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This paper presents an investigation of rainfall error models used in hydrological model calibration and
prediction. Traditional calibration methods assume input error to be negligible: an assumption which can
lead to bias in parameter estimation and compromise model predictions. In response, a growing number
of studies now specify an error model for rainfall input, usually simple in form due to both difficulties in
understanding sampling errors in rainfall, and to computational constraints during parameter estimation.
Such rainfall error models have not typically been validated against experimental evidence. In this study
we use data from a dense gauge/radar network in the Mahurangi catchment (New Zealand) to directly
evaluate the form of basic statistical rainfall error models. For this catchment, our results confirm the
suitability of a multiplicative error formulation for correcting mean catchment rainfall values during
high-rainfall periods (e.g., intensities over 1 mm/h); or for longer timesteps at any rainfall intensity
(timestep 1 day or greater). We show that the popular lognormal multiplier distribution provides a rel-
atively close approximation to the true error characteristics but does not capture the distribution tails,
especially during heavy rainfall where input errors would have important consequences for runoff pre-
diction. Our research highlights the dependency of rainfall error structure on the data timestep.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction The impact of input uncertainty on streamflow simulations can
Adequate characterization of rainfall inputs is fundamental to
success in rainfall–runoff modelling: no model, however well-
founded in physical theory or empirically justified by past perfor-
mance, can produce accurate runoff predictions if forced with
inaccurate rainfall data (e.g., Beven, 2004). The impact of rainfall
errors on predicted flow has been highlighted by many authors,
including Sun et al. (2000), Kavetski et al. (2002, 2006a), Bárdossy
and Das (2008), and Moulin et al. (2009). From a management
perspective, inaccuracies in rainfall inputs directly compromise
model predictions and hence also compromise robust decision-
making on water and risk management options. An accurate statis-
tical representation of rainfall errors has potential for real-time
bias correction and uncertainty estimation of streamflow forecasts.
Furthermore, errors in rainfall reduce our ability to identify other
sources of error and uncertainty, slowing scientific advancement
and compromizing the reliability of operational applications. This
issue is recognized as a major challenge for hydrological modelling
science (Kuczera et al., 2006).
ll rights reserved.
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be quantified by error propagation, either by using conditional
simulation or simply by stochastically perturbing the rainfall in-
puts. Conditional simulation involves generating ensemble rainfall
fields conditioned on the mean and error of spatial rainfall interpo-
lations (e.g., Clark and Slater, 2006; Gotzinger and Bardossy, 2008).
Conditional simulation methods may provide a better description
of rainfall errors (e.g., Clark and Slater, 2006), but can be data-
intensive to parameterize and computationally expensive to run.
Stochastic perturbation of rainfall inputs is therefore more com-
mon (Reichle et al., 2002; Carpenter and Georgakakos, 2004; Crow
and van Loon, 2006; Pauwels and de Lannoy, 2006; Komma et al.,
2008; Pan et al., 2008; Turner et al., 2008).

In the stochastic perturbation approach it is common to perturb
the model rainfall inputs based only on order of magnitude consid-
erations. For example, Reichle et al. (2002) used perturbations with
standard deviation equal to 50% of the rainfall total at each model
timestep. Given that uncertainty in hydrological simulations di-
rectly depends on adequate characterization of input error (e.g.,
Crow and van Loon, 2006; Gotzinger and Bardossy, 2008; Renard
et al., 2010), detailed analysis of the observed error of rainfall in-
puts is a critical research priority: estimating rainfall errors based
only on order of magnitude considerations can no longer be
justified.

http://dx.doi.org/10.1016/j.jhydrol.2011.01.026
mailto:h.mcmillan@niwa.co.nz
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This paper directly evaluates rainfall error models that are
commonly used in rainfall–runoff model calibration and predic-
tion. Research is based on the 50 km2 Mahurangi catchment in
Northland, New Zealand where there is detailed space–time infor-
mation on rainfall from both a dense gauge network (13 stations)
and high-resolution radar rainfall estimates. This dataset provides
a valuable opportunity to evaluate basic statistical rainfall error
models. Our main focus is on understanding uncertainties in
raingauge network measurements, since they remain the most
common source of rainfall measurements. We consider total
uncertainty, i.e., the combination of sampling (interpolation) error
together with measurement error, although sampling error would
be expected to dominate at the spatial scales in question. We also
provide a comparative analysis based on available high-resolution
radar fields, to enhance our understanding of the spatial/temporal
rainfall variability and its effects on rainfall uncertainty at both the
distributed and point scale, in space and in time. We aim to provide
practical guidance on the temporal scales at which multiplicative
error models with various distributions and parameterisations
might be appropriate. Our broader objective is to contribute inde-
pendent information and guidance to ongoing work on quantifying
the impact of errors and uncertainties in rainfall on the quality of
calibrated parameters and/or on streamflow estimates (Carpenter
and Georgakakos, 2004; Bárdossy and Das, 2008; Thyer et al.,
2009; Moulin et al., 2009; Kavetski et al., 2006b; Ajami et al.,
2007; Vrugt et al., 2003b).
2. Sources of rainfall input uncertainty in hydrological models

When using raingauge data, as is currently common in hydro-
logical modelling, a major source of uncertainty arises from ‘‘sam-
pling error’’ caused by (i) inadequacies in the representation of the
precipitation field over the entire catchment by a (typically small)
set of point-scale gauges (Refsgaard et al., 2006; Villarini et al.,
2008; Moulin et al., 2009; Volkmann et al., 2010), and (ii) the
assumptions used to interpolate rain rates between these gauges.
Bras and Rodriguez-Iturbe (1976) showed the importance of
raingauge network design for estimation of areal mean rainfall.
Additional uncertainty is introduced via ‘‘measurement error’’:
the commonly used tipping bucket raingauges are subject to both
systematic and random errors, with mechanical limitations, wind
effects and evaporation losses (Molini et al., 2001; la Barbera
et al., 2002; Shedekar et al., 2009). Measurement errors are them-
selves dependent on rainfall intensity and timescale (Habib et al.,
2001; Ciach, 2003).

