showed, as expected, that the increase in 
absorbed shortwave irradiance over the level snow plateau is inversely 
correlated with the change in albedo, and that K* and its response to 
decreased albedo is strongly dependent on the overall slope and aspect. 
Glaciers with slopes facing southeast (S1 and S2) had a higher K* (771 
W/m2) than northeast-facing glaciers (565 W/m2) (Athabasca, Sas-
katchewan, Dome), and southwest-facing glaciers (Castleguard, 
Columbia, S3, S4) had intermediate K* (756 W/m2). Peak K* occurred in 
2017-08-11 for all glaciers and the snow plateau (446 W/m2), except for 
northeast-facing glaciers that had their peak K* in 2017-08-06. 

Small-scale studies, for example that of Kaspari et al. (2015) on 
Mount Olympus, Washington, USA, discovered shortwave radiative 
forcing at the snow surface from black carbon and dust varied from 199 
to 264 W/m2. In addition, Nagorski et al. (2019) found radiative forcing 
values due to black carbon and dust on the snow of the Juneau Icefield, 
Alaska, USA ranging from 70 to 130 W/m2. Likewise, the results of this 
study showed that the snow plateau had the highest shortwave radiative 
forcing (106 W/m2) between 2017-08-06 and 2020-08-05. For glacier 
ice on the southeastern Tibetan Plateau, shortwave forcing values be-
tween 1 and 141 W/m2 per year were found by Zhang et al. (2017), and 
the highest inter-annual shortwave forcing of 203 W/m2 to southeast- 
facing glaciers from this study was found between 2018-08-13 and 
2020-08-05. 

The difference between K* with and without slope and aspect 
correction is shown in Fig. 12, which shows how slope and aspect impact 
K* for mountain icefields. Not accounting for slope and aspect in these 
environments caused an underestimation of K* of up to 285 W/m2 on 
steep southwest-facing glaciers and an overestimation of up to 234 W/ 
m2 for steep northeast-facing glaciers. The analysis shows that the 
response of K* to aspect is stronger than to slope. It also shows that the 
response of K* to slope and aspect is more influenced by the atmospheric 
state (transmissivity) than to soot deposition using the Allen et al. 
(2006) parameterization and at a date-to-date time interval, since the 
dates with the lowest albedo were not necessarily the same as the dates 
of the highest slope and aspect influence on K*. The R2 of the difference 
between K* with and without slope and aspect correction and trans-
missivity is high for all icefield subdivisions (from 0.63 to 0.87). This 
happens because the incoming diffuse radiation dominates the irradi-
ance fluxes during low transmittance and increases K* isotropically, i.e., 
K* increases even for northern aspects (for example, on 2017-08-06). 
Conversely, the R2 of the difference between K* with and without 
slope and aspect correction and albedo varies from 0.10 to 0.62. 
Nonetheless, Fig. 12 clearly shows that the annual influence of slope and 
aspect on K* increases during years of soot presence (2017, 2018, and 
2019), especially for south-facing glaciers. Ignoring the effects of slope 
and aspect would have caused a K* underestimation during years of soot 
presence, which in turn would represent less shortwave energy available 

Fig. 7. Sentinel-2 blue sky albedo retrieval evaluation scatterplot between the 
Athabasca Glacier AWS observation and image pixel. The red and black dashed 
lines represent the regression fit and the 1:1 line, respectively. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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to melt the snow and ice of the Columbia Icefield. This shows that small- 
scale errors in estimating soot impacts on melt energy due to not 
considering the topographic influence on irradiance, scale up to larger 
scales and are important for estimating icefield scale impacts of wildfire. 
Note that the 2018-08-21 date was not used to compute the above co-
efficients of determination, since this date is clearly an outlier that was 
introducing overfitting into the analysis. 

