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A B S T R A C T

Unstructured triangular meshes are an efficient and effective landscape representation that are suitable for use in
distributed hydrological and land surface models. Their variable spatial resolution provides similar spatial
performance to high-resolution structured grids while using only a fraction of the number of elements. Many
existing triangulation methods either sacrifice triangle quality to introduce variable resolution or maintain well-
formed uniform meshes at the expense of variable triangle resolution. They are also generally constructed to only
fulfil topographic constraints. However, distributed hydrological and land surface models require triangles of
varying resolution to provide landscape representations that accurately represent the spatial heterogeneity of
driving meteorology, physical parameters and process operation in the simulation domain. As such, mesh
generators need to constrain the unstructured mesh to not only topography but to other important surface and
sub-surface features. This work presents novel multi-objective unstructured mesh generation software that al-
lows mesh generation to be constrained to an arbitrary number of important features while maintaining a
variable spatial resolution. Triangle quality is supported as well as a smooth gradation from small to large
triangles. Including these additional constraints results in a better representation of spatial heterogeneity than
from classic topography-only constraints.

1. Introduction

Distributed hydrological and land surface models aggregate the
surface and sub-surface into internally homogenous control volumes
(Vrugt et al., 2008). These control volumes are used to discretize the
mass and energy conservation equations or to apply point-scale models.
Correct selection of these control volumes has profound implications for
the numerical stability of the discretized equations (Berger and Colella,
1989; Hagen et al., 2000; Parrish and Hagen, 2007; Caviedes-Voullième
et al., 2012). Cold regions are characterized by seasonal snowcover and
snowfall; here, snow-landscape interactions and energy flux con-
siderations further complicate the selection of control volumes. In these
regions, landscape heterogeneity such as vegetation, slope, aspect, and
elevation are often critical controls on important processes such as
blowing snow (Pomeroy et al., 1997; Essery et al., 1999; Mott et al.,
2008), vegetation interactions (Pomeroy et al., 1998; Gelfan et al.,
2004; Ménard et al., 2014), snowmelt (Essery and Pomeroy, 2004;
Dornes et al., 2008a; Grünewald et al., 2010; Marsh et al., 2012; Debeer
and Pomeroy, 2017), and runoff dynamics (Carey and Woo, 2001).
Surface heterogeneity is also critical for land-atmosphere interactions

(Foken, 2008; Husain et al., 2016). The commonly used fixed-resolution
control volume, e.g., raster approach, often has substantial computation
burdens (Vivoni et al., 2004; Caviedes-Voullième et al., 2012), as well
as high uncertainty when applied to areas of interest for water resources
such as mountain watersheds. There is a motivation for a discretization
that balances surface heterogeneity, numerical requirements, and a
reduction in computational elements for use with hydrological and
land-surface models.

Triangular meshes represent the topography via a set of irregularly
sized, non-overlapping connected triangles (Chang, 2008). Meshes with
variable sized and shaped elements are unstructured. Areas of high spatial
variability can have a greater density of small triangles than areas that are
more homogeneous, providing a more efficient terrain representation
than the raster format (Shewchuk, 1996) by reducing computational
elements in models by up to 90% (Ivanov et al., 2004). Efficiency in-
creases of this magnitude make distributed modelling approaches more
feasible and less uncertain due to reduced parameter sets, initial condi-
tions, and wall-clock time (e.g., Ivanov et al., 2004; Kumar et al.,
2009a,b). Due to the widespread availability of raster data, unstructured
meshes for hydrology are typically derived from raster digital elevation
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models (DEMs). Because these meshes act as an approximation to land-
scape variability, care must be taken during creation, and constraints on
triangle shape, size, and error to the underlying raster(s) should be in-
cluded to ensure suitability for hydrological modelling (Caviedes-
Voullième et al., 2012; Bilskie and Hagen, 2013).

Two common methods for mesh creation exist: point selection and
domain constraints. There are five popular selection algorithms:
Heuristic, Hierarchy, Skeleton, and Filter (also known as Very
Important Points, VIP) (Lee, 1991; El-Shimy et al., 2005; Chang, 2008),
and ArcGIS tools. These share the trait that possible stopping criteria be
either a pre-set number of points to be selected or pre-set differences in
elevation between the selected point and neighbouring raster cells (Lee,
1991). Importantly, these methods make no guarantees concerning
triangle quality. Therefore, long skinny triangles can be created with
poor gradations from small to large triangles. These triangles are gen-
erally unsuitable for use as a discretization mesh in numerical appli-
cations. An example of poor point selection is shown in Fig. 1, where
the selected points (green dots) duplicate the structured mesh corners,
doubling the number of elements (black lines are triangle edges). In
areas of generally flat topography, such as plains or broad valley bot-
toms, constraining meshes only to topography fails to capture the
spatial heterogeneity of hydrologically important characteristics. Al-
ternatively, inner and outer domain boundaries such as basin delinea-
tion, streams, and lakes are defined and triangles are inserted to cover
the area defined by these boundaries. Triangular mesh generation using
this technique is generally done via constrained Delaunay triangulation
(Ruppert, 1995; Shewchuk, 2002). Strong guarantees on triangle shape
and inner angles ensures suitability for use as a discretization mesh for
numerical applications.