In contrast to the generally sparse raingauge networks, radar of-
fers the potential of providing integrated rainfall estimates over
large spatial areas. Weather radar coverage has dramatically in-
creased over the last few decades, giving access to measurements
at high spatial and temporal resolutions (Moulin et al., 2009).
Although signal treatment methods have significantly improved
(Krajewski and Smith, 2002; Chapon et al., 2008), conversion of
raw radar data into quantitative precipitation estimates still pre-
sents significant difficulties. Errors are primarily related to the
non-uniform vertical profile of reflectivity, drifts in the radar cali-
bration constant and biased reflectivity-to-rainrate (Z–R) relation-
ship (Villarini and Krajewski, 2010); these have often precluded
the use of standalone radar estimates for runoff modelling (Borga,
2002).

The field of radar meteorology offers useful insights into the
space–time error characteristics of radar precipitation estimates.
Early theoretical work related error variance to sampling interval,
sampling period, spatial averaging area and rain rate (North,
1987). At longer timescales, Steiner (1996) and Steiner et al.
(2003) used raingauge networks and radar data to estimate the ef-
fect of space and time domain, sampling frequency, and rainfall
characteristics on uncertainty of areal rainfall estimates for accu-
mulations of 1–30 days. Errors in spatial statistics (Gebremichael
and Krajewski, 2005) and rain rates (Bell and Kundu, 2000;
Gebremichael and Krajewski, 2004) estimated using radar data
have also been investigated. A review of errors in radar rainfall
space–time averages is provided by Astin (1997). At larger scales
than those relating to rainfall radar, satellite estimates of rainfall
may be used, and bring their own set of error characteristics and
estimation methods (Hossain and Anagnostou, 2005a,b; Hossain
and Huffman, 2008).

It is increasingly recognized that uncertainty in rainfall has a
critical effect on the accuracy of hydrological model predictions,
and that efforts to advance scientific understanding through using
streamflow data to evaluate hydrological model parameters and
structural hypotheses are hampered by errors and incorrect
assumptions regarding the quality of the rainfall used to drive
the hydrological model. In the recent study of Reichert and Mieleit-
ner (2009), allowing time dependency in rainfall bias improved
model performance more than inclusion of any other time depen-
dent parameter, while in the studies of Wagener et al. (2007) and
Yatheendradas et al. (2008), depth biases in rainfall estimates al-
most completely dominated the errors in runoff predictions. Kavet-
ski et al. (2006a) note that despite advances in data collection and
model construction, the high spatial and temporal variability of
precipitation make it probable that rainfall input uncertainty will
remain considerable in the foreseeable future.
3. Error models for rainfall measurements

All methods used to calibrate hydrological models are based on
hypotheses and assumptions, either explicit or implicit, describing
how errors arise and propagate through a hydrological system
(Kavetski et al., 2002). In traditional calibration, such as standard
least squares (SLS) and equivalent methods based on the Nash–
Sutcliffe optimization, input error is assumed negligible and the
model and response errors are represented as an additive random
process (Kavetski et al., 2002; Kuczera et al., 2006). In the last two
decades, increasing research effort has been devoted to moving to-
wards more robust, integrated frameworks for separating and
treating all sources of uncertainty (Liu and Gupta, 2007).

Beven and Binley (1992) introduced the generalized likelihood
uncertainty estimation (GLUE) methodology for model calibration
which assumes that the total uncertainty in the streamflow predic-
tions can be characterized using solely model parameter uncer-
tainty. However, uncertainties associated with input data and
output data (i.e., data errors) are not explicitly considered. Thie-
mann et al. (2001) introduced the Bayesian recursive parameter
estimation (BaRE) methodology that poses the parameter estima-
tion problem within the context of a formal Bayesian framework.
BaRE explicitly considers the uncertainties associated with mod-
el-parameter selection and output measurements, but input data
uncertainty and model structural uncertainty are not specifically
separated out and are only implicitly considered, by expanding
the predictive uncertainty bounds in a somewhat subjective man-
ner (Liu and Gupta, 2007). A variety of other frameworks that have
moved the science forward in recent years include the Shuffled
Complex Evolution Metropolis algorithm (SCEM) and extensions
(Vrugt et al., 2003a,b), the DYNamic Identifiability Analysis frame-
work (DYNIA) (Wagener et al., 2003), the maximum likelihood
Bayesian averaging method (MLBMA) (Neuman, 2003), the dual
state-parameter estimation methods (Moradkhani et al., 2005a,b),
and the Simultaneous Optimization and Data assimilation algo-
rithm (SODA) (Vrugt et al., 2005). However, these methods do not
address all three critical aspects of uncertainty analysis (input error,
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structural error and output error) in a comprehensive, explicit and
cohesive way (Liu and Gupta, 2007).