4. Conclusions 

This study proposes a framework for the retrieval of snow and glacier 
ice albedo at the high spatial resolution required in high mountain en-
vironments and demonstrates the deployment of this framework in 
assessing the impact of wildfire soot deposition on snow and ice albedo 
decrease and K* in the Columbia Icefield, Canadian Rockies. The 
framework was proven to be suitable for retrieving high spatial resolu-
tion albedo for snow and ice at good accuracy levels (R2 = 0.68), which 
suggests its use for applications that involve assessing the impact of 
wildfire on the mountain cryosphere. These findings show that the 

lowest spatially averaged albedo was 0.528 in 2017 for the snow 
plateau, and that most glaciers aspects had their minimum albedos in 
2019 (NE: 0.261 and SW: 0.278). SE glaciers had their minimum albedo 
(0.258) in 2020, due to persistence of low albedo in 2020 and possibly 
due to under-sampling of this aspect during 2019. The largest inter- 
annual soot-induced decrease in albedo was 0.148 for southeast-facing 
glaciers and 0.050 for the snow plateau between 2018 and 2020. This 
widespread decrease in albedo generated a maximum spatially averaged 
K* of 446 W/m2 for the snow plateau and 771 W/m2 for southeast-facing 
glaciers in 2017. The largest inter-annual soot-induced shortwave 
radiative forcing was 203 W/m2 for southeast-facing glaciers between 
2018 and 2020, and 106 W/m2 for the snow plateau between 2017 and 
2020. This study also highlighted spatial differences in albedo response 
timing to wildfire soot deposition. It showed that glacier ice undergoes a 
more prolonged decrease in albedo even after fire activity has ceased, 
which is probably caused by the bio-albedo feedback, whereas snow 
albedo can be refreshed in the same year. The use of K* slope and aspect 
correction was also found to be essential for providing accurate repre-
sentations of spatially-distributed K* in mountain icefields. 

Fig. 8. Sentinel-2 blue-sky albedo retrievals for dates used for inter-annual comparisons. The black arrows indicate the pair of dates that were compared. Empty 
spaces inside the Columbia Icefield represent NA values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Although this framework is sufficiently robust to be applied as pre-
sented herein, some limitations need to be considered. The quality of 
MODIS BRDF retrievals is extremely important for high spatial 

resolution albedo retrieval; therefore, it is suggested that the MODIS 
BRDF retrievals undergo a pre-evaluation process. More specifically, to 
ensure consistent high spatial resolution albedo retrieval, users are 

Fig. 9. Annual timeseries plots showing the observed albedo at 13:00:00 CST and the blue sky remote sensing albedo. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Spatially averaged albedo and CSD (top panel), and K* and CSD (bottom panel).  
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encouraged to be cautious when using retrievals with a low number of 
clear MODIS observations within the 16-day BRDF retrieval window. 
This study showed that retrieving high quality BRDF pixels in regions 
with high cloud cover frequency is troublesome even using the RTLSR 
model, which was superior compared to the snow kernel model. A low 
number of high quality BRDF pixels can limit spatiotemporal analysis 
due to the scarce availability of high spatial resolution albedo estimates. 
Another important limitation to consider is the need to properly deter-
mine the number of cluster classes used in the classification process, and 
to assess whether this parameter may be more sensitive in other regional 
contexts. Moreover, whenever possible, an evaluation of whether the 
cloud-shadow screening processes adopted by MODIS and Sentinel-2 are 
able to properly separate snow from clouds and from cloud shadows is 
recommended to ensure the successful application of the framework. 

This study shows that this framework has the potential to be applied 
in all kinds of applications that rely on a proper representation of 
spatiotemporal variations in snow and ice albedo. As more intense and 
widespread wildfire activity is predicted to occur as the climate warms, 
future research should focus on increasing the frequency of high spatial 
resolution albedo estimates retrieved in summer from potentially 

impacted cryospheric landscapes such as continental mountain snow 
and ice surfaces. Research focusing on improving cloud masks for 
MODIS and Sentinel-2 is expected to greatly decrease the uncertainties 
that clouds introduce in this type of albedo retrieval framework. Studies 
that use spatially-distributed hydrological models should assess whether 
the assimilation of albedo retrievals improves the overall accuracy of 
streamflow prediction and forecasting in cold regions. In addition, it is 
possible that the employed framework can be used with geospatial cloud 
computing tools, which would increase the number of applications. 
Finally, the large-area high spatial resolution observational albedo es-
timates developed in this study are expected to be extremely important 
for assessing the nonstationary impacts of climate change on water 
resources. 
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Appendix A. MODIS-Terra surface reflectance spectral response correction 