In this paper, a multi-objective meshing tool, Mesher, is presented.
Based on an existing, high-quality implementation of constrained
Delaunay triangulation, its novel contribution is in how triangles are
chosen for refining. Mesher uses various objective functions to measure
triangle error with the underlying primary raster as well as constraining
to non-topographic discrete and classified data (e.g., land cover, soils).
This permits variably sized triangles throughout the domain, allows for
guarantees about triangle quality and shape, and ensures that spatial
heterogeneity in secondary features is represented. Specifically, this
meshing software is optimized for use in hydrological and land surface
models that mix many point-scale and non-PDE (partial differential
equation) distributed algorithms along with PDE discretizations. Due to
this mixing of methods, meshes are generated considering only the
landscape, e.g., elevation, vegetation, and soil, and not the discretiza-

tion of physical processes such as Hagen et al. (2002) or Parrish and
Hagen (2007) who consider numerical error in the mesh generation.
This meshing tool is quantitatively tested against an existing mesh
generation method, and a surface heterogeneity measure is used to
quantify whether important landscape characteristics are well ap-
proximated.

2. Meshing algorithm

2.1. Overview

The core meshing algorithm is built upon the constrained Delaunay
meshing algorithm of J. Shewchuk (2002), as implemented in the
Computational Geometry Algorithms Library (CGAL; Rineau (2016)). In
brief, Delaunay meshes constrain triangle inner angles, edge lengths,
number of total triangles, and the gradation from small to large trian-
gles in the domain (Shewchuk, 2002). Delaunay meshes have been used
with success for a coupled representation of surface-sub-surface pro-
cesses (Qu and Duffy, 2007) and for shallow water flow equations
(Hagen et al., 2001, 2002; Kumar et al., 2009a). Due to the importance
of including sub-mesh scale vertical features (Bilskie et al., 2015) as
well representing rivers and streams, these constraint features may be
included. Boundary and inner feature constraints are defined via planar
straight-line graphs (PSLGs). The pre- and post-processing steps, as well
as the multi-objective refinement algorithm, are detailed below.

2.2. Details

Outlined in Algorithm 1, the meshing algorithm uses the extent of
the DEM to bound the meshing area. All optional secondary input
parameters (e.g., vegetation and soils) are converted to the DEM's co-
ordinate system and are clipped to the DEM's spatial extent, allowing
mismatched raster resolutions and extents in these data. The data/no-
data region of the DEM is used to generate an (optionally simplified)
outer PSLG. The z-value of the triangle vertices (vz) are assigned a value
from the DEM. However if the PSLG is simplified it may result in a
vertex laying outside the original raster extent. These invalid vertices
have their z-value interpolated from neighbour vertices. More novel
DEM to mesh interpolation techniques such as Bilskie and Hagen
(2013) could be included if required. These pre-processing steps are
done in Python. The core meshing algorithm is written in C++11. All
geospatial manipulation is done via the Geospatial Data Abstraction
Library(GDAL) (GDAL Development Team, 2016).
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Algorithm 1. High-level outline of the pre- and post-processing steps.

The Delaunay algorithm inserts triangles that fill the PSLG region.
Each candidate triangle that is generated may either be accepted or
rejected for further refinement; this is outlined at a high-level in the
IsBad function in Algorithm 2. Further refinement of a triangle may be
required if the triangle's total area is above a threshold, if it poorly
represents the underlying raster, or if it has inner angles that are below
a threshold (skinny triangles). This refinement strategy enforces a rig-
orous application of supplied tolerances. A minimum area constraint is
used to stop the meshing algorithm from over-refining a triangle. If
triangles are to be produced at a similar resolution as the input DEM, an
iterative smoothing can be applied to the input DEM to reduce stair
stepping in the output mesh.

Algorithm 2. High-level description of the rejection/acceptance
algorithm.

An example of a candidate triangle is shown in Fig. 2. Overlain on
the elevation raster (coloured; red=high, blue= low) is the in-con-
struction unstructured mesh (black lines). The triangle has been ras-
terized and the bounding box to this triangle is shown by the extent of
the black area. Cells touched by the triangle within this bounding box
are shown in grey and those untouched are shown in black. The cells in
this mask exactly correspond to cells in the underlying raster. Using a
plane interpolant defined by this triangle, in combination with the
rasterized binary triangle mask, an error metric between the underlying

raster and the triangle can be computed. Multiple error metrics were
used: Root Mean Square Error (RMSE), maximum difference, and dif-
ference in mean value. All error metrics (E) are compared to some
threshold (ε; <E ε). RMSE is given as

=
∑ −

=RMSE
z x y f x y

n
( ( , ) ( , ))i

n
o i i i i1

2

(1)

and is computed between the plane interpolant f x y( , ) and the raster
cell value z x y( , )o for n non-masked cells, i.e., the grey cells in Fig. 2,
given by normalized coordinates x y( , ). Maximum difference (herein
tolerance Tol) is given as the maximum of the set of differences between
the plane interpolant ( f x y( , )) and raster (z x y( , )o ) values for non-
masked cells. Numerically, this is given as
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Mean difference (MD) is given as:
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where z z z, ,0 1 2 are the three z-coordinates of the triangle vertices and
z x y( , )o are the n non-masked raster cells. Effectively, this computes the
difference of the mean of each triangle vertex and the mean of all the
non-masked raster cells.