Despite the challenges in dealing with multiple sources of
uncertainty, several important developments have taken place in
the last decade. In particular, Kavetski et al. (2002, 2006a,b) intro-
duced the Bayesian Total Error Analysis (BATEA) methodology,
which explicitly characterizes input and output data uncertainty,
and supports a stochastic description of structural errors (Kuczera
et al., 2006), within a Bayesian framework. BATEA allows the mod-
eller to specify error models for all sources of uncertainty and inte-
grates these models into the posterior inference of model
parameters and predictions. Similarly, Ajami et al. (2007) intro-
duced the Integrated Bayesian Uncertainty Estimator (IBUNE),
which combines a probabilistic parameter estimator algorithm
and Bayesian model combination techniques to provide an inte-
grated assessment of uncertainty propagation within a system. If
successful, characterizing and separating individual sources of er-
ror would represent a significant advance in environmental uncer-
tainty analysis.

In current applications of BATEA and IBUNE, input errors have
been assumed to be multiplicative and independent: while both
frameworks are model-independent, there has to date been little
discussion of appropriate rainfall error models when using rainga-
uge data to calibrate a hydrological model and subsequently use
the model for forecasting. Other error models, such as additive
Gaussian errors, have also been used (e.g., Huard and Mailhot,
2006). Radar rainfall applications traditionally assume additive
Gaussian error where the variance depends (usually proportion-
ally) on rainfall rate (Villarini and Krajewski, 2010). This results
in an analogous distribution to the lognormal multiplicative error
assumption often used in rainfall uncertainty studies within the
hydrological community (e.g., Kavetski et al., 2006a; Renard et
al., 2010); although with different skew characteristics.

Given the difficulties in understanding sampling errors in rain-
fall, almost all rainfall error models used in hydrology to date are
highly conceptualized, e.g., hypothesizing multiplicative errors.
More recent applications have begun to test some of the common
assumptions, e.g., the data-driven sampling error model of Villarini
and Krajewski (2008). In particular, Moulin et al. (2009) explore
rainfall error model structure in detail, developing and calibrating
an error model for hourly precipitation rates combining geostatis-
tical tools based on kriging and an autoregressive model to account
for temporal dependence of errors. Models with additional com-
plexity to enable representation of spatial and temporal error char-
acteristics will be necessary where multiple rainfall inputs are
needed (for applications where high rainfall resolution is required
or for large catchments; we return to the issue of catchment size in
the Discussion section). In cases where weather radars are used to
capture rainfall variability within a catchment, specialised error
models can be used to generate ensembles of rainfall fields (e.g.,
Germann et al., 2009; Villarini et al., 2009; AghaKouchaka et al.,
2010). Finally, in order to ensure statistical and computational
well-posedness of the inference, typical applications apply the
multiplicative assumption either to entire storm events (preserv-
ing the pattern but allowing for depth errors, Kavetski et al.,
2006b), or to individual days with high leverage on model predic-
tions (determined using sensitivity analysis, Thyer et al., 2009).

Fundamentally, progressive disaggregation of individual sources
of uncertainty requires more detailed probabilistic models describ-
ing the uncertainty in each data source, increasing the complexity
of the inference problem. Meaningful development and application
of these hypotheses necessarily require reliable quantitative a pri-
ori information. In the absence of such knowledge, unsupported
assumptions may be made, undermining the integrity of the
inference. In particular, input error is likely to interact with model
structural error, making posterior distributions of rainfall model-
dependent, as well as affecting the inference of model parameters
themselves (Beven, 2004; Kuczera et al., 2006; Balin et al., 2007;
Thyer et al., 2009). It is critical that data error models should be
developed using data analysis that is independent from the hydro-
logical model calibration, to bring genuine independent informa-
tion into the inference (Renard et al., 2010). This paper is a step in
this direction, where we test the common multiplicative rainfall er-
ror model and comment on its suitability for use at varying tempo-
ral scales of the hydrological model.
4. Site and campaign description

The Mahurangi catchment is located in the North Island of New
Zealand (Fig. 1a). The Mahurangi River drains 50 km2 of steep hills
and gently rolling lowlands; catchment elevations range from
250 m above sea level on the northern and southern boundaries,
to near sea level at Warkworth on the east coast. Approximately
half of the catchment (the central lowlands) is planted in pasture;
one quarter of the catchment is in plantation forestry; and one
quarter native forest. The catchment’s soils have developed over
Waitemata sandstones, which typically display alternating layers
of sandstone and siltstone. Most soils in the catchment are clay
loams, no more than a metre deep; clay and silt loam soils are also
present in some parts of the catchment.

The climate is generally warm and humid, with mean annual
rainfall of 1628 mm and mean annual pan evaporation of
1315 mm. Frosts are rare, and snow and ice are unknown. In late
summer (February and March), remnants of tropical cyclones occa-
sionally pass over northern New Zealand, producing intense bursts
of rain. Convective activity is significant over the summer, whereas
the majority of the winter rain comes from frontal systems. Maxi-
mum rainfall is usually in July (the middle of the austral winter),
while maximum monthly temperature and pan evaporation occur
in January or February.

The catchment was extensively instrumented during the period
1997–2001 (refer to Woods et al. (2001) for further details): data
from 29 nested stream gauges and 13 raingauges was comple-
mented by measurements of soil moisture, evaporation and tracer
experiments. We describe here only the rainfall data collection.
The location of the 13 raingauges is shown in Fig. 1b; rainfall
depths were measured every 2 min using standard 200 mm collec-
tors and 0.2 mm tipping buckets. The rainfall data was subject to
manual quality control and data from malfunctioning gauges were
removed from the analyses which follow. To augment the rainfall
observations, the Physics Department of the University of
Auckland deployed a mobile X-band radar for intensive campaigns
of 1–2 month duration. This radar was sited in the southwest cor-
ner of the catchment and resolves rainfall on a 150 m grid, every
5 s (typically aggregated to 2-min average values), for the whole
of the catchment. The rainfall radar estimates are processed and
corrected for bias: for details refer to Nicol (2001) and Nicol and
Austin (2003).
5. Analysis

Our investigation of the rainfall data available in the Mahurangi
catchment is divided into two main themes.