Because MODIS-Terra instrument spectral response differs from those of Sentinel-2A and 2B, a spectral response correction was necessary to bring 
MODIS-Terra surface reflectance to the same level of Sentinel-2A and 2B surface reflectances. This correction was applied to MODIS-Terra surface 
reflectance before any BRDF calculation. The correction used the Spectral Band Adjustment Factors (SBAFs) for surface reflectance developed by 
Pearlman et al. (2003) and Scarino et al. (2016), which are available at: https://satcorps.larc.nasa.gov/cgi-bin/site/showdoc?mnemoni 
c=HYPERION. This method calculates SBAF based on Hyperion spectra to determine the relationship between the surface reflectance of MODIS- 
Terra and Sentinel-2A and 2B for a particular band. The SBAFs used in this study are shown in Table A1 and had a minimum R2 of 0.934. The 
SBAFs are landcover-dependent; therefore, they were retrieved for each landcover class corresponding to the MCD12Q1 MODIS landcover product. 
MCD12Q1 was used to determine which SBAF was applied for each MODIS-Terra surface reflectance pixel. MCD12Q1 is an annual product that 
represents our study area for the summer months; however, the landcover for 2020 is not available yet, and thus, the landcover for 2019 was used in 
2020. This is a reasonable assumption since landcover does not change considerably at a yearly rate at a MODIS spatial resolution, as shown in Fig. A1.  

Table A1 
SBAF values for Sentinel-2A and 2B used in this study. The band names are for MODIS-Terra and the landcover classes follow the MCD12Q1 naming convention.  

Landcover class Blue Green Red NIR SWIR1 SWIR2 

SA SB SA SB SA SB SA SB SA SB SA SB 

Evergreen Needleleaf Forests 0.987 0.986 1.023 1.022 0.974 0.975 0.977 0.973 1.056 1.066 0.839 0.859 
Deciduous Broadleaf Forests 0.987 0.987 1.021 1.020 0.979 0.980 0.970 0.966 1.058 1.068 0.857 0.875 
Mixed Forests 0.983 0.983 1.023 1.022 0.970 0.970 0.977 0.973 1.058 1.069 0.811 0.836 
Closed Shrublands 0.981 0.981 1.018 1.017 0.970 0.970 0.969 0.965 1.047 1.054 0.938 0.944 
Open Shrublands 0.960 0.960 1.010 1.009 0.969 0.969 0.979 0.975 1.037 1.043 0.988 0.987 
Woody Savannas 1.000 1.000 1.020 1.019 0.988 0.989 0.960 0.957 1.056 1.065 0.943 0.946 
Savannas 0.982 0.982 1.012 1.011 0.983 0.984 0.961 0.958 1.050 1.058 0.972 0.972 
Grasslands 0.955 0.956 1.012 1.012 0.970 0.970 0.978 0.974 1.045 1.052 0.935 0.943 
Permanent Wetlands 0.959 0.959 1.018 1.017 0.973 0.973 0.983 0.978 1.055 1.065 0.812 0.834 
Permanent Snow and Ice 0.947 0.948 1.018 1.017 0.973 0.973 0.995 0.988 1.063 1.076 0.672 0.714 
Barren 0.922 0.924 0.982 0.984 0.955 0.955 0.973 0.969 1.029 1.032 1.068 1.052 
Water Bodies 1.015 1.013 1.025 1.023 0.980 0.981 0.983 0.978 1.046 1.053 0.855 0.874 

Fig. 12. Difference between K* with and without slope and aspect correction (with minus without correction). A positive difference means an underestimation of K* 
if not corrected for slope and aspect and vice-versa. 
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Fig. A1. Maps of yearly MCD12Q1 landcover, except for the 2020 year.  
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Appendix B. Correction of cloud-shadow screening algorithm

Fig. B1. Maps of the four cloud-shadow masks that required manual post-processing.  
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Jiao, Z., Zhang, X., Bréon, F.M., Dong, Y., Schaaf, C.B., Román, M., Wang, Z., Cui, L., 
Yin, S., Ding, A., Wang, J., 2018. The influence of spatial resolution on the angular 
variation patterns of optical reflectance as retrieved from MODIS and POLDER 
measurements. Remote Sens. Environ. 215, 371–385. https://doi.org/10.1016/j. 
rse.2018.06.025. 

Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J., 
Bowman, D.M.J.S., 2015. Climate-induced variations in global wildfire danger from 
1979 to 2013. Nat. Commun. 6, 1–11. https://doi.org/10.1038/ncomms8537. 

Kaspari, S., Skiles, S.M.K., Delaney, I., Dixon, D., Painter, T.H., 2015. Accelerated glacier 
melt on snow dome, Mount Olympus, Washington, USA, due to deposition of black 
carbon and mineral dust from wildfire. J. Geophys. Res. 120, 2793–2807. https:// 
doi.org/10.1002/2014JD022676. 

Kim, Y., Hatsushika, H., Muskett, R.R., Yamazaki, K., 2005. Possible effect of boreal 
wildfire soot on Arctic Sea ice and Alaska glaciers. Atmos. Environ. 39, 3513–3520. 
https://doi.org/10.1016/j.atmosenv.2005.02.050. 

Kirchmeier-Young, M.C., Gillett, N.P., Zwiers, F.W., Cannon, A.J., Anslow, F.S., 2019. 
Attribution of the influence of human-induced climate change on an extreme fire 
season. Earth’s Futur. 7, 2–10. https://doi.org/10.1029/2018EF001050. 

Klein, A.G., Hall, D.K., Riggs, G.A., 1998. Improving snow cover mapping in forests 
through the use of a canopy reflectance model. Hydrol. Process. 12, 1723–1744. 
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID- 
HYP691>3.0.CO;2-2. 

Kokhanovsky, A., Lamare, M., Di Mauro, B., Picard, G., Arnaud, L., Dumont, M., 
Tuzet, F., Brockmann, C., Box, J.E., 2018. On the reflectance spectroscopy of snow. 
Cryosphere 12, 2371–2382. https://doi.org/10.5194/tc-12-2371-2018. 

Lee, W.L., Liou, K.N., 2012. Effect of absorbing aerosols on snow albedo reduction in the 
Sierra Nevada. Atmos. Environ. 55, 425–430. https://doi.org/10.1016/j. 
atmosenv.2012.03.024. 

Lewis, P., 1995. Utility of kernel-driven BRDF models in global BRDF and albedo studies. 
Int. Geosci. Remote Sens. Symp. 2, 1186–1188. https://doi.org/10.1109/ 
igarss.1995.521179. 

Li, X., Strahler, A.H., 1992. Geometric-optical bidirectional reflectance modeling of the 
discrete crown vegetation canopy: effect of crown shape and mutual shadowing. 
IEEE Trans. Geosci. Remote Sens. 30, 276–292. 

Li, X., Gao, F., Wang, J., Strahler, A., 2001. A priori knowledge accumulation and its 
application to linear BRDF model inversion. J. Geophys. Res. Atmos. 106, 
11925–11935. https://doi.org/10.1029/2000JD900639. 

Li, Z., Erb, A., Sun, Q., Liu, Y., Shuai, Y., Wang, Z., Boucher, P., Schaaf, C., 2018. 
Preliminary assessment of 20-m surface albedo retrievals from sentinel-2A surface 
reflectance and MODIS/VIIRS surface anisotropy measures. Remote Sens. Environ. 
217, 352–365. https://doi.org/10.1016/j.rse.2018.08.025. 

Lucht, W., Lewis, P., 2000. Theoretical noise sensitivity of BRDF and albedo retrieval 
from the EOS-MODIS and MISR sensors with respect to angular sampling. Int. J. 
Remote Sens. 21, 81–98. https://doi.org/10.1080/014311600211000. 

Lucht, W., Schaaf, C.B., Strahler, A.H., 2000. An algorithm for the retrieval of albedo 
from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 38, 
977–998. https://doi.org/10.1109/36.841980. 