A triangle may be further constrained to any arbitrary set of continuous
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or classified data. (e.g., vegetation, soils). For classified data, the dominant
feature class in this triangle is checked for exceeding a coverage threshold;
e.g., 70% of a cell is covered by a single vegetation class. For discrete
constraints, the above-described error metrics may be used.

Alternatively, a more generic weighted approach is also possible.
Each input raster constraint is assigned a weight wr such that
∑ =

=
w 1r

R
r1 , and a total weight tolerance to exceed is specified. This is a

not a completely rigorous approach; however, it allows for prioritizing
various constraints over others. This algorithm is detailed in Algorithm
3. In contrast to the rigorous tolerance checking detailed above, where
failing to meet any raster constraint results in refinement, the weighting
approach checks each raster tolerance before determining acceptance of
the triangle. The total triangle weighted quality threshold W is given as

∑=
=

W α w ,
r

R

r r
1 (4)

where wr is the raster weight for each raster r of the total set of raster
constraints R. The term αr is set as follows: =α 1r when the triangle
meets that raster constraints tolerance, and =α 0r when it does not.
This requires a certain number of constraints are met before accepting
the triangle. Small-angled triangles and triangles larger than the spe-
cific maximum area are unconditionally rejected and triangles at or
below the specified minimum area are unconditionally accepted as they
cannot be refined further.

Fig. 2. Elevation raster (colour; red= high, blue= low) overlain by in-construction unstructured mesh (black lines). Candidate rasterized triangle shown centre.
Black shows raster cells not touched by the triangle, grey for those that are. This is used in determining error between triangle and underlying raster. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 1. Example of poor mesh generation from a raster. Raster cells have been
cut in half, doubling the number of computational elements in places. Triangle
edges are in black.
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Algorithm 3. Instead of rigorously ensuring each tolerance is met, a
weighted approach is possible. This allows giving priority to various
input constraints. For this approach, a weight (wr) is specified for each
constraint raster, where ∑ =

=
α w 1r

R
r r1 . Each raster is evaluated for

fulfilling the corresponding tolerance, and success or failure is weighted
by the raster weight. A final weighted quality threshold must be
exceeded to accept the triangle.

The mesh generation outlined herein has been designed to address a
gap in mesh generation for hydrological and land-surface numerical
models that combine various types of process representation, such as
point scale, distributed, and PDE discretized equations. These models
are commonly applied to large spatial extents and to cold regions where
dominate processes change during the year. It is therefore difficult to
optimize the mesh using either error truncation analysis or a posteriori
metrics for a single process. However, a posteriori refinement such as
John (2000); Verfürth (2005) could be integrated into the triangle se-
lection/rejection routine. Inclusion of truncation error in the mesh
generation has been shown to improve results and decrease

computational burden (Parrish and Hagen, 2007). Two examples of this
algorithm (rigorous variant) in progress are shown in Figs. 3 and 4. In
Fig. 3, an idealized Gaussian hill has been meshed. Each panel shows an
iteration of the meshing algorithm, and the triangles are coloured with
the RMSE of the triangles. For the first iteration, PLGS filling triangles
are inserted. However, the error of each triangle is large, and so the
triangles are rejected and further refined. Due to the conic shape of the
hill, that lies on a flat plane, the outer triangles converge quickly. As the
meshing continues, increasingly small triangles are inserted near the
peak of the hill to capture the sharp curvature. At the final iteration, the
triangle tolerance has been met and the algorithm terminates. In Fig. 4,
a domain meshed using an elevation and vegetation constraint (ex-
panded in detail in Section 3; shown in Fig. 8) is shown at various stages
of completion. The triangle faces are coloured based upon one of: tri-
angle is ok, has failed elevation tolerance, has failed vegetation toler-
ance, or has failed both. Due to the large sizes of the initial two trian-
gles, a single vegetation class is sufficiently dominating to pass the
vegetation tolerance. However, elevation fails. As the mesh is refined,
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triangles begin to pass the elevation tolerance but now fail the vege-
tation tolerance. By iteration 869, there are triangles on the right-hand
side of the domain located in an area of patchy vegetation that still
require refinement. Because these triangles have been refined to the
minimum triangle size, they are unconditionally accepted. Although
many iterations are required, fewer and fewer triangles are refined in
each iteration, resulting in fast convergence.

