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Abstract

Snow interception is a crucial hydrological process in cold regions needleleaf forests,

but is rarely measured directly. Indirect estimates of snow interception can be made

by measuring the difference in the increase in snow accumulation between the forest

floor and a nearby clearing over the course of a storm. Pairs of automatic weather sta-

tions with acoustic snow depth sensors provide an opportunity to estimate this, if

snow density can be estimated reliably. Three approaches for estimating fresh snow

density were investigated: weighted post-storm density increments from the physi-

cally based Snobal model, fresh snow density estimated empirically from air tempera-

ture (Hedstrom, N. R., et al. [1998]. Hydrological Processes, 12, 1611–1625), and fresh

snow density estimated empirically from air temperature and wind speed (Jordan,

R. E., et al. [1999]. Journal of Geophysical Research, 104, 7785–7806). Automated snow

depth observations from adjacent forest and clearing sites and estimated snow densi-

ties were used to determine snowstorm snow interception in a subalpine forest in the

Canadian Rockies, Alberta, Canada. Then the estimated snow interception and mea-

sured interception information from a weighed, suspended tree and a time-lapse cam-

era were assimilated into a model, which was created using the Cold Regions

Hydrological Modelling platform (CRHM), using Ensemble Kalman Filter or a simple

rule-based direct insertion method. Interception determined using density estimates

from the Hedstrom-Pomeroy fresh snow density equation agreed best with observa-

tions. Assimilating snow interception information from automatic snow depth mea-

surements improved modelled snow interception timing by 7% and magnitude by

13%, compared to an open loop simulation driven by a numerical weather model; its

accuracy was close to that simulated using locally observed meteorological data.

Assimilation of tree-measured snow interception improved the snow interception sim-

ulation timing and magnitude by 18 and 19%, respectively. Time-lapse camera snow

interception information assimilation improved the snow interception simulation

timing by 32% and magnitude by 7%. The benefits of assimilation were greatly

influenced by assimilation frequency and quality of the forcing data.
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1 | INTRODUCTION

The seasonal snowcover strongly influences cold regions hydrologi-

cal cycles and energy budgets through its storage of precipitation,

temperature at or below 0�C and relatively high albedo. The pro-

cesses governing snow dynamics in cold regions needleleaf forests,

which cover more than 20% of the Earth's land surface, are very dif-

ferent from open areas because the forest canopy alters snow and

energy distribution (Pomeroy et al., 2008; Pomeroy & Gray, 1995;

Suzuki & Nakai, 2008). In needleleaf forests, some snowfall is usually

intercepted by the forest canopy where it can be stored up to

months at a time (Pomeroy & Schmidt, 1993). This intercepted snow

can then unload, melt, or sublimate (Pomeroy & Goodison, 1997).

Snow interception and release from forest canopies are mainly con-

trolled by the depth of snowfall, air temperature, humidity, wind

speed, and canopy structure (Hedstrom & Pomeroy, 1998; Storck,

Lettenmaier, & Bolton, 2002; Pomeroy, Gray, Hedstrom, & Janowicz,

2002). Snow interception leads to snow accumulation on the forest

floor being notably different from nearby open areas. Studies have

reported that up to 60% annual snowfall can be intercepted by the

canopy and two thirds of that snow never reaches the ground due

to sublimation (Kuz'min, 1960; Pomeroy & Schmidt, 1993; Storck

et al., 2002). Due to snow's high albedo, relatively cold temperature

and low thermal conductivity, it affects energy partitioning in and

beneath the canopy (Suzuki & Nakai, 2008). Snowmelt runoff from

the Canadian Rockies contributes to the headwaters of major rivers

that supply water to large portions of western Canada and the

northwestern United States. Needleleaf forests cover much of the

Canadian Rockies, and so accurate determination of the magnitude

and timing of snow interception plays an important role in regional

water management (Lv, Pomeroy, & Fang, 2019; Pomeroy, Fang, &

Ellis, 2012).

Numerous methods have been developed in recent decades to

quantitatively or qualitatively measure intercepted snow (cf. Friesen,

Lundquist, & Van Stan, 2015). Mass budgeting, which examines the

snow accumulation or snowfall difference between forest floor and

open areas over the course of a snowstorm, is the most common indi-

rect approach for quantitatively estimating snow interception

(Pomeroy & Gray, 1995). Precipitation or snow accumulation can be

measured by using traditional precipitation gauges (Koivusalo &

Kokkonen, 2002), artificial boards (e.g., Floyd & Weiler, 2008;

Lundberg, Calder, & Harding, 1998), or snow surveys (Hedstrom &

Pomeroy, 1998). The annual loss caused by sublimation of intercepted

snow can be obtained by difference in the peak SWE between an

adjacent forest and open area (Lundberg et al., 1998; Pomeroy &

Schmidt, 1993; Winkler, Spittlehouse, & Golding, 2005). The direct

approach for measuring snow interception on a single tree or branch

involves a weighing scale or compression sensor that connects to a

cut, a live tree or branch to measure weight change during and after a

snow storm (Hedstrom & Pomeroy, 1998; Lundberg et al., 1998; Mar-

tin et al., 2013; Pomeroy & Schmidt, 1993; Schmidt & Pomeroy, 1990;

Suzuki & Nakai, 2008). Although these approaches can provide accu-

rate interception measures, they all have drawbacks. For example, a

cut suspended tree (branch) dries out in time changing its tare weight.

The compression sensor method is still experimental. Images from

ground based digital cameras (Floyd & Weiler, 2008; Garvelmann,

Pohl, & Weiler, 2013; Pomeroy & Schmidt, 1993) or an optical remote

sensing satellite (Lv & Pomeroy, 2019) have been used to detect can-

opy snow presence based on the high reflectance of snow. Some of

these studies have developed methods to calculate the canopy snow-

covered area of the canopy; however, the actual amount of inter-

cepted snow has remained elusive. Snow mass budgeting is laborious

and requires regular observations to determine field SWE changes.

Automatic snow accumulation measurements are not readily available,

or possible, under forest canopies in most cold regions (Kinar &

Pomeroy, 2015). Nevertheless, automatic, ultrasonic snow depth sen-

sors are usually included in automated meteorological stations. Snow

depth measurements like this have been used to derive solid precipi-

tation (Mair et al., 2016), snow density (Helfricht, Hartl, Koch, Marty, &

Olefs, 2018), and snow accumulation as snow water equivalent or

SWE (Egli, Jonas, & Meister, 2009), and have been used to compare

water balance between forests and clearings (Bales et al., 2011). How-

ever, their use to quantitatively determine snow interception needs to

be further explored.