McKenzie Skiles, S., Flanner, M., Cook, J.M., Dumont, M., Painter, T.H., 2018. Radiative 
forcing by light-absorbing particles in snow. Nat. Clim. Chang. 8, 964–971. https:// 
doi.org/10.1038/s41558-018-0296-5. 

Mortimer, C., Sharp, M., 2018. Spatiotemporal variability of Canadian High Arctic 
glacier surface albedo from MODIS data, 2001-2016. Cryosphere 12, 701–720. 
https://doi.org/10.5194/tc-12-701-2018. 

Mueller-Wilm, U., Devignot, O., Pessiot, L., 2019. S2 MPC Sen2Cor Configuration and 
User Manual. European Space Agency: Technical Report, Ref. S2-PDGS-MPC-L2A- 
SUM-V2.8. 

Nagorski, S.A., Kaspari, S.D., Hood, E., Fellman, J.B., Skiles, S.M.K., 2019. Radiative 
forcing by dust and black carbon on the Juneau icefield, Alaska. J. Geophys. Res. 
Atmos. 124, 3943–3959. https://doi.org/10.1029/2018JD029411. 

Painter, T.H., Bryant, A.C., McKenzie Skiles, S., 2012. Radiative forcing by light 
absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. 
Lett. 39, 1–7. https://doi.org/10.1029/2012GL052457. 

Painter, T.H., Seidel, F.C., Bryant, A.C., McKenzie Skiles, S., Rittger, K., 2013. Imaging 
spectroscopy of albedo and radiative forcing by light-absorbing impurities in 
mountain snow. J. Geophys. Res. Atmos. 118, 9511–9523. https://doi.org/10.1002/ 
jgrd.50520. 

Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., Carman, S.L., 2003. 
Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 41, 
1160–1173. https://doi.org/10.1109/TGRS.2003.815018. 

Román, M.O., Gatebe, C.K., Schaaf, C.B., Poudyal, R., Wang, Z., King, M.D., 2011. 
Variability in surface BRDF at different spatial scales (30m-500m) over a mixed 
agricultural landscape as retrieved from airborne and satellite spectral 
measurements. Remote Sens. Environ. 115, 2184–2203. https://doi.org/10.1016/j. 
rse.2011.04.012. 

Roujean, J.-L., Leroy, M., Deschamps, P.-Y., 1992. A bidirectional reflectance model of 
the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 97, 
20455–20468. https://doi.org/10.1029/92JD01411. 

Roy, D.P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., Lindquist, E., 2008. Multi- 
temporal MODIS–Landsat data fusion for relative radiometric normalization, gap 
filling, and prediction of Landsat data. Remote Sens. Environ. 112, 3112–3130. 
https://doi.org/10.1016/j.rse.2008.03.009. 

Scarino, B.R., Doelling, D.R., Minnis, P., Gopalan, A., Chee, T., Bhatt, R., Lukashin, C., 
Haney, C., 2016. A web-based tool for calculating spectral band difference 
adjustment factors derived from SCIAMACHY hyperspectral data. IEEE Trans. 
Geosci. Remote Sens. 54, 2529–2542. https://doi.org/10.1109/ 
TGRS.2015.2502904. 

Schaaf, C.B., Li, X., Strahler, A.H., 1994. Topographic effects on bidirectional and 
hemispherical reflectances calculated with a geometric-optical canopy model. IEEE 
Trans. Geosci. Remote Sens. 32, 1186–1193. https://doi.org/10.1109/36.338367. 

Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C., 
Zhang, X., Jin, Y., Muller, J., Lewis, P., Barnsley, M., Hobson, P., Disney, M., 
Roberts, G., Dunderdale, M., Doll, C., Robert, P., Hu, B., Liang, S., Privette, J.L., 
Roy, D., 2002. First operational BRDF, albedo nadir reflectance products from 
MODIS. Remote Sens. Environ. 83, 135–148. 

Schirmer, M., Pomeroy, J.W., 2020. Processes governing snow ablation in alpine terrain- 
detailed measurements from the Canadian Rockies. Hydrol. Earth Syst. Sci. 24, 
143–157. https://doi.org/10.5194/hess-24-143-2020. 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., 
Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., 
Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances 
under climate change. Nat. Clim. Chang. 7, 395–402. https://doi.org/10.1038/ 
nclimate3303. 