After generation of the mesh, a post-processing Lloyd optimization

(Tournois et al., 2010) step can be performed that relaxes the mesh
further improve gradation from small to large triangles. This step does
negate the guarantees of the rigorous tolerance checking because tri-
angle geometry is changed. Once the final mesh has been generated, it
is saved as: a shapefile for use in a GIS, an unstructured mesh file (vtu)
for visualization in ParaView, and a JSON-based text format for use in a
model.

Fig. 3. Output from the meshing algorithm at various stages of refinement for an idealized Gaussian Hill that lies on a flat plane. The triangulation is optimizing only
on elevation RMSE. Initially three PLSG filling triangles are inserted into the domain. Due to the high RMSE, these are rejected, and small triangles are inserted into
the domain. As the meshing continues, increasingly small triangles are inserted near the peak of the hill to capture the sharp gradients. At the end, the triangle
tolerance has been met and the algorithm terminates.

Fig. 4. Output from the meshing algorithm at various stages of refinement for a vegetated hillslope (detailed in Section 3; shown in Fig. 8). The triangulation is
optimizing for elevation and vegetation cover. Initially two PLSG filling triangles are inserted into the domain. Due to the high RMSE with elevation, these are
rejected, and small triangles are inserted into the domain. As the meshing continues, increasingly small triangles are inserted along the ridge-valley interface (middle
of domain). The upper plateau (left hand side) is relatively flat with homogenous vegetation and therefore converges early. At the end, the triangles on the right-hand
side plateau (location of patchy vegetation) require further refinement. However, these triangles have been refined to the minimum triangle size – they are therefore
unconditionally accepted.
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2.3. Hydrology considerations

Shape files that describe important features, e.g. rivers and roads,
can be used to constrain the triangulation. An example is shown in
Fig. 5 where a flat plane has been constrained to an a priori determined
stream network. Fig. 6 demonstrates using flow accumulation (D8
(O'Callaghan and Marks, 1984)), calculated using the RichDEM
(Barnes, 2017) tool, to constrain input. Triangles are coloured using the
log10 of the flow accumulation where high flow accumulations such as
streams occur, and low flow accumulations are shown in blue. The main
stream network is visible. Smaller triangles are present along these flow
paths with a gradation towards larger triangles on the uplands.

3. Methodology

3.1. Spatial domain

3.1.1. Wolf Creek
The 179 km2 Wolf Creek Research Basin, located in the Coast

Mountains near Whitehorse, Yukon Territory, Canada, was used to test
the meshing algorithm. It consists of three main vegetation covers:
boreal forest, shrub-tundra, and sparse tundra (Pomeroy et al., 2006).
Elevation ranges from 654m to 2080 m. A 1m×1m resolution LiDAR
derived DEM is available for this basin, with 3.6× 108 data cells. This
is shown in Fig. 7. Vegetation classes (17 in total) are available via the
Landsat-7 derived Earth Observation for Sustainable Development of
Forests (EOSD) (Wulder and Nelson, 2003; Wulder et al., 2007)
25m×25m vegetation classification, shown in Table 1.

Fig. 5. A flat plane corresponding to the Granger creek sub-basin (section 3; Fig. 8) was constrained with an a priori stream network. A small inset shows the
constraint in blue along with the mesh in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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3.1.2. Granger Creek
A tributary stream feeding Wolf Creek is the 8 km2 Granger Creek

sub-basin (McCartney et al., 2006). A sub-area of Granger Creek, shown
as a black and white extent in Fig. 7 and expanded in Fig. 8. This do-
main is 1089m×867m (1m×1m resolution; LiDAR derived;
#cells = 944,163). Topographically, this area has two upper plateaux
divided by moderately steep slopes (approx. 50°) and a lower valley
bottom filled with tall shrubs (McCartney et al., 2006; Dornes et al.,
2008b).

3.2. Mesh quality comparison

Three meshes were generated for the sub-area of Granger Creek sub-
basin: one by ArcGIS tools and two by Mesher. The ArcGIS TIN is
constrained to tolerance=1m, and the Mesher algorithm mesh is

constrained to tolerance=1m and to an RMSE=1m.
To diagnose mesh generation for a larger extent, all of the Wolf

Creek Research Basin was used. Various combinations of tolerance and
minimum triangle area were used to determine the impact on generated
meshes. These tests used a single-objective constraint to the topo-
graphy. RMSE values were: 1 m, 2m, 5m, 10m, 25m, 50m, and 100m.
Minimum triangle areas were: 2 m2, 4m2, 100m2, 900m2, 10,000m2,
90,000m2, and 100,000m2.

3.3. Spatial heterogeneity

Because vegetation is a patchy and spatially heterogeneous com-
ponent of the surface, it provides a useful test-case for the capability of
the multi-objective constraint. The use of vegetation is only meant to
illustrate and test the meshing algorithm; in principle, any other surface

Fig. 6. A flow accumulation raster was used to conform the triangulation, in addition to elevation. Shown is the log10 of the calculated flow accumulation where high
flow accumulation (e.g., stream) is shown in red, and low flow accumulation (e.g., source area) is shown in blue. Small triangles are present along the high flow
paths, and larger triangles in the low flow accumulation areas on the uplands. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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or subsurface feature can be used.
Three approximating meshes were generated: one that did not

constrain to the vegetation and two that did. The two constrained
meshes required> 50% and>75% of a triangle to be covered by a
single vegetation class. Minimum triangle size was set to 625m2

(25m×25m equivalent) and RMSE=1m for all meshes.