The first part analyses the spatial variability and uncertainty in
rainfall when considered solely as a binary (two-state) process. In
other words, what is the consistency of wet and dry periods over
the catchment? This type of analysis is a crucial check on the
assumptions underlying multiplicative rainfall error models, since
the latter cannot account for rain events with only partial catch-
ment cover that are entirely missed by a raingauge. In this paper
we focus only on the multiplicative error model used in previous



Fig. 1. (A) Mahurangi catchment location map. (B) Raingauge locations and stream network in the Mahurangi catchment.
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research on directly incorporating rainfall uncertainty into hydro-
logical calibration (e.g., Kavetski et al., 2002; Ajami et al., 2007).
However we recognise that more complex approaches are also pos-
sible, for example by considering conditional probabilities for rain-
fall in each catchment ‘pixel’, based on the measured rainfall and
modulated by spatially correlated random fields to signify the
probability of a correct measurement. This method has been dem-
onstrated in the context of both station data (Clark and Slater,
2006) and remote sensing-based rainfall fields (Hossain and
Anagnostou, 2006; Hossain, 2007; Germann et al., 2009; Villarini
et al., 2009; AghaKouchaka et al., 2010).

The second part examines the consistency of rainfall quantities
over the catchment; based both on complete rainfall records and
also for individual storm events when correct estimation of rainfall
is most crucial. This allows us to estimate the statistical distribu-
tions of rainfall multipliers and test if these could form the basis
of an adequate rainfall error model. In addition, analysis of rainfall
profiles at a given gauge during individual storm events is used to
put multipliers into the context of an event and understand inter-
actions between temporal and spatial variability within a storm.
5.1. Rainfall state

5.1.1. Raingauges
Records from the 13 raingauges in the Mahurangi catchment

are available as a complete series from 1997 to 2001. Although
some of the records are available at shorter timesteps, all are
aggregated to 15 min intervals: typical of the timestep used in a
high-resolution hydrological model and designed to be sufficiently
long to reduce the influence of random instrument/sampling errors
which might otherwise be difficult to distinguish from true spatial
variation in rainfall. The analyses are also repeated with rainfall
aggregated to 1 h measurements, in order to understand changes
in rainfall variability (and hence suitable error formulations) as a
function of the temporal data resolution.
Our initial hypothesis was that the consistency of rainfall over
the catchment is related to the severity of the storm event; i.e., that
drizzle or low intensity rainfall might be patchy across the catch-
ment but that heavy rainfall was more likely to be part of an ex-
tended weather system covering the complete catchment. A
possible exception might be convective rainfall which could pro-
duce intense but localised showers.

To test this hypothesis, rainfall at each timestep over a
4.1 year period (28/07/1997–11/09/2001) was tallied according
to mean rainfall intensity (taken over all gauges in the catch-
ment) and number of gauges recording rainfall. These results
are plotted in Fig. 2 below. The analysis shows that, using the
hourly data (Fig. 2A), where mean rainfall intensity recorded
by the gauges is greater than 1 mm/h, rainfall occurs in at least
(any) 12 of the 13 gauges at least 94% of the time. Rainfall cov-
erage values are given as equivalent number of gauges assum-
ing all are functional, however the analysis was performed
using percent coverage values to allow for gauge data removed
during quality control. For intensities 1 mm/h or greater, the
consistency of rainfall across the catchment therefore suggests
that a multiplicative error model for rainfall would be suitable
regardless of the location of the raingauge in the catchment.
Note that rainfall intensities higher than those shown in
Fig. 2 were recorded in the catchment: the plot shows only
cases where some gauges were not recording rainfall. Compar-
ing the CDF plots for 15-min data and hourly data, it can be
seen that variability in wet/dry states across the catchment be-
comes more pronounced at shorter time scales. For example, at
rainfall intensities greater than 1 mm/h, rainfall is only captured
at 12 or 13 gauges 70% of the time. The threshold for suitability
of the multiplicative error model is therefore time-scale depen-
dent. The choice of threshold is also clearly dependent on the
required level of accuracy: at intensities over 1.5 mm/h only
81% capture at 12 or more gauges is obtained, by 2 mm/h cap-
ture reaches 86% and 90% capture does not occur until intensi-
ties exceed 2.6 mm/h.
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Fig. 2. Consistency of rainfall state across raingauges for different threshold rainfall intensities, at (A) hourly and (B) 15-min timesteps.
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5.1.2. Radar
Radar data provides much more detail about the spatial varia-

tion in rainfall state (wet/dry) as it is resolved on a 150 m grid.
The availability of this extremely high-resolution (spatial and tem-
poral) radar provides an excellent and unusual opportunity to
examine consistency of rainfall across the catchment and hence
identify appropriate thresholds for multiplicative error model
use. However, radar data is only available for specific field cam-
paign periods (approximately 28 days total during the 4-year rain-
fall measurement period), and hence the data are used to provide
supplementary evidence to compare with conclusions drawn from
the raingauge data analysis. The time periods used for this investi-
gation were the five storm events captured with the radar, as fol-
lows: 7/8/98–12/8/98, 26/8/98–28/8/98, 15/9/98–18/9/98, 3/11/
99–4/11/99, 9/11/99–13/11/99. Rainfall intensities measured by
the radar were aggregated to timesteps of 15 min, 1 h and 24 h,
for comparison.