Many models have been developed to simulate snow interception

and unloading in forests (e.g., Bartlett, MacKay, & Verseghy, 2006;

Hedstrom & Pomeroy, 1998; Niu & Yang, 2004). In these models,

interception is usually determined by the initial snow load, snowfall

rate, and the maximum snow storage capacity of the canopy, which is

determined by air temperature, fresh snow density, and canopy cover-

age. The unloading of intercepted snow is usually determined by wind

speed and time since snowfall. Intercepted snow changes both the

albedo and canopy temperature (Lv & Pomeroy, 2019), hence alters

the shortwave and longwave radiation around the canopy to varying

degrees (Pomeroy & Dion, 1996). Because volumes of canopy inter-

cepted snow are relatively smaller than snow on the ground and inter-

cepted snow remains in the canopy over time periods from a few

hours to a few months, canopy snow modelling is more sensitive than

ground snowpack to the quality of the forcing data. However, because

of sparse meteorological observations in cold regions forests, climate

model outputs, that have relatively lower accuracy, are the only avail-

able data source to model snow interception in most areas. Hence,

there is a need for data assimilation (DA) to allow better simulation of

snow interception.

Both observations and models have drawbacks when estimat-

ing snow interception. Observations are usually limited by small

spatial coverage (e.g., weighed suspended tree lysimetry) or sparse

repeat frequency (e.g., satellite remote sensing), or both

(e.g., manual snow survey). Models are simplified representations

of real-world physical processes and their simulation accuracy is

greatly influenced by the quality of parameterization and input

data. To optimize estimation of hydrological properties, DA has

been introduced to hydrological models to combine the advan-

tages of observations (e.g., relatively higher accuracy) and models

(e.g., low cost and consistent at reasonable spatial and temporal

scales).
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Many DA methods have been developed in environmental sci-

ence, which vary in how they treat observations and model simula-

tion error covariance (Liu et al., 2012). Simple insertion methods

assume that observations are perfect and only models contain error.

Hence, modelled state variables are directly replaced by observa-

tions whenever there is an observation available. Other DA

approaches that adopt improved sophisticated algorithms to deter-

mine model and observational uncertainty have being used by many

cold regions hydrologists. The most common are the Kalman filter

(KF) family (traditional KF, EKF, EnKF), Particle Filter (PF), and four-

dimensional variational data assimilation (4DVAR). Cold regions

hydrologists have used these approaches to assimilate both in situ

observations and remotely sensed data, including snow cover frac-

tion (Andreadis & Lettenmaier, 2006; Clark et al., 2006; De Lannoy

et al., 2012; Liu et al., 2013; Rodell & Houser, 2004; Slater & Clark,

2006; Stigter et al., 2017), snow depth (Hedrick et al., 2018; Kumar

et al., 2014; Kumar, Dong, Peters-Lidard, Mocko, & Gómez, 2017;

Liu et al., 2013; Lv, 2019; Magnusson, Winstral, Stordal, Essery, &

Jonas, 2017; Stigter et al., 2017), and SWE (Andreadis &

Lettenmaier, 2006; Bergeron, Trudel, & Leconte, 2016; Franz,

Hogue, Barik, & He, 2014; Huang, Newman, Clark, Wood, & Zhang,

2017; Liston & Hiemstra, 2007; Lv, 2019), into hydrological models.

However, to authors' knowledge, the assimilation of snow intercep-

tion information has yet to be explored.

The principal aim of this study is to use DA to improve snow

interception process simulations that are forced by uncertain atmo-

spheric model outputs. This research first studied the use of auto-

matically measured snow depth from adjacent forest and clearing

sites to quantitatively estimate snow interception in a headwater

basin in the Canadian Rocky Mountains. Then, these snow intercep-

tion data, along with a weighed, suspended tree and time-lapse cam-

era measured snow interception information, were assimilated into a

physically based, process-hydrology Cold Regions Hydrological

Modelling platform (CRHM) forcing by uncertain atmospheric model

outputs using EnKF and rule based direct insertion to achieve the

goal of improving snow interception process simulations through

DA. Specific research objectives are 1) to determine how automati-

cally measured snow depth in forests and adjacent clearings can be

used to quantify snow interception loss in the forest, and, 2) to

examine the influence of assimilating ground measured and remotely

sensed snow interception information on snow interception process

simulations.

2 | STUDY AREA AND DATA

2.1 | Marmot Creek Research Basin

This study took place in the Upper Forest (UF) and Upper Clearing

(UC) sites at the Marmot Creek Research Basin (MCRB). MCRB is

located in the Front Ranges of the Canadian Rockies in Alberta,

Canada (Figure 1). The basin area is approximately 9.4 km2 and

basin elevations range from 1,700 to 2,825 m. At low to middle

elevations, continuous stands of Lodgepole Pine, Engelmann Spruce,

and Douglas-fir are the dominant tree species. Upper elevations are

dominated by Larch, Engelmann Spruce, Subalpine Fir, shrubs, and

grasses. The highest elevations are covered largely by talus and

exposed rock. The main precipitation type in the basin is snowfall

(up to 75% in high elevations) with mean annual precipitation vary-

ing by elevation from 660 to 1,140 mm. Approximately 65% of

basin is covered by dense forest resulting in snow interception

playing a crucial role in snow accumulation dynamics in the basin

(Lv et al., 2019). Snow interception by the forest canopy and subli-

mation of intercepted snow both control snow accumulation such

that up to 60% of the annual snowfall never reaches the ground

under the needleleaf forests (Ellis, Pomeroy, Brown, & MacDonald,

2010). In the 1970s, six large and thousands of small clearings were

cut to study the influence of deforestation on local hydrology

(Rothwell, Hillman, & Pomeroy, 2016). UC is located at a middle ele-

vation (1840 m) clearing with a diameter of approximately 60 m.

Forty years after deforestation, the main vegetation type in UC is

short grass and natural forest regrowth with young trees less than

2 m high. The UF site is located in a relatively level mature mixed

forest stand of Spruce, Fir and Pine that is approximately 30 m from

the northwest edge of UC.