To identify disjoint patches of vegetation, a connected components
labelling algorithm was used (Chang and Chen, 2003). The fractal di-
mension was calculated for each of these patches that quantifies the
complexity of planar shapes using perimeter-area scaling relationships
(McGarigal and Marks, 1994). Values vary between 1 (simple Euclidean
shapes) and 2 (more complex, non-Euclidean). For instance, snow
patches on the ground (Shook et al., 1993a; 1993b) and in forest ca-
nopies (Pomeroy and Schmidt, 1993) around the world have ≈D 1.3.
For a patch with perimeter P and area A, the fractal dimension D relates
the two as

=P kA ,D/2 (5)

where k is a scale coefficient related to the resolution of measurement.
To calculate the fractal dimensions of the meshes, the three triangular
meshes were rasterized to a 25m×25m raster, corresponding to the
original EOSD data set. Both the connected components labelling al-
gorithm and the fractal dimension calculation were computed via the R
package SDMTools (VanDerWal, 2016).

The distribution of fractal dimensions and thus the patch complexity
between the original and unstructured mesh should be similar.
Quantile-quantile (Q-Q) plots allow for visually diagnosing differences
between distributions. The two-sample Kolmogorov-Smirnov (K-S)
(Conover, 1971) test was used to statistically compare the distributions.
This is a non-parametric test that determines if two probability dis-
tributions originate in the same distribution. The null hypothesis is that
the two test distributions originate in the same distribution. Sig-
nificance was determined for <p 0.01.

Fig. 7. Wolf Creek Research Basin LiDAR derived 1m2 DEM. The sub-area of the Granger-Creek sub-basin location is shown in black and white.

Table 1
Vegetation classes as derived from EOSD (25m×25m) data for the Wolf Creek
Research Basin.

Class number Type % Area

212 Coniferous-open 12
33 Exposed/Barren land 3.0
213 Coniferous-sparse 6.7
52 Shrub low (< 2m) 50
51 Shrub tall 5.5
100 Herb (vascular, non-woody) 16
211 Coniferous-dense 2.6
221 Broadleaf-Dense 0.30
232 Mixedwood-open 0.050
32 Rock/rubble 1.5
31 Snow/ice 0.030
83 Wetland-herb 0.13
222 Broadleaf-open 0.90
20 Water 1.1
82 Wetland-shrub 0.17
81 Wetland-tree 0.030
12 Shadow 0.060
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In addition to the patch geometry, patch area should also be pre-
served. This is visually tested via Korcak's law, an empirical size-dis-
tribution for geographical objects (Imre and Novotný, 2016). These
results are shown via Korcak plots where the (normalized) number of
areas that are in exceedance excess F(a) of a threshold area A are
plotted versus the area. The patch area distributions were statistically
compared using the K-S test. Significance was determined for <p 0.01.

In summary, the per-patch complexity metric distribution and per-
patch area distribution for three unstructured meshes, each with an
increasingly strict vegetation criterion, were compared against the
distributions derived from the original vegetation raster dataset. If the
distributions are significantly different, then it can be surmised that the
unstructured mesh is not correctly capturing the heterogeneity.

3.4. Weighting

The sub-basin domain was meshed using the weighting algorithm
for two test cases. In all cases, the elevation tolerance was given as 5m,
with a minimum triangle area of 5m×5m. For the high weight case,
vegetation was given a weight of 0.8. For the low weight case, vege-
tation was given a weight of 0.2. A cut-off weight threshold of 0.8 was
used.

3.5. Performance tests

Performance tests were done on a workstation with an Intel Dual
Intel Xeon E5-2630 (six core HT, 2.6 GHz) CPU, 128 GB DDR3 ECC
RAM, and 7200 rpm mechanical harddrive, running Ubuntu 14.10. The

Fig. 8. Small valley sub-area of the Granger Creek valley. LiDAR DEM at 1m×1m resolution. Contours are every 10m (grey) and 50m (black). The domain is
approximately 1000m by 900m.
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domain used was the Wolf Creek domain. Tolerances used were 1m,
2m, 5m, 10m, 25m, 50m, and 100m. Minimum triangle areas were
2m2, 4m2, 100m2, 900m2, 10,000m2, 90,000m2, and 100,000m2.
Each tolerance-area combination was run five times, taking the
minimum wall-clock time. Wall-clock times include the entirety of the
pre- and post-processing steps. Therefore, some disk I/O performance is
implicitly measured.