As with the raingauge data, the first analysis was intended to
investigate the consistency of rainfall estimates over the catch-
ment. Spatial consistency in the rainfall fields can be quantified
more exactly using radar data than with raingauges, expressed
here as the proportion of the catchment under rainfall. Fig. 3 below
shows simple histograms of this proportion, for the three different
timesteps of aggregation.

As before, we also quantify the relationship between mean
intensity of rainfall and consistency of rainfall, by plotting average
catchment rainfall against fraction of catchment under rainfall,
using the radar data (Fig. 4A). For comparison, the figure also
shows the raingauge data over the time periods where the radar
was operational (Fig. 4B).

The results show that, using radar data at a 15 min timestep
(Fig. 4A2), there are a significant number of periods during storm
events where rainfall is scattered over the catchment (for 35% of
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timesteps, between 10% and 90% of the catchment is under rain-
fall). As expected, at an hourly timestep (Fig. 4A1), rainfall appears
more uniform in time (42% of timesteps with less than 10% rainfall,
31% of timesteps between 10% and 90% rainfall and 27% of time-
steps with greater than 90% rainfall). Finally, at a daily timestep,
it was unusual to find significant dry areas of the catchment during
a storm day (Fig. 3).

The cumulative plots of fraction of catchment under rainfall
against intensity (Fig. 4A) shows reasonable consistency with the
corresponding results using the gauge network (Fig. 4B for re-
stricted time period and Fig. 2 for full record). The analysis using
the restricted raingauge record shows some differences, especially
at an hourly timestep when even at high rainfall thresholds there is
often one gauge not recording rain. In part these differences are
likely to be due to the small number of data points available (both
number of gauges and timesteps). However, in general, it is reas-
suring that the thresholds for the suitability of the multiplicative
error model appear similar when derived from radar vs. from
raingauge data: 1 mm/h for hourly data (Figs. 2A and 4A1) and
2–3 mm/h for 15 min data (Figs. 2B and 4B2). For a daily timestep,
an intensity criterion would not be necessary (not shown). The
similarity of the results using the gauge network and radar data
suggests that the threshold values are reliable and not an artefact
of the sampling scheme, e.g., the number and/or configuration of
raingauges.

We therefore conclude that a multiplicative error model is con-
sistent with observed rainfall spatial variability in the Mahurangi
catchment, and is suitable for use in hydrological modelling in this
location, where an appropriate minimum rainfall intensity thresh-
old is respected. On the assumption that analogous error structures
arise in other catchments, the results support the suitability of the
approach taken in current applications of the BATEA model calibra-
tion strategy (Thyer et al., 2009), where rainfall multipliers are
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applied only to days where the model is sensitive to rainfall uncer-
tainty (estimated using a priori sensitivity analysis), which gener-
ally correspond to high-rainfall days. Future studies would be
valuable to investigate the transferability of these results to other
regions characterized by different rainfall regimes, and different
catchment sizes.

5.2. Rainfall quantity

5.2.1. Distributions of rainfall totals
Where rainfall occurrence is consistent across the catchment

and hence suitable for representation by a multiplicative error
model, the distribution (type and parameters) of multipliers must
be specified. Previous studies have in general specified multipliers
as arising from a lognormal distribution with zero mean (Kavetski
et al., 2006a,b), or unknown mean (Thyer et al., 2009). The data at
Mahurangi allows us to directly test this hypothesis.

In order to calculate the error multiplier at a given timestep, the
true areal mean rainfall must be estimated. The multi-gauge sam-
ple mean is typically used as a proxy for the value. Previous
authors have investigated the uncertainty in this estimate, which
is highly dependent on the raingauge network configuration in
relationship to rainfall spatial covariance. Estimation procedures
have been developed for long-term areal means for specific net-
work configurations (Rodríguez-Iturbe and Mejía, 1974) and in
the general case (Morrissey et al., 1995); and for instantaneous
areal means in the context of use of raingauge data to calibrate
rainfall radar (Ciach and Krajewski, 1999; Villarini et al., 2008).
Where the contribution of small-scale variability and measure-
ment error is significant, the benefit of clusters of raingauges
(i.e., within a distance of a few metres) has also been emphasised
(Bradley et al., 2002; Ciach and Krajewski, 1999; Mandapaka
et al., 2009; Villarini et al., 2008; Young et al., 1999).

In this study, we used the multi-gauge sample mean to estimate
the areal mean. In the Mahurangi catchment, the dense raingauge
network (13 gauges within a 50 km2 area) makes this a reasonable
estimate, and the quasi-uniform distribution of gauges by location
and elevation within the catchment minimises the uncertainty gi-
ven the number of gauges (Morrissey et al., 1995). The consistency
in rainfall profiles between raingauges (discussed in Section 5.2;
Fig. 9) provides further evidence that the raingauge density is suf-
ficient in relation to the climatic conditions which control rainfall
variability in the catchment. However, for the purposes of calculat-
ing the error multiplier, it is the relative magnitude of uncertainty
in the estimate of the mean, in comparison to the variation of indi-
vidual gauges around the mean, that is of more importance than
the absolute uncertainty. Given the fixed sample size of 13 gauges
(or infrequently, fewer due to data points removed during quality
control), this is acknowledged as a limitation of the study which
introduces uncertainty into the estimation of rainfall multipliers.
The uncertainty is also dependent on the time scale of the analysis
and on the characteristic correlation time of the rainfall process.
The spatial uncertainty could only be reduced by using a denser
gauge network in relationship to the rainfall spatial covariance
structure; i.e., to increase the number of gauges without increasing
the ‘variance reduction factor’ described by Rodríguez-Iturbe and
Mejía (1974). However the same authors show experimentally that
the reduction in uncertainty from adding a new gauge rapidly de-
creases as the number of existing gauges increases.