2.2 | Data collection

Two meteorological stations were erected in 2005 at UC and UF

to continuously measure climate data (15-min intervals). In addi-

tion to standard meteorological sensors, the stations consisted of

a snow depth sensor (Campbell Scientific SR50) and a weighing

precipitation gauge (Alter-shielded Geonor) to measure precipita-

tion (UC only). Precipitation data were corrected for wind-induced

undercatch (Smith, 2009). Hourly air temperature, relatively humid-

ity, soil temperature, wind speed, short- and longwave radiation,

snow depth, and precipitation data until September 2017 were

collected at both sites (Fang, Pomeroy, DeBeer, Harder, &

Siemens, 2019).

In addition to locally observed meteorological data, the Environ-

ment and Climate Change Canada Global Environmental Multiscale

(GEM) model 2.5 km grid product from November 2014 to August

2017 was used to run the CRHM model for DA experiments. Four

grids of GEM data were needed to cover the entire MCRB basin.

GEM outputs were hourly air temperature, relative humidity, wind

speed, incoming shortwave radiation, incoming longwave radiation,

and precipitation. These outputs were not bias corrected. The 2.5 km

GEM data were downscaled to Hydrological Response Unit (HRU,

which is the basic simulation unit in CRHM) scale before forcing

CRHM. Precipitation and air temperature for each HRU were adjusted

based on the observed elevation lapse rate in MCRB. Other forcing

variables of each HRU were assigned to the value of the closest GEM

grid cell.

A freshly cut, mature, full-size tree was suspended and weighed

at UF to quantitatively measure snow interception on forest canopy
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from January 2016 to June 2017 using the technique of Hedstrom

and Pomeroy (1998). A time-lapse camera (Wingscapes Timelapse-

Cam) was mounted on the Gold Chair lift at the Nakiska Ski Resort

beside MCRB from March 2015 to June 2016 to take hourly pictures

of the forest canopy in the basin.

Snow surveys were conducted one to three times each month at

both sites from November to June of each hydrological year from

2006 to 2017. The survey follows designed transects near the sites

with at least 25 snow depth measures and one snow density measure

among every five depth measurements using an ESC30 snow tube.

F IGURE 1 Landscape of Marmot Creek Research Basin, Alberta, Canada (top) and a close-up of upper forest and upper clearing sites (bottom,
photo from Google Map)
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3 | METHODS

3.1 | Snow interception estimation

In this research, snow interception data from three sources

(suspended tree, time-lapse camera, and automatic snow depth mea-

surement) were used. Hourly images from the time-lapse camera were

processed following Lv and Pomeroy (2019) to determine the time of

intercepted snow on the forest canopy. To obtain areal scale snow

interception magnitude for each snow storm using the automatic

snow depth measurement, three fresh snow density estimation

methods (see Section 3.1.2) were applied covert the upscaled auto-

matic measured snow depth change (see Section 3.1.1) to SWE

change during each snow storm. Then, forest canopy snow intercep-

tion at the UF site was determined by the difference between SWE

changes in UC and UF during each snow event using Equation (1):

Int =ΔSWEUC−ΔSWEUF, ð1Þ

where Int is the snow interception (mm) for a snowfall event in UF,

ΔSWEUC and ΔSWEUF denote the SWE change (mm) during the snow

fall for UC and UF, respectively.

The estimated snow interception data from the three methods

were compared to the snow interception measured by the suspended

tree at UF from January 2016 to June 2017 to determine the optimal

method of snow interception estimation using automated snow depth

measurement at the study site.

The suspended tree only measured interception amount at the sin-

gle tree scale, while the interception data obtained from snow survey

transects were for areal scale. Snow interception estimated from the

snow surveys was then used to upscale the tree measurement to areal

scales based on the linear relationship between the two data sets as per

Hedstrom and Pomeroy (1998). The suspended tree branch and needle

area changed each winter as a fresh tree was deployed in the fall and so

this scaling was recalculated every year to achieve the best results.

3.1.1 | Snow depth data filtering

SR50-measured fixed point snow depth data usually contain error and

noise and are unable to represent landscape mean (Neumann, Derksen,

Smith, & Goodison, 2006; Ryan, Doesken, & Fassnacht, 2008). There-

fore, the data were error corrected, smoothed, and upscaled following

the methods in Lv (2019). Because air temperature influences the speed

of sound, temperature compensation was conducted on SR50

ultrasonic sensor reading according the following formula provided by

Campbell Scientific (2009):

Sc = Sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta

273:15

r
, ð2Þ

where Sc is the compensated snow depth, Sr is the raw SR50 sensor

reading, and the Ta is air temperature in Kelvin.

After compensation, snow depth data still contains noise. “Noisy”

data were removed by applying a three-hour moving average following

Ryan et al. (2008). Fixed point snow depth measurements usually sys-

tematically over- or under-estimate areal means because of heterogene-

ity in snow accumulation, redistribution, and ablation caused by

topography, vegetation and wind (Pomeroy & Gray, 1995). Therefore,

these were upscaled using a “scaling equation” developed using the

relationship between temperature compensated, noise removed SR50

data and areal mean snow depth data from snow surveys at each site.

For details of these “scale equations” refer to Lv (2019).

3.1.2 | Fresh snow density estimation

Three methods were used to estimate fresh snow density to calculate

SWE from the SR50 snow depth data. Because of the popularity of

airborne snow depth measurements, many studies have combined

them with simulated snow density to estimate SWE in cold regions

(Hedrick et al., 2018; Painter et al., 2016). In the present research, the

first method used the physically based energy-balance Snobal module

in CRHM, running local observed meteorological data to simulate the

snowpack density. However, Snobal can only simulate the density for

an entire snowpack. Pomeroy and Gray (1995) reported that different

snow densities should be applied to fresh and old snow. Concomitant

increases of simulated SWE and snow depth during snowfall events

were used to calculate fresh snow density. The second method is

described in Equation (3), proposed by Hedstrom and Pomeroy et al.

(1998), that uses air temperature to calculate freshly fallen snow den-

sity (the Hedstrom-Pomeroy method hereafter).

ρfs =67:9+51:3 e
T=2:6, ð3Þ

where ρfs is the fresh fallen snow density, T is the air temperature at

2 m (�C).

The third method is described by Equation (4), developed by Jor-

dan, Andreas, and Makshtas (1999), that uses air temperature and

wind speed to estimate freshly fallen snow density (the Jordan et al.

method hereafter).