4. Results

4.1. Mesh quality comparison

An unstructured mesh generated with ArcGIS (tolerance= 1m) is
shown in Fig. 9 (top). Behind the mesh (black lines), the slope is shown
in colour, with high slope in red (50°) and low slope in blue (0°). The
mesh generation has produced fewer, larger triangles on the upper
plateaus and more, smaller triangles along the hill slopes. This mesh
demonstrates the generation of poorly shaped (i.e., long and skinny)
triangles due to no constraint on minimum inner angles. There are 8346
triangles in this domain, compared to 944,163 raster cells (0.88% of the
raster cells).

The unstructured mesh generated with Mesher (tolerance=1m) is
shown in Fig. 9 (middle). Like the ArcGIS output, the plateaus have
larger triangles and the steep slopes have smaller triangles. Due to the
inner-angle constraint, there are no long skinny triangles, and there is a
smooth gradation between large and small triangles. This is especially
evident along the steep slopes. Fewer triangles were generated than
ArcGIS; 6107 (0.65% of the raster cells). The mesh generated with a 1m
RMSE threshold using Mesher is shown in Fig. 9 (bottom). There are
1424 triangles in this domain (0.15% of raster cells). Fewer small tri-
angles have been generated for the high slope areas versus the tolerance
methods.

The distributions (normalized density) of the attributes of each
mesh are shown in Fig. 10, with the top showing the RMSE (m), the
middle showing the internal triangle angles (degrees), and the bottom
showing triangle area (m2). For both tolerance methods, Mesher and
ArcGIS produce almost identical RMSE distributions. Although both the
ArcGIS and Mesher meshes were constrained to a 1m maximum tol-
erance, an over-representation of the terrain has occurred, as shown by
the low RMSE values. The tolerance of 1m resulted in a maximum
RMSE of approximately 0.5 m–0.6m. The ArcGIS mesh has many small-
angled, skinny triangles, making for sharp transitions between areas.
This is undesirable for numerical usage and leads to a 36% increase in
total number of triangles versus Mesher's tolerance mesh. The 1m
RMSE mesh resulted in an almost identical distribution of inner angles
as that of the Mesher tolerance mesh and a more uniform RMSE dis-
tribution is found.

4.2. Tolerance – minimum area relationship

The number of triangles produced for various combinations of error
(RMSE) and minimum triangle areas (m2) for the entire Wolf Creek
domain are shown in Fig. 11 (note log axes). The x-axis shows the
minimum triangle area. Various approximations to the elevation (RMSE
[m]) are shown in coloured lines. Vegetation constraints are shown in
the facets for 0%, 50% (0.5), and 75% (0.75) area constraint. The
highest-accuracy mesh is the 1m RMSE mesh and shows a rapid re-
duction in total elements as the minimum area increases. As the toler-
ances increase, there is a move towards a log-linear relationship be-
tween the number of triangles and minimum area. Because a triangle's
minimum area overrides the tolerance calculation, the large area and
high RMSEs combinations produce few triangles regardless of the tol-
erances provided. The finest mesh with 1m RMSE and 2m2 minimum
triangle area has approximately 454,000 triangles. This corresponds to
a reduction of 50% in total number of elements versus the raster. A
large spread in total number of triangles is found in the 0% vegetation

Fig. 9. Triangulations generated from a LiDAR DEM (1m×1m resolution) for
the Granger Creek sub-area. Colours represent slope where red=50° and
blue= 0°. Top) ArcGIS TIN generation tools using a 1m tolerance. Number of
triangles= 8346. Middle) Mesher mesh using a 1m tolerance. Number of tri-
angles= 6107. Bottom) Mesher mesh using a 1m RMSE threshold. Number of
triangles= 1424. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 10. Root Mean Square Error (RMSE (m)), inner triangle area (degrees), and triangle area (m2) for the meshes shown in Fig. 9.

Fig. 11. Number of triangles as a function of minimum triangle area (x-axis) and RMSE tolerance. Note log axes. The facets corresponds to a vegetation fraction
constraint of 0 (top), 0.5 (middle), and 0.75 (bottom).
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case between all RMSE values. However, as the 50% and 75% con-
straints are added, all but the 1m RMSE have almost identical numbers
of total triangles produced.

Shown in Fig. 12 are three mesh outputs for RMSE tolerances 2m,
5m, and 10m in combination with a maximum triangle area of
90,000m2 (300m×300m raster equivalent). In all cases, a higher
density of triangles is produced along the basin boundary. This is due to
the triangulation algorithm exactly representing this boundary. In
practice, this is easily mitigated by simplifying the basin boundaries.
The lower tolerances (5 m and 10m) produce fewer triangles on the
upper slopes (e.g., southern portion of basin). In all cases, the more
complex ridges are generally represented.

4.3. Multi-objective constraints

A mesh for the valley location in Wolf Creek is shown in Fig. 13 and
was constrained to topography (RMSE=1m, maximum triangle
area=225m2 [25m×25m]) and vegetation (primary vegetation
class> 50%). The vegetation is shown by the 25m×25m raster, with
coloured cells corresponding to different vegetation (hollow cells are
low shrub). It is evident that the larger vegetation locations on the
north plateau (top of domain) have had a few smaller triangles inserted
to capture the bounds even though larger triangles could have been
used due to small topographic variability. Individual cells in the
southern-western portion (bottom left) are missed owing to the 50%
constraint – increasing this allows for capturing these individual raster
cells at the cost of more triangles. In the east herb area (light blue),
large triangles fill the middle of this landcover but are sized to capture
the bounds of the patch.