For each of the 13 raingauges, and for each storm timestep (de-
fined as mean catchment rainfall greater than 0.2 mm/h and at
least six gauges recording rainfall), the corrective multiplier was
calculated in order to transform rainfall measured at the gauge into
the estimated areal mean rainfall over the 13 gauges. These distri-
butions are plotted in Fig. 5 below, for both 15 min and hourly
timesteps, along with the mean and standard deviation of the
empirical multiplier distribution, and the unbiased (zero) line for
comparison. An additional plot is shown with all distributions
overlaid for comparison.

Following the same methodology as for the raingauges, the ra-
dar data analysis was repeated using the 28 days, at both 15 min
and hourly timescales. Gauged records were approximated using
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the radar pixel closest to the gauge location, and multipliers were
calculated to transform this value to the catchment mean calcu-
lated from the complete radar data set (not just gauge locations).
Results are shown in Fig. 6A and B.

The log multiplier distributions were tested for normality using
the Lilliefors test, which is a modification of the Kolmogorov–Smir-
nov test for use where the mean and variance of the distribution to
be tested have been estimated from the data (as is common in cli-
mate applications (Steinskog et al., 2007)). The log-normality
hypothesis was rejected for all 13 sites using the raingauge data,
and for 12 of the 13 sites using the radar data (the exception being
Upper Goatley).

The distributions of the log-multipliers calculated using both
15-min data and hourly data were summarised using quantile–
quantile plots (Fig. 7). Distributions are shown for raingauge log-
multipliers, radar log-multipliers, and raingauge log-multipliers
restricted to time periods when radar was available, for compari-
son. The QQ-plots show the excess kurtosis causing rejection of
the log-normality hypothesis,(Fig. 7-1) as a lognormal distribution
does not fully capture the positive tail of the empirical multiplier
distribution. Quantile–quantile plots are also used to compare
the log multiplier distributions to the logistic distribution (Fig. 7-
2) and Laplace distribution (Fig. 7-3), which have higher excess
kurtosis values of 6/5 and 3 respectively (compared to 0 for the
Gaussian fit to log-multipliers). Using the Lilliefors test (as previ-
ously described) the quality of the fit is shown to be slightly im-
proved for the (log-)Laplace over the lognormal and (log-)logistic
distributions. For example, for the raingauge data at hourly time-
scale, the Laplace is accepted at two sites out of 13 at a 5% signif-
icance level, whereas the logistic and lognormal are rejected at all
sites. The figures provide more information, showing that a
trade-off occurs between the fit of the negative and positive tails
of the distribution, as the kurtosis of the fitting distribution
increases. To improve the fit to both tails simultaneously, either
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a non-symmetric distribution or alternatives to the log transform
could be considered in future work (and judged against the likely
increase in the number of fitted parameters).

When multiplicative error models for rainfall are used in hydro-
logical modelling applications, the assumptions are typically made
that rainfall multipliers are uncorrelated in time and have an
invariant distribution (Kavetski et al., 2006a,b). Autocorrelations
of the empirical multiplier series were calculated: at an hourly
timestep the maximum autocorrelation occurs at lag 1, with a
mean value of 0.15 over all gauges, and decreases rapidly for higher
lags. At a 15-min timestep the value is increased to 0.34. Therefore
for models operating at a 15-min timestep where multipliers are
applied to consecutive timesteps, an autocorrelated error model
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Fig. 8. QQ-plot of multiplier distribution quantiles against normal distribution quantiles,
may be warranted; however for models at an hourly timestep or
where multipliers are applied only to selected heavy-rainfall time-
steps, autocorrelation would be less important. Further studies are
recommended to examine the transferability of these conclusions
to regions with different rainfall regimes and/or different catch-
ment sizes. More generally, in a method such as BATEA where indi-
vidual error models are specified for each source of uncertainty,
autocorrelation can be accounted for directly in the joint hyper-
distribution of rainfall errors. In particular, the term pð/jbxÞ in
Eq. (8) of Kavetski et al. (2006a), which to date has been used to
represent independently distributed latent variables (multipliers)
/ given hyper-parameters bx, can readily accommodate correlated
cases.
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To test for invariance in multiplier distribution, comparisons
were made amongst storm timesteps of different rainfall depth
(Fig. 8A) and according to the season during which the rain fell
(Fig. 8B). The figures show that the multiplier distribution does
not vary significantly with season, although there is slightly more
variation between gauges during the wetter seasons (winter and
spring) than in the drier seasons (summer and autumn). The depth
of rainfall does however affect the multiplier distribution: during
light rain the distribution is closer to lognormal, even though the
quality of the fit is poor; during heavy rainfall multipliers have in-
creased skew and the distribution has heavier tails with more out-
liers. Although it is not unexpected that heavy rain events show
more variation over the catchment (e.g., during convective rain),
it should be noted that this variation may cause greater uncer-
tainty in the areal mean rainfall estimated from the gauges, and
hence greater errors in the multiplier values. Despite this, the re-
sult suggests that high multiplier values are associated with heavy
rainfall and hence with true variation in rainfall processes, rather
than with noise obscuring the signal at low rainfall depths. More
generally, any identified non-stationarities in the distribution of
rainfall errors can again be accommodated in the BATEA hyper-dis-
tribution term (e.g., using covariates such as rainfall magnitude,
season, and storm type).