ρfsJ =500 1−0:951e −1:4 278:15− T +273:15ð Þð Þ−1:15−0:008u1:7ð Þh i
−13< T ≤2:5�C

ρfsJ =500 1−0:904e −0:008u1:7ð Þh i
T ≤ −13�C

,

8><
>: ð4Þ
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where u is the 10-m wind speed in m/s.

Because the snowpack densification rate in cold and sheltered

environments is usually as low as 25 kg/m3 per month during the win-

ter (Pomeroy et al., 1998), all three methods assumed that the densifi-

cation of the lower, old snowpack is negligible during snowfall events

and the change of snowpack depth is the contribution of fresh snow

alone. The second and the third methods assume that fresh snow den-

sities in the clearing and the forest are same during the snowstorm.

Snowfall events with mixed precipitation types (snow and rain)

can affect the accuracy of snow density estimation. Thus, data from

these storms were excluded from analyses and only data from pure

snow storms were analyzed. The precipitation phase of an event was

determined following the psychrometric energy budget method pro-

posed by Harder and Pomeroy (2013).

Measured snowfall from a shielded weighing precipitation gauge

and snow depth increase were used to estimate the actual fresh snow

density of each storm. These data were used to validate the calculated

fresh snow density using root mean square error (RMSE, Equation (5))

and Model Bias (MB, Equation (6)).

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 Xoi−Xsið Þ2

n

s
, ð5Þ

MB=

P
XsP
Xo

−1, ð6Þ

where xs and xo are simulated and observed fresh snow density,

respectively.

3.2 | Cold Regions Hydrological Model platform

The Cold Regions Hydrological Model platform (CRHM) was used to cre-

ate a model to simulate snow interception and release from the forest can-

opy at the UF site. CRHM is a modular platform designed to assemble

custom hydrological models that are suitable for cold regions. Researchers

can create projects by choosing from a wide range of basin configurations,

spatial and temporal resolutions, and hydrological process modules based

on their research interests, data availability, and research basin scale. The

CRHM library contains many modules that can be used to interpolate

meteorological data, simulate rainfall and snowfall interception, wind redis-

tribution, sublimation, albedo decay, canopy transmittance, snow energy

and mass balance, evaporation, melt, snowcover depletion, infiltration, soil

moisture, flow and storage of surface and subsurface, and streamflow rou-

ting. Detailed information about CRHM and the modules are given in sev-

eral recent publications (Ellis et al., 2010; Fang et al., 2013; Fang &

Pomeroy, 2016; Pomeroy et al., 2007; Pomeroy, Fang, & Marks, 2016).

The canopy module used in this study was initially developed by

Parviainen and Pomeroy (2000) and later modified by Ellis et al.

(2010). The main parameters of this module are canopy snow-free

albedo, leaf area index (LAI), maximum canopy snow interception load,

ice bulb temperature that controls snow unloading as solid or liquid,

and the measurement height of air temperature and wind speed.

These parameters were set according to field measurements or fol-

lowing the research of Ellis et al. (2010) and Pomeroy et al. (2012).

The Snobal module (Marks, Kimball, Tingey, & Link, 1998; DeBeer &

Pomeroy, 2010) was used to simulate the snowpack mass - energy bal-

ance and the snow density on the ground. Snobal assumes fresh fallen

snow density as 100 kg/m3. It divides the snowpack into two layers

(active and lower) that share the same density. The active layer has a max-

imum thickness of 10 cm following Marks et al. (2008). The forcing data

for the model are locally observed or GEM produced air temperature, rel-

ative humidity, soil temperature, wind speed, incoming shortwave radia-

tion, and precipitation. The model is flexible but in this case was run at an

hourly time step. When observations become available, model runs stop

at 1 a.m. and a state file is exported. This state file contains values of all

necessary state variables and fluxes at that moment. After the assimila-

tion, this file is updated and set as the initial condition for next model run.

3.3 | Snow interception assimilation

In the present research, three snow interception data sets were assimi-

lated into CRHM to evaluate the influence of DA on snow interception

process simulations. The Ensemble Kalman Filter (EnKF) was used to

assimilate snow interception data obtained by snow depth measurements

and suspended tree at the UF site. Because EnKF is only able to assimilate

continuous data, a rule based simple insertion method was used to assimi-

late the time-lapse camera measured snow interception information.

3.3.1 | Ensemble Kalman Filter

EnKF is a sequential assimilation approach that can be used to update

model state variable(s) whenever an observation is available. It was chosen

because it is straightforward to implement and has been successful world-

wide to assimilate other snow properties into hydrological models

(e.g., Franz et al., 2014; He, Hogue, Margulis, & Franz, 2012; Kumar,

Koster, Crow, & Peters-Lidard, 2009). The updating quantity is determined

using the Kalman gain (K, Equation (7)), which is calculated from the error

covariance of ensemble model simulations and observations, and the dif-

ference between simulated and observed state variable (Equation (8)).

Ki =
Psi

HiP
s
i +Ri

, ð7Þ

where Psi and Ri are the forecast model and observation error covari-

ances at time step i, respectively. Model forecast error covariance is

calculated from the ensemble model simulation covariance at each

time step. The observation error covariance of step i is represented by

the error covariance of ensemble observations perturbed from obser-

vation i with a presumed standard deviation.

xai,j = x
b
i,j +Ki yi,j−Hix

b
i,j

� �
, ð8Þ

where xi,j and yi,j are the jth ( j = 1, 2, …, N, N is ensemble size) ensem-

ble model state and observation vector, respectively, at time step
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i (i = 1, 2, …, M, M is number of observations); superscripts a and b rep-

resent the model state vectors after and before the update. Hi is the

observation operator that relates the model vector to the observed

vector and it is a unit factor in this study as the model vector and

observed vector are same.

Uncertainty in simulating snow interception was assumed to be

primarily caused by uncertainty in forcing atmospheric data. There-

fore, ensemble model simulations were run using Monte Carlo

perturbed forcing data following an approach used in many studies

(Kumar et al., 2014; Liu et al., 2013; Reichle, Walker, Koster, &

Houser, 2002; Table 1). The multiplicative perturbation, with a mean

value of 1 and presumed standard deviation (SD), was performed to

incoming shortwave radiation (SD = 0.3) and precipitation (SD = 0.5).