Shown in Fig. 14 are the Q-Q plots of the fractal dimensions for each
of the 17 vegetation classifications, across the entirety of Wolf Creek.
The fractal dimensions are shown for three cases versus the original
dataset: an unstructured mesh constrained to vegetation and topo-
graphy for 50% constraint (red) and 75% constraint (green) and an
unstructured mesh constrained to only topography (blue). Between the
50% and 75% constrained meshes, the largest impacts are in the tails of
the distribution. The mesh constrained to only topography shows a
substantial simplification of the vegetation patches. Table 2 shows the
results from comparing the distributions of fractal dimensions of each
unstructured mesh approximation to the original raster dataset via the
K-S test. Table entries of <p 0.01 show distributions that were sig-
nificantly different. Non-significant p values are not shown. This table
shows that 11of 17 land classes did not accurately have their hetero-
geneity preserved for the topography-only mesh. There is a significant
improvement in preserving heterogeneity when using the 75% versus
50% meshes. In all cases, land classes 51 and 213 appear to be the most
difficult to represent. Land class 51 is short shrub and represents the
largest vegetation area. In many cases, it is the ‘background’ vegetation
class in which other patches are found. Therefore, all the small errors in
the approximating mesh are likely compounded for this vegetation
class, leading to the observed simplification (i.e., lower fractal dimen-
sion). Land class 213, coniferous-sparse, is highly patchy with many
small discontinuous locations, likely resulting in these patches being
missed. For both the 50% and 75% constraints, the small patches are
well represented (e.g., class 222) versus the topography-only constraint.
The unstructured mesh constrained to just topography produced 95,154
triangles, the 50% vegetation constraint produced 276,026 triangles,
and the 75% vegetation constraint produced 300,308 triangles.
Therefore, the increased vegetation constraint between 50% and 75%
does not come at a substantial increase of triangles. However, adding
the vegetation constraint roughly triples the total number of triangles
versus the topography-only constraint.

The Korcak fractional exceedance of patch areas F a( ) versus vege-
tation patch areas are shown in Fig. 15for each land cover type for each
of the unstructured mesh constraints: 50%, 75%, and no constraint. By
visual inspection, each of the tighter constraints produces an F(a)-area
relationship that more closely matches the baseline dataset. Numeri-
cally, this is validated in Table 3. Table entries of <p 0.01 show dis-
tributions that were significantly different. Non-significant p values are
not shown. This table shows that 11 of 17 vegetation classes did not
accurately have their heterogeneity preserved for the topography-only
mesh. In all cases, this analysis supports the results shown in Table 2.

4.4. Weighted constraints

A comparison between weighted constraints for vegetation are

Fig. 12. Comparison of three meshes showing impact of tolerance: 2m (top),
5 m (middle), 10m (bottom) and a minimum area of 90,000m2

(300m×300m raster equivalent).

C.B. Marsh et al. Computers and Geosciences 119 (2018) 49–67

61



shown in Fig. 16. Due to the coarse topographic tolerance and the low
vegetation weight, ensures that the meshing algorithm almost entirely
ignores the vegetation. This is compared to the high vegetation weight,
where, despite fulfilling the coarse elevation tolerance, triangles are
refined further to capture the vegetation patches.

4.5. Wall-clock performance

Wall-clock times(s) to generate the mesh for the Wolf Creek basin
are shown in Fig. 17 for each combination of RMSE values delineated
by marker symbol, minimum areas delineated by colour) and three
vegetation constraints delineated by line type. These wall-clock times
are shown as a function of total number of triangles in the final mesh.
The increase in wall-clock time is approximately linear. The inclusion of
the vegetation constraint did not require substantially more wall-clock
time. The wall-clock time for generating the finest mesh with

RMSE=1m was minimally different than the 50% and 75% vegetation
constraint wall-clock times. The average wall-clock time of the two
vegetation constraints shows that for the worst case there is a 40%
increase in computational time. This increase only appears to be present
in the highest resolution meshes. As the minimum area decreases, the
algorithm is less able to avoid calls to the tolerance calculation as well
as the secondary constraints.