5.2.2. Raingauge vs. radar data
Fig. 7 permits comparisons between multipliers derived using

raingauge data (improved temporal coverage; reduced spatial cov-
erage), radar data (shorter temporal coverage, improved spatial
coverage), and restricted raingauge data (shorter temporal cover-
age, reduced spatial coverage). Consider first differences in tempo-
ral coverage between raingauge multipliers, and radar/restricted
raingauge multipliers. Reduced temporal coverage gives rise to a
more pronounced skew in the distributions, especially at 15-min
timescale. In addition, the restricted data show noticeable changes
in error distribution between gauges, unlike the full raingauge
dataset, where the errors tended to follow a more consistent shape.
Application of the two-sample Kolmogorov–Smirnov test leads us
to reject the hypothesis that raingauge multipliers from full vs. re-
stricted temporal coverage come from the same distribution in
eight out of 13 sites (hourly timestep) and 10 out of 13 sites
(15 min timestep).
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Fig. 9. Comparison of storm profiles at different rain
An important distinction is that the radar data (and hence also
the restricted raingauge data) covers predominantly storm periods,
and multiplier distributions are more skewed during large storms
(Fig. 8A). For example, if only timesteps where the raingauge read-
ing is greater than 2 mm per 15 min are considered, skewness typ-
ically triples (although this effect may be partly due to the resulting
change in sample size). The result is particularly pronounced in
atypical areas of the catchment, such as Moirs Hill, which lies in
the hills in the South-West of the catchment and consistently re-
cords higher than average rainfall in response to orographic rainfall
effects. Increased skewness during storm events must be accounted
for if rainfall multipliers are to be applied to high-rainfall days only
(as in the BATEA case study of Thyer et al., 2009), and suggests that
a skewed distribution together with careful siting of the raingauge
would be necessary to capture the multiplier distribution even in a
relatively small basin such as the Mahurangi.

Second, consider differences in spatial coverage between multi-
pliers calculated from radar vs. restricted raingauge data. Despite
visual similarity between the multiplier distributions, two-sample
Kolmogorov–Smirnov tests reject the hypothesis that these data
originate from the same distribution in 11 out of 13 sites (at hourly
timestep) and all sites (15 min timestep). It is likely that the more
complete sampling of catchment rainfall provided by the radar,
including the more inaccessible hillcountry and bush areas where
raingauges are more difficult to site, is in part responsible for these
differences. However, the susceptibility of radar data to transient
errors from sources such as changes in the rainfall field between
the measurement height and the ground, and recording the reflec-
tivity data with a limited radiometric resolution may also play a
role (e.g., Fabry et al., 1994; Nicol and Austin, 2003; Jordan et al.,
2000; Villarini and Krajewski, 2010).

It is also interesting to note the differences in the representa-
tiveness of individual gauges. For example, the Toovey Road gauge
is highly representative of the catchment mean rainfall, showing a
strongly peaked distribution with mean close to zero, while other
sites such as Falls Road are less representative for both raingauge
and radar analyses. This observation echoes previous studies into
representative areas of a catchment for given variables such as soil
moisture, designed to reduce gauging requirements (e.g., Grayson
and Western, 1998; Martinez-Fernandez and Ceballos, 2005;
Vachaud et al., 1985).
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5.2.3. Consistency in rainfall profiles
In view of the differences between raingauge and radar data,

highlighted in the previous section, further investigation was car-
ried out into the spatial and temporal variation in rainfall volumes.
In particular, this analysis may provide insights into the increased
variability in multiplier distributions in the radar data, not seen in
the raingauge totals.

Firstly, spatial variation in rainfall totals was investigated.
Hourly and 15-min rainfall profiles were extracted for all raingaug-
es, for the nine largest storms over the study period (Fig. 9A and B).

Fig. 9 shows remarkably little variation in storm profile be-
tween raingauges, with peaks generally occurring at all gauges
within a timespan of 1 h. This result may be due to an underlying
lack of variability in rainfall or may rather be caused by the aver-
aging effect of recording raingauge totals at hourly intervals, which
could hide rainfall variability at short temporal scales. One storm
where both 2 min and 15 min data are available from the radar is
investigated in more detail: Fig. 10A below shows the storm profile
at both 2 min and 15 min timesteps, for three of the raingauge
locations. In addition, the multipliers from each of those gauges
to the mean catchment rainfall are calculated, again at both
2 min and 15 min timesteps, and shown in Fig. 10B.

Secondly, the ability to capure peak rainfalls was examined. The
peaks of rainfall intensity are significantly damped (Fig. 10A; max
intensity reduced by more than 60% for some peaks) and this effect
would lead to important changes in the tails of the multiplier dis-
tributions. Multiplier distributions are therefore time-scale depen-
dent. The fluctuations caused by rain cells tracking over the
catchment occur in the 2 min data, but much of the variation is lost
in the 15 min data. The time for a typical rain cell to travel across
the Mahurangi catchment has been estimated as close to 15 min,
assuming raincell size of 1–5 km, a speed of the order of
10 m s�1 and a catchment width of 5–10 km (Woods et al.,
2001). We conclude that in this case, consistency between rainga-
uges at 15 min is due mainly to the averaging effect seen at time-
scales longer than the time taken for a raincell to traverse the
catchment. When using spatial maps of radar data to calculate
multipliers, as oppose to raingauges, more of this variation may
be captured as areas both directly under the track of the raincell,
and those on the edge of the rain area, are fully sampled.
A

Fig. 10. Comparison of (A) storm profiles and (B) log-multipliers, calculated at 2 min and
6. Discussion and conclusions

Our investigation of rainfall variability within the dense gauge/
radar network at Mahurangi has highlighted some important re-
sults for understanding rainfall uncertainty and deriving data-
based probabilistic error models for use in hydrological calibration.