This perturbation can avoid unreasonable outcomes such as negative

precipitation or positive incoming short-wave radiation at night. For

other driving forces, additive perturbation with a mean value of zero

was run (Table 1). For the model state variable (canopy snow load)

multiplicative perturbation was conducted, with a mean value of

1 and a SD of 0.05.

Forcing variables are frequently related, such as higher air tem-

perature often resulting in lower relative humidity. A cross correlation

was performed for all forcing variables except wind speed using

established relationships (De Lannoy et al., 2012; Reichle et al., 2007)

(Table 1). Theoretically, more ensemble simulations in EnKF DA means

higher accuracy. However, in consideration of computational effi-

ciency, 20 was chosen as an ensemble number following existing

research (Kumar et al., 2009; Kumar et al., 2014) and experience.

Using EnKF, snow interception data derived from SR50 measurement

was assimilated for each snow storm detected from November 2014

to August 2017 (hereafter DA_SR50). The suspended tree measured

snow interception was assimilated daily from January 2016 to June

2017 (hereafter DA_Tree).

3.3.2 | Rule-based direct insertion

Although snow interception data derived from the time-lapse camera

(TLC) and satellite images are not able to determine the magnitude of

interception, they do provide interception timing. In particular, the

data from the time-lapse camera not only provides snowfall initiation,

but also duration of snow interception storage on the canopy. To

assimilate this information into CRHM, a rule based simple insertion

method inspired by the satellite measured snowcover information

assimilation research of Rodell and Houser (2004) and Liu et al.

(2013), was proposed. TLC-derived snow interception information

was assimilated daily (hereafter DA_TLC). Simulated snow intercep-

tion was compared to the TLC information at end of each day. If

model-simulated snow interception was less than 1 mm and TLC

information indicated there was snow on the canopy, snow intercep-

tion was adjusted to a minimum value (3 mm). This value was chosen

because it is close to average interception (3.5 mm) for snow storms

at the study site. However, if model-simulated snow interception was

greater than 1 mm but TLC information indicated there was no snow

on the canopy, the simulated snow was adjusted to 0. Assimilation

can be only conducted at midnight on each day in CRHM, but TLC

can only show interception information during daylight. Hence, there

were several hours of lag between the observation and assimilation

time. In addition, snowfall and intercepted snow unloading can occur

at night. Therefore, only days with obvious midnight snow intercep-

tion information were assimilated. On such days, canopy snow inter-

ception information consisted of before sunset of the first day and

after sunrise of the second day. Therefore, days with nighttime snow-

fall, but unknown midnight snow interception information, indicated

by no snow on the canopy in the evening but snow present on the

canopy the following day, were omitted from the assimilation process.

3.3.3 | Data assimilation evaluation

In addition to the three DA experiments, two open loop

(OL) experiments without DA were conducted to assess the influence

of DA on interception simulation. One was forced by GEM data

(GEM_OL) and the other was forced by local observed meteorological

data (ObsMet). The accuracy of each simulation was assessed using the

magnitude and timing of interception. The accuracy of simulated inter-

ception magnitude of each OL and DA experiment was evaluated using

TABLE 1 Model driving and state variables with perturbation parameters

Variables
Cross correlations with perturbations

Forcing variables Perturbation type Standard deviation AT RH u SW LW P

Air temperature (AT) Additive 5�C 1 −0.3 - 0.3 0.6 −0.1

Relative humidity (RH) Additive 10 −0.3 1 - −0.8 0.5 0.8

Wind speed (u) Additive 2 m/s - - 1 - - -

incoming short-wave radiation (SW) Multiplicative 0.3 0.3 −0.8 - 1 −0.3 −0.5

incoming long-wave radiation (LW) Additive 50 (W/m2) 0.6 0.5 - −0.3 1 0.5

Precipitation (P) Multiplicative 0.5 −0.1 0.8 - −0.5 0.5 1

CRHM state variables SWE

Intercepted SWE Multiplicative 0.05 1
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the RMSE (Equation (5)) between these simulations and suspended tree

measurements. For timing, the duration of intercepted snow (hours) for

each experiment was calculated and normalized to the duration of inter-

cepted snow derived from time-lapse photography.

4 | RESULTS

4.1 | Snow depth in forest and clearing

According to SR50 measurements, snow depth in the clearing was fre-

quently higher than that in the forest (Figure 2). For the 12 hydrologi-

cal years of observations, annual peak snow depth in the clearing and

forest were correlated (r2 = 0.91, p < 0.05). Peak snow depth in the

forest was 26.5–54.1% (mean: 45.8%) less than that in the clearing. At

the end of the snow season, the snowpack on the ground has a 0 to

8 day longer duration (mean: 4.4 days) in the forest than in the clear-

ing. Snow survey data indicated that snowpack density in the clearing

and forest were correlated, but not strongly (r2 = .5, p < .05; Figure 3a)

and the snowpack density distribution and mean value at the two sites

were similar (Figure 3b). A t-test for the two data sets found no signifi-

cant difference between snow density sample means from the clearing

and forest (data not shown). Therefore, the SWE ratio can be consid-

ered to be equal to the snow depth ratio between the two sites.

Snow depth increases during snowfall events at UC and UF were

strongly correlated (r2 = .9, p < .05), with a significant linear relation-

ship (Figure 4). On average, snow depth increases in the forest were

approximately 47.6% lower than those in the clearing. For several

small events, snow depth changes in the forest were negative even

though there was a snow depth increase at UC. This can be explained

by high interception efficiency for low snowfall amounts such that

there was little accumulation below the canopy. Minor densification

(<3 cm) also affects the old snowpack depth on the forest floor during

the event. Almost all the events with heavy snow (snow depth

increase greater than 30 cm in UC) were located above the correlation

line, demonstrating that the snow interception efficiency decreases

whilst snowfall amount increases.

4.2 | Fresh snow density estimation

Snobal-simulated snowpack density was compared to directly

observed snowpack density at UC and UF from 2005 to 2017. The

model simulation frequently overestimated observed snowpack

F IGURE 2 SR50 measured snow depth at upper clearing (UC) and upper forest (UF) sites in the Marmot Creek Research Basin
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density at both forest and clearing sites (Figure 5). The overestimation

rate was especially high in the early snow season of each hydrological

year. On average, the model overestimated snowpack density by 43%

at UC and 44% at UF. The RMSE of modelled snowpack density at

UC was 130 and 142 kg/m3 at UF.