5. Conclusion

The use of a variable-resolution unstructured mesh allows for fine
resolution in areas of high spatial variability and coarse resolution in
areas of low spatial variability. Many of the existing triangulation
methods either sacrifice triangle quality (e.g., VIP, Heuristic, skeleton)
to introduce this resolution variability or guarantees well-formed uni-
form meshes (e.g., constrained Delaunay triangulation) at the expense

Fig. 13. Sub-area of the Grange Creek sub-basin, constrained to topography (RMSE=1m, maximum triangle area= 225m2 [25m×25m]) and to vegetation
(dominant class > 50%). Vegetation from the EOSD raster is shown in colour. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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of variable triangle resolution.
This work introduced a triangle selection method that coupled per-

triangle error metrics, such as RMSE, with a constrained Delaunay tri-
angulation. It was shown that such a method produces well-graded,
well-formed triangles that allow for a variable spatial resolution. Using
an RMSE error metric provides a better distribution of triangle sizes and
errors compared to the maximum difference metric used in existing
tools. Compared to the widely used mesh generation in ArcGIS, the
Mesher software produced higher-quality triangles, as diagnosed by the
distribution of triangle shape and size, and did not lead to an over-
representation of the terrain due to its more robust error metric. A
single-objective method was extended to allow for constraining to an
arbitrary set of rasters. This multi-objective approach allowed for using
other hydrologically important data, such as vegetation and soil data, to
ensure the spatial heterogeneity of these data is preserved, even when
the topography is homogenous and warrants few triangles. The fractal
dimension of vegetation patch perimeter-area relationships was used as
a measure of spatial heterogeneity in a secondary hydrological variable.
By considering a secondary objective raster, the spatial heterogeneity
was better preserved than by only constraining to the topography.

Compared to a LiDAR raster, 50%–99.9% of the total number of ele-
ments can be removed while preserving the spatial heterogeneity of
topography as well as secondary landscape features due to the multi-
objective refinement approach.

Source code

The Mesher software is open source under the GPLv3 license and is
available at github. com/Chrismarsh/mesher.

Author contribution

C. Marsh: Initial idea, coding, analysis, manuscript preparation.
R. Spiteri: Idea refinement, manuscript revision.
J. Pomeroy: Idea refinement, analysis refinement, manuscript revi-

sion.
H. Wheater: Idea refinement, manuscript revision.

Fig. 14. Q-Q plots of fractal dimensions for each landcover for both unstructured mesh approximations (constrained to vegetation (50%), red; constrained to
vegetation (75%), green; only topographic constraint, blue), versus the original raster dataset. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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Fig. 15. Korcak fractional exceedance area F(a) versus area for each landcover for both unstructured mesh approximations (constrained to vegetation (50%), green;
constrained to vegetation (75%), blue; only topographic constraint, purple), versus the original raster dataset (red). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Table 2
Kolmogorov-Smirnov tests of fractal index distributions for: non-vegetation constraint, 50%, and 75% vegetation area constraint versus original vegetation raster.
Significance was determined for <p 0.01 and denotes the distributions are significantly different. Only significantly different distributions are listed. Distribution
differences implies the approximating mesh did not capture the heterogeneity and patch complexity of the vegetation patches.

Class
number

Type Veg constraint
50

Veg constraint
75

No veg
constraint

212 Coniferous-open <p 0.01
33 Exposed/Barren land <p 0.01
213 Coniferous-sparse <p 0.01 <p 0.01 <p 0.01
52 Shrub low (< 2m) <p 0.01 <p 0.01
51 Shrub tall <p 0.01 <p 0.01 <p 0.01
100 Herb (vascular, non-woody) <p 0.01 <p 0.01
211 Coniferous-dense <p 0.01 <p 0.01
221 Broadleaf-Dense
232 Mixedwood-open
32 Rock/rubble <p 0.01
31 Snow/ice
83 Wetland-herb
222 Broadleaf-open <p 0.01
20 Water
82 Wetland-shrub <p 0.01
81 Wetland-tree
12 Shadow <p 0.01
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Table 3
Kolmogorov-Smirnov tests of patch area distributions for: non-vegetation constraint, 50%, and 75% vegetation area constraint versus original vegetation raster.
Significance was determined for <p 0.01, and denotes the distributions are significantly different. Only significantly different distributions are listed. Distribution
differences imply the approximating mesh did not capture the area of the vegetation patches.

Class
number

Type Veg constraint
50

Veg constraint
75

No veg
constraint

212 Coniferous-open <p 0.01
33 Exposed/Barren land <p 0.01
213 Coniferous-sparse <p 0.01 <p 0.01 <p 0.01
52 Shrub low (< 2m) <p 0.01 <p 0.01
51 Shrub tall <p 0.01 <p 0.01 <p 0.01
100 Herb (vascular, non-woody) <p 0.01 <p 0.01
211 Coniferous-dense <p 0.01 <p 0.01
221 Broadleaf-Dense
232 Mixedwood-open
32 Rock/rubble <p 0.01
31 Snow/ice
83 Wetland-herb
222 Broadleaf-open <p 0.01
20 Water
82 Wetland-shrub <p 0.01
81 Wetland-tree
12 Shadow <p 0.01

Fig. 16. Comparison of high vegetation weight (left) and low vegetation weight (right). A coarse elevation tolerance was used. Therefore, for the low vegetation
weight, the meshing algorithm almost entirely ignores the vegetation patches. For the high vegetation weight, despite fulfilling the elevation tolerances, the mesh is
subsequently refined further to capture the vegetation boundaries.
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