Our examination of the variability of wet/dry states over the
catchment has confirmed that multiplicative error is a suitable for-
mulation for correcting mean catchment rainfall values during
high-rainfall periods (e.g., intensities over 1 mm/h); or for longer
timesteps at any rainfall intensity (timestep 1 day or greater).
We suggest that the effect of timestep on multiplier suitability is
regulated by catchment size: specifically the time required for typ-
ical raincells to cross the catchment could be used as a first esti-
mate of critical timestep.

We found that the standard distribution used for rainfall multi-
pliers, the lognormal, provides a reasonable fit to the negative tail
of the empirical multiplier distributions, but fails to capture the
greater excess kurtosis and skew in the positive tail. Therefore,
alternative distributions should be considered, especially since
the tails of the multiplier distribution represent large rainfall errors
and may significantly impact on streamflow model predictions.
The logistic and Laplace distributions, which have higher excess
kurtosis values of 6/5 and 3 respectively, were also tested.
Although these heavier-tailed distributions improve the fit to the
positive tail, an asymmetric distribution would be required to
reproduce the skew in the observed error distribution. This would
be most important during heavy rainfall events which were shown
to have notably higher skews in the multiplicative errors. It was
also found that, in the Mahurangi catchment, the error distribu-
tions do not vary significantly with season and hence a time-
invariant distribution is sufficient.

More broadly, our results suggest that more sophisticated error
models than the standard lognormal hypothesis may be justified in
hydrological model calibration, prediction and uncertainty studies
using rainfall–runoff models. Bayesian methods such as BATEA are
entirely general with respect to the error model used – they can
accommodate daily – or storm-wise multipliers (Thyer et al.,
2009), autocorrelation, and seasonality, provided these are sup-
ported by independent data analysis. In view of the interactions
B

15-min timesteps for the rainstorm of 10–11 August, 1998, for three raingauge sites.
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between the different sources of error shown quantitatively by
Renard et al. (2010), we stress that the derivation of data error
models should exploit any independent insights to the maximum
extent possible, to provide the best opportunity to improve the
predictive ability of the inferred hydrological models.

An important question to ask is how the results and conclusions
might be extended to other catchments of different sizes, climates
and rainfall patterns/consistencies. For example, in larger catch-
ments, partial storm coverage might be more common even when
rainfall event totals are considered. As previously stated, our find-
ings suggest that the general suitability of a multiplicative error
model can be assessed by comparing the dimensions of the catch-
ment area that any raingauge is expected to represent, with the
distance travelled by a typical raincell over a given timestep. The
prevailing direction of storm movement would hence also be an
important factor in this assessment.

We also considered the relationship between results from a
raingauge network vs. a high-resolution rainfall radar. The two
measurement types indicated consistent rain rate thresholds above
which a multiplicative error formulation was appropriate. There-
fore in other catchments where a similar analysis is conducted,
but high-resolution radar is not available, we suggest that the
use of a raingauge network would give reliable guidance on thresh-
old estimates. In terms of the shape of the multiplier distribution,
Kolmogorov–Smirnoff tests discriminated between the distribu-
tions derived from the raingauge network vs. radar, although QQ-
plots (Fig. 7) showed that the distributions were visually similar.
We therefore suggest that a dense raingauge network may provide
a working estimate of the multiplier distributional form, but
should not be relied upon to fully capture the shape of this
distribution.

The dense monitoring network at Mahurangi draws our atten-
tion to the time/space complexity of rainfall behaviour that cannot
be corrected by a simple multiplicative error on measured rainfall.
Intense bursts of rainfall occur at short space or time scales (refer
to the long tails of the multiplier distributions (Figs. 5 and 6) and
increased variability in multipliers at the 2 min timescale
(Fig. 10)) which would not be apparent when using catchment
average data at typical model timescales. This additional knowl-
edge has the potential not only to inform statistical models of rain-
fall uncertainty, but also to change our understanding of the
catchment processes and hence our conceptual model of the catch-
ment. A range of ‘fast-response’ processes such as infiltration ex-
cess flow, transient overland flow or macropore flow would be
under-represented in models where catchment average rainfall is
used; or cause compensatory effects in model calibration to correct
the bias. Additional mechanisms (e.g., a distribution function ap-
proach to rainfall input; see Liang et al. (1996) for an example)
would be required in a hydrological model that aims to capture
the full effects of rainfall variability.

While this study focuses on a single catchment, follow-up stud-
ies on different catchments are clearly needed to continue improv-
ing our understanding of rainfall error characteristics and their
relationship to catchment size, topography and climate. A compar-
ison of the suitability of different error models could be made in
several catchments with dense raingauge networks and/or rainfall
radar such as Walnut Gulch (Moran et al., 2008) or Sabino Canyon
in Arizona (Lyon et al., 2008); or the Brue catchment in England
(Villarini and Krajewski, 2008).
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