Model simulated fresh snow density was frequently higher than

that observed, resulting in the modelled snow depth increase being

much smaller than that observed (Figure 6). Therefore, using the

model simulated snowpack density and observed snow depth leads to

the overestimation of SWE at both sites. The calculated fresh snow

density using Hedstrom-Pomeroy method was often close to

observed while the Jordan et al. method underestimated fresh snow

density for both events.

The comparison of calculated and observed fresh snow density

for all snowfall events from 2005 to 2017 is shown in Figure 7. The

coefficients of determination (r2) between observed and calculated

fresh snow density were lower than 0.4 in both instances. The RMSE

of the Hedstrom-Pomeroy equation calculated fresh snow density to

be 15 kg/m3, while the RMSE of the Jordan et al. equation was

slightly higher (22 kg/m3). There was a slight underestimation trend

for both the Jordan et al. and Hedstrom-Pomeroy methods; their MB

values were −0.02 and −0.08, respectively. The mean value for

observed fresh snow density at the UC site was 84 kg/m3, which is

slightly higher than the average value calculated using both methods

(82 kg/m3 [Hedstrom-Pomeroy] and 77 kg/m3 [Jordan et al.]). The

lower limit of calculated fresh snow density, which is the result of low

air temperature, was approximately 68 kg/m3 and 48 kg/m3 for

Hedstrom-Pomeroy and Jordan et al., respectively. This resulted in

calculated fresh snow density values for many snowfall events being

the same or around the lower limit value. This partially contributed to

the relatively low r2 values in both methods.

The difference between observed and calculated fresh snow den-

sity plotted against snow event duration (Figure 8). For the Hedstrom-

Pomeroy method, average differences were negative when the snow-

storm duration was <12 hr. When the snowstorm duration was longer

than 12 hr, the difference became positive, increasing with longer

snow event duration, peaking at 57 kg/m3 when snow event duration

was 53 hr. With the Jordan et al. method, average difference values

were frequently positive and increasing with longer snow event dura-

tion. This indicated that fresh snow densification exists and varies

among snow events. This study, and the predictive algorithms tested,

assumed that the densification of fresh snow during snow events at

sheltered study sites is negligible; a poor assumption for most cold

regions (Goodison, Ferguson, & McKay, 1981). However, according to

the calculated and observed fresh snow density, the densification rate

was frequently less than 1 kg m−3hr−1, indicating that the assumption

of little fresh snow densification is valid at present research sites. The

densification rate is well correlated to the snow storm duration

(Figure 8). Therefore, a small densification rate was added to the cal-

culated fresh snow density for both methods for all snow storms

according to the relationship between snow storm duration and

F IGURE 3 Comparison of
observed snowpack densities at the
upper clearing (UC) and upper forest
(UC) sites in Marmot Creek Research
Basin. (a) UF density versus UC
density and a 1:1 line for comparison,
(b) box plots of the distribution and
mean of snowpack densities for UF
and UC sites

F IGURE 4 Comparison of snow depth (ds) change from upper
forest (UF) and upper clearing (UC) during each snowfall event. Black
line shows the 1:1 ratio and blue line shows indicates the best linear
regression
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densification rate (Figure 8). In all, the Hedstrom-Pomeroy equation

worked better than the Jordan et al. equation at the study sites. In

sheltered environments, fresh snow density can be effectively esti-

mated using air temperature and a small densification rate.

4.3 | Validation of interception estimation
methods

Calculated snow interception using three methods from 2016 to

2017 was validated using interception data measured by the

weighed tree at UF (Figure 9). The Snobal method showed poor

accuracy in estimating snow interception with a high RMSE

(21.4 mm) and low r2 (0.21). This may be due to the fact that Snobal

largely overestimated the fresh snow density, and hence the SWE,

at both sites as it assumes the density of fresh snow is 100 kg/m3.

The two methods that use calculated fresh snow density and

observed snow depth increase to estimate SWE change showed

greater accuracy. The RMSE of both methods are low (2.0 and

2.6 mm for Hedstrom-Pomeroy and Jordan et al., respectively). The

r2 between calculated and observed snow interception for

Hedstrom-Pomeroy method was .72, while the value for Jordan

et al. was .66. The Hedstrom-Pomeroy method worked best

amongst all methods so it was selected to estimate snow intercep-

tion at UF. This suggests that continuously measured snow depth

data are capable of quantifying snow interception.

4.4 | Snow interception assimilation

Assimilation results were evaluated using upscaled weighed tree mea-

surements and time-lapse camera photos from January to June 2016.

These two data sets were both available only during this period.

ObsMet-simulated interception magnitude and timing were often

close to observations (Figure 10). But the GEM_OL simulated snow

interception did not often agree with measurements, while three DA

experiments improved interception simulation to varying degrees

(Figure 10).

For the snowfall event shown in Figure 10a, the GEM_OL simu-

lated interception began 12 hr earlier than the observation and ended

before the observed interception began. The ObsMet simulation

slightly overestimated the magnitude and timing of snow interception

when compared to observations. All three DA experiments improved

the simulation on March 11 and simulated snow interceptions were

closer to observations than estimated by ObsMet. However, because

assimilation time is midnight, the incorrect interception in the morning

of March 10th was not removed and the interception before the mid-

night was not simulated by all three DAs.

During the event shown in Figure 10b, observations indicated

there were only a few hours of snow interception around noon of

March 25. The ObsMet simulation agreed with the observation in

interception timing but slightly underestimated the interception mag-

nitude. GEM_OL predicted that snow interception was continuous

from March 24–26 while the all three DAs did not detect interception

F IGURE 5 Time-series of Snobal-simulated and observed snowpack density in the upper clearing (top) and upper forest (bottom) in Marmot
Creek Research Basin
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at the beginning of March 25. Simulations of all DAs agreed well with

observations for the remaining detected events. However, like

GEM_OL, all three DA experiments simulated interception after the

March 24th afternoon without improvement of the simulated inter-

ception predictions for all three DA experiments on this day.