Shuai, Y., Schaaf, C.B., Strahler, A.H., Liu, J., Jiao, Z., 2008. Quality assessment of BRDF/ 
albedo retrievals in MODIS operational system. Geophys. Res. Lett. 35, 1–5. https:// 
doi.org/10.1029/2007GL032568. 

Shuai, Y., Masek, J.G., Gao, F., Schaaf, C.B., 2011. An algorithm for the retrieval of 30-m 
snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sens. 
Environ. 115, 2204–2216. https://doi.org/10.1016/j.rse.2011.04.019. 

Smith, C.D., 2007. Correcting the wind bias in snowfall measurements made with a 
Geonor T-200B precipitation gauge and Alter wind shield. In: Proceedings of the 
14th SMOI, San Antonio, 2007, p. 6. 

Soenen, S.A., Peddle, D.R., Coburn, C.A., 2005. SCS+C: a modified sun-canopy-sensor 
topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 43, 
2148–2159. https://doi.org/10.1109/TGRS.2005.852480. 

Stamnes, K., Tsay, S.-C., Wiscombe, W., Jayaweera, K., 1988. Numerically stable 
algorithm for discrete-ordinate-method radiative transfer in multiple scattering and 
emitting layered media. Appl. Opt. 27, 2502. https://doi.org/10.1364/ 
ao.27.002502. 

Strugnell, N.C., Lucht, W., 2001. An algorithm to infer continental-scale albedo from 
AVHRR data, land cover class, and field observation of typical BRDFs. J. Clim. 14, 
1360–1376. https://doi.org/10.1175/1520-0442(2001)014<1360:AATICS>2.0.CO; 
2. 

Tennant, C., Menounos, B., 2013. Glacier change of the Columbia Icefield, Canadian 
Rocky Mountains, 1919-2009. J. Glaciol. 59, 671–686. https://doi.org/10.3189/ 
2013JoG12J135. 

Verstraete, M.M., Pinty, B., Myneni, R.B., 1996. Potential and limitations of information 
extraction on the terrestrial biosphere from satellite remote sensing. Remote Sens. 
Environ. 58, 201–214. https://doi.org/10.1016/S0034-4257(96)00069-7. 

Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., Wada, Y., 2020. Increasing 
dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 
917–928. https://doi.org/10.1038/s41893-020-0559-9. 

Wang, Y., Li, X., Nashed, Z., Zhao, F., Yang, H., Guan, Y., Zhang, H., 2007. Regularized 
kernel-based BRDF model inversion method for ill-posed land surface parameter 
retrieval. Remote Sens. Environ. 111, 36–50. https://doi.org/10.1016/j. 
rse.2007.03.007. 

Wang, D., Liang, S., He, T., 2014. Mapping high-resolution surface shortwave net 
radiation from landsat data. IEEE Geosci. Remote Sens. Lett. 11, 459–463. https:// 
doi.org/10.1109/LGRS.2013.2266317. 

Wang, Z., Erb, A.M., Schaaf, C.B., Sun, Q., Liu, Y., Yang, Y., Shuai, Y., Casey, K.A., 
Román, M.O., 2016. Early spring post-fire snow albedo dynamics in high latitude 
boreal forests using Landsat-8 OLI data. Remote Sens. Environ. 185, 71–83. https:// 
doi.org/10.1016/j.rse.2016.02.059. 