For the event shown in Figure 10c, snowfall and interception

were observed continuously. The ObsMet simulation agreed well with

observed interception timing while slightly overestimating the amount

of intercepted snow. The GEM_OL simulation did not capture the

interception from May 9–10 at all. After assimilation, all three DA

F IGURE 6 Time-series of simulated, calculated, and observed fresh snow density (a-1, b-1) and simulated and observed snow depth
accumulation (a-2, b-2) during two snow storms at upper clearing site in Marmot Creek Research Basin
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F IGURE 7 Comparison of
measured and calculated fresh snow
density using Hedstrom-Pomeroy
equation (left) and Jordan et al.,
equation (right) without fresh snow
densification at the upper clearing site
in Marmot Creek Research Basin. A
1:1 line (black) is plotted for
comparison. The regression line (blue)

is only shown to display the fitted
relationship for the regression

F IGURE 8 Comparison of snow
storm duration (hours) to the
difference between measured and

calculated fresh snow density using
two methods at the upper clearing site
in Marmot Creek Research Basin. A
1:1 line (black) is plotted for
comparison. The regression line (blue)
is only shown to display the fitted
relationship for the regression

F IGURE 9 Comparisons between snow interception estimated by three methods and weighted tree observations at upper forest site in
Marmot Creek Research Basin. A 1:1 comparison line is shown for reference. The regression line (blue) is only shown to display the fitted
relationship for the regression
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experiments added some snow to the canopy at the beginning of May

9, but the canopy snow completely ablated in the afternoon that day

due to the high simulated sublimation. At the beginning of the May

10th, DA_Tree and DA_TLC added some new snow to the canopy

and the simulated canopy snow disappeared earlier than was

observed that day. DA_SR50 did not add snow to the canopy on May

10th because this method only assimilates snow interception during a

single event without information of how long the snow stays on the

canopy.

There were two events shown in Figure 10d. Like previous snowfall

events, the ObsMet effectively simulated the timing but not the

magnitude of interception. GEM_OL simulated the first event's inter-

ception well but missed the second. DA_SR50 and DA_Tree have good

simulation results, but DA_TLC greatly overestimated interception dur-

ing the first event. Because model simulated snow interception was less

than 1 mm at the beginning of May 30th, DA_TLC adjusted the snow

interception to 3 mm according to assimilation rules. However, because

snowfall occurred after midnight, DA_TLC overestimated interception.

For the second small event, DA_Tree effectively simulated interception

but, again, DA_TLC overestimated it. The DA_SR50 simulation did not

add any snow to the canopy because the storm was small and the SR50

interception estimation method did not catch this event.

F IGURE 10 Time series of simulated snow interception from different DA experiments driven by GEM data (GEM_OL, DA_SR50, DA_Tree,
DA_TLC, unit: mm) and CRHM simulation driven by observed meteorological data (ObsMet, unit: mm), the hanging tree measured snow
interception (Tree_Interception, unit: mm), and the time-lapse camera derived canopy snow cover timing (Time-lapse, yellow dot, 0, 1, and 0.5
denote canopy snow free, canopy snow covered, and unknown, respectively)
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The unrealistic early depletion of simulated intercepted snow in

Figure 10c was largely caused by error in the forcing data. Figure 11

shows an extreme example of how such errors can jeopardize assimi-

lation results. This figure depicts a comparison of canopy snow inter-

ception in the ObsMet simulation that is forced by observed

meteorological data, to an open loop simulation forced by GEM data;

the DA_Tree simulation forced by GEM data and weighed tree mea-

surements. According to the weighed tree measurements, intercepted

snow covered the canopy continuously from January 1–17, 2017 and

the very little intercepted snow ablated until January 16th. The open

loop simulation frequently underestimated canopy snow interception

and its simulated interception was not continuous. After assimilation,

the DA_Tree simulated interception agreed well with observations

at the beginning of each day. However, the model consistently

removed the canopy snow by unloading and sublimation after the

daily assimilation time until the next assimilation. The ObsMet simula-

tion captured unloading timing well with little error in the interception

magnitude. The daily amount of released canopy snow through subli-

mation and unloading was compared with ObsMet and DA_Tree. The

error in GEM forcing data caused a constantly higher ablation rate,

mostly due to sublimation, in DA_Tree.

Figure 12 shows the results of DA experiments for the entire vali-

dation period. These results illustrate that the suspended tree mea-

surements agreed well with the time-lapse camera data with 93%

consistency and ObsMet simulation overestimated interception

duration by 4%. However, GEM_OL only agreed with the time-lapse

camera information about 57% of the time. After DA, this rate

increased to 61, 68, and 76% for DA_SR50, DA_Tree, and DA_TLC,

respectively. The improvement of DA_SR50 was small and believed to

be caused by the low assimilation frequency. The DA_TLC had the

best results indicating that assimilating the time-lapse camera snow

interception information based on simple, rule-based method can

greatly contribute to predicting interception timing. The RMSE of

GEM_OL was 0.84 mm and DA improved the accuracy by varying

amounts. DA_Tree (RMSE = 0.68 mm) achieved the best results

among all DAs and this likely contributed to its relatively high DA fre-

quency and better input data quality. The improvement in the other

two DAs was relatively small, particularly in the case of DA_TLC that

only improved accuracy by 0.06 mm. This indicated that although

DA_TLC can improve interception timing predictions, its contribution

to the simulation magnitude is small.

Although the three DA experiments that were forced using GEM

data did not achieve the same results as ObsMet simulation that was

forced using local meteorological observations, they all improved the

interception magnitude and timing in comparison to the open loop

GEM-driven simulation. This indicated that assimilating interception

information derived from automatic snow depth measurements and

time-lapse cameras into a model that is forced by numerical weather

model outputs can achieve results that are similar to those from a

model driven by comprehensive, locally observed, forcing data

F IGURE 11 Comparison of
ObsMet (observation driven), GEM_OL
(GEM driven), and DA_Tree (GEM
driven) simulated canopy interception
to weighed tree measured snow
interception (TreeInterception, unit:
mm). Stars show the accumulated daily
unloading and canopy snow
sublimation from DA_Tree and

ObsMet simulation (unit: mm)

F IGURE 12 Comparison of the
performance of different model runs
relative to interception measured by a
hanging tree and interception timing
determined by time-lapse
photography. The black bars show
RMSE for simulated interception
(mm) while the gray bars indicate
normalized timing
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(without assimilation). As comprehensive meteorological stations are

sparse in cold regions forests, this assimilation strategy can benefit

interception simulations in these areas.

5 | DISCUSSION

To improve snow interception process simulations through DA, auto-

matically measured snow depth data from a needleleaf forest and

adjacent clearings were used to quantify snow interception in the for-

est canopy. Then, intercepted snow information was assimilated into

a physically based hydrological model to better simulate snow inter-

ception. Three methods were used to calculate snow density. All were

used, along with depth observations, to quantify SWE change during

snowfall events both in a forest and a clearing using observed meteo-

rological data. The Hedstrom-Pomeroy fresh snow density equation,

using only air temperature to calculate fresh snow density, out-

performed other methods. These results agreed with Mair et al.

(2016) and Brazenec (2005). Fresh-fallen snow densification can occur

immediately after snowfall at a rate of 8–13 kg/m3�h for up to 12 h

during snow events (Goodison et al., 1981). Gray, Norum, and Dyck

(1970) also found that the densification rate of snowpack in the Cana-

dian Prairies can reach 9 kg/m3�h over the course of a blowing snow

storm. In the present research, no further densification factor was

applied to fresh-fallen snow during snowfall events but the calculated

fresh snow density agreed well with observations. Although there was

evidence of fresh snow densification when snowfall duration was lon-

ger than 12 hours, the densification rate was as low as <1 kg/m3�h.
This is much less than was found by Gray et al. (1970) and Goodison

et al. (1981). This is almost certainly due to the fact that the study

sites in the present research are located in sheltered environments

where wind has a minor influence on snow densification and where

cold conditions prevail during snowfall events.

All three DA experiments contribute to better modelling of can-

opy snow interception. Assimilation of time-lapse camera derived can-

opy snow information can greatly improve the simulation of canopy

snow coverage timing. However, because snow interception is diffi-

cult to reliably quantify, improvements to interception magnitude are

limited. Overall, the DA_Tree achieved the best results in simulating

interception among all three DA experiments. However, the continu-

ous measurement of snow interception from a weighed, suspended

tree is not normally available in cold regions forests (there is only one

other weighed tree like this in Western Canada). Where data are avail-

able, they are confined to a single point in space. Assimilating snow

interception information that was derived from continuous snow

depth measurements gave reasonable results but with one drawback;

it provides snow interception at the end of a snowfall event but not

information on canopy snow coverage duration. This method has a

lower DA frequency and no control on the snow unloading process

compares to the other two DAs.

All three methods share a constraint that originates with the

CRHM model. Because CRHM can only export and read the state file

at the beginning of each day, the highest assimilation frequency has a

24-hour return interval. This is not a significant issue for surface

snowpack assimilation (Lv, 2019), but greatly influences canopy snow

estimation. Unlike the surface snowpack that remains on the ground

from weeks to months, snow intercepted in forest canopies lasts only

from hours to tens of days. If canopy snow storage is ephemeral, then

a daily assimilation period is too infrequent to obtain useful informa-

tion (cf. Figures 10a,b,d). Therefore, higher assimilation frequencies at

sub-daily or even hourly rates are preferable for canopy intercepted

snow DA.

Due to canopy snow interception processes, DA results may not

be accurate even if reliable observations of snow interception are

available. Compared to snow on the ground, canopy intercepted snow

amounts are small and coverage is transitory, persisting for a shorter

time and making it very sensitive to meteorological conditions. In

modelling deep surface snowpacks, a minor error in the forcing data

(e.g., temperature and humidity) usually does not significantly alter

estimates. However, canopy snow interception storage is often less

than 10 mm. Thus, forcing data errors can significantly influence simu-

lation results, reducing the benefits of DA. Even in examples when

canopy snow interception was rapidly updated as in the DA_Tree

experiment (Figures 10c and 11), the canopy snow quickly unloaded

each day after assimilations. This indicates that although DA can

improve interception simulations during, or shortly after, the assimila-

tion period, this improvement would be short-lived if the model is run

using poor quality forcing data.

DA is most often employed with conceptual or operational hydro-

logical models to improve streamflow forecasts. Here it is used to

improve the simulation of a hydrological process as part of a physically

based hydrological model driven by an atmospheric model. This shows

that DA can be used to overcome uncertainty in atmospheric model

forcing data and to permit the application of process hydrology calcu-

lations in data sparse regions. This can increase the uptake and appli-

cation of process hydrology models for practical applications and

shows the potential to make greater use of snow depth observations

that are becoming available from snow stations, and airborne and

UAV-borne LiDAR observations.

6 | CONCLUSIONS

To achieve a better estimates of snow interception process magnitude

and timing, a DA approach was used in this research. Automatically

measured snow depth data from an adjacent needleleaf forest and

clearing were analyzed to quantify losses due to forest canopy snow

interception. Peak snow depth in the forest was on average approxi-

mately 46% lower than in the clearing. During snowfall events, snow

accumulation under the forest canopy was approximately 48% less

than that in the clearing. Three fresh snow density estimation

methods were tested, with results indicating that the Hedstrom-

Pomeroy equation using air temperature to calculate fresh snow den-

sity worked best. Combining measured snow depth data with calcu-

lated fresh snow density, snow interception was determined for each

snow event. Calculated snow interception using this technique agreed
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well with measurements from a weighed, suspended tree. This indi-

cated that automatically measured snow depths from adjacent forests

and clearings are suitable to estimate snow interception in the forest

canopy.

This study has attempted to assimilate snow interception infor-

mation into a hydrological process model for the first time. Calculated

snow interception from automated snow depth data, along with

suspended tree and time-lapse camera measured snow interception

data, were assimilated into the Cold Regions Hydrological Model,

driven by GEM atmospheric model outputs, using the EnKF or rule-

based direct insertion approaches. Although these simulations after

DA were not as accurate as models driven by locally observed meteo-

rology, they all improved the simulation accuracy of snow interception

amount and timing. Due to the relatively small magnitude of inter-

cepted snow in the canopy, snow interception DA is greatly

influenced by the assimilation quality of forcing data. The benefit of

assimilation does not last long if the quality of forcing data is poor.

Interception assimilation results are also heavily influenced by assimi-

lation frequency. Daily assimilation frequencies can achieve accurate

results, but sub-daily or hourly frequencies are more effective for

intercepted snow DA. Owing to sparse data availability and size of

study site, this research assimilated information at a forest stand scale.

With the development of satellite and UAV-based remote sensing,

increasing large scale snow interception estimation can become avail-

able. The addition of these measures should improve canopy snow

interception simulation and cold regions water resource management.
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