A. Bertoncini et al.                                                                                                                                                                                                                             

https://doi.org/10.1002/hyp.6794
https://doi.org/10.1002/hyp.6794
https://doi.org/10.1029/2006JD008003
https://doi.org/10.5194/acp-9-2481-2009
https://doi.org/10.5194/acp-9-2481-2009
https://doi.org/10.1029/2009JF001444
https://doi.org/10.1038/nclimate1433
https://doi.org/10.1139/cjfr-2018-0293
https://doi.org/10.1002/hyp.9799
https://doi.org/10.1002/hyp.9799
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0120
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0120
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0125
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0125
https://doi.org/10.1016/j.rse.2018.11.001
https://doi.org/10.1016/j.rse.2018.11.001
https://doi.org/10.1016/j.rse.2018.06.025
https://doi.org/10.1016/j.rse.2018.06.025
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1002/2014JD022676
https://doi.org/10.1002/2014JD022676
https://doi.org/10.1016/j.atmosenv.2005.02.050
https://doi.org/10.1029/2018EF001050
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2
https://doi.org/10.5194/tc-12-2371-2018
https://doi.org/10.1016/j.atmosenv.2012.03.024
https://doi.org/10.1016/j.atmosenv.2012.03.024
https://doi.org/10.1109/igarss.1995.521179
https://doi.org/10.1109/igarss.1995.521179
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0175
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0175
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0175
https://doi.org/10.1029/2000JD900639
https://doi.org/10.1016/j.rse.2018.08.025
https://doi.org/10.1080/014311600211000
https://doi.org/10.1109/36.841980
https://doi.org/10.1038/s41558-018-0296-5
https://doi.org/10.1038/s41558-018-0296-5
https://doi.org/10.5194/tc-12-701-2018
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0210
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0210
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0210
https://doi.org/10.1029/2018JD029411
https://doi.org/10.1029/2012GL052457
https://doi.org/10.1002/jgrd.50520
https://doi.org/10.1002/jgrd.50520
https://doi.org/10.1109/TGRS.2003.815018
https://doi.org/10.1016/j.rse.2011.04.012
https://doi.org/10.1016/j.rse.2011.04.012
https://doi.org/10.1029/92JD01411
https://doi.org/10.1016/j.rse.2008.03.009
https://doi.org/10.1109/TGRS.2015.2502904
https://doi.org/10.1109/TGRS.2015.2502904
https://doi.org/10.1109/36.338367
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0260
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0260
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0260
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0260
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0260
https://doi.org/10.5194/hess-24-143-2020
https://doi.org/10.1038/nclimate3303
https://doi.org/10.1038/nclimate3303
https://doi.org/10.1029/2007GL032568
https://doi.org/10.1029/2007GL032568
https://doi.org/10.1016/j.rse.2011.04.019
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0285
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0285
http://refhub.elsevier.com/S0034-4257(22)00215-2/rf0285
https://doi.org/10.1109/TGRS.2005.852480
https://doi.org/10.1364/ao.27.002502
https://doi.org/10.1364/ao.27.002502
https://doi.org/10.1175/1520-0442(2001)014<1360:AATICS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1360:AATICS>2.0.CO;2
https://doi.org/10.3189/2013JoG12J135
https://doi.org/10.3189/2013JoG12J135
https://doi.org/10.1016/S0034-4257(96)00069-7
https://doi.org/10.1038/s41893-020-0559-9
https://doi.org/10.1016/j.rse.2007.03.007
https://doi.org/10.1016/j.rse.2007.03.007
https://doi.org/10.1109/LGRS.2013.2266317
https://doi.org/10.1109/LGRS.2013.2266317
https://doi.org/10.1016/j.rse.2016.02.059
https://doi.org/10.1016/j.rse.2016.02.059


Remote Sensing of Environment 278 (2022) 113101

20

Wang, Z., Schaaf, C.B., Sun, Q., Shuai, Y., Román, M.O., 2018. Capturing rapid land 
surface dynamics with collection V006 MODIS BRDF/NBAR/albedo (MCD43) 
products. Remote Sens. Environ. 207, 50–64. https://doi.org/10.1016/j. 
rse.2018.02.001. 

Wanner, W., Li, X., Strahler, A.H., 1995. On the derivation of kernels for kernel-driven 
models of bidirectional reflectance. J. Geophys. Res. 100, 21077–21089. https://doi. 
org/10.1029/95JD02371. 

Williamson, S.N., Menounos, B., 2021. The influence of forest fires aerosol and air 
temperature on glacier albedo, western North America. Remote Sens. Environ. 267, 
112732 https://doi.org/10.1016/j.rse.2021.112732. 

Yasunari, T.J., Tan, Q., Lau, K.M., Bonasoni, P., Marinoni, A., Laj, P., Ménégoz, M., 
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