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Summary

The hydrography of the Canadian Prairies and adjacent northern US Great Plains is unusual
in that the landscape is flat and recently formed due to the effects of pleistocene glaciation
and a semi-arid climate since holocene deglaciation. Therefore, there has not been sufficient
energy, time, or runoff water to carve typical dendritic surface water drainage networks in many
locations. In these regions, runoff is often detented and sometimes stored by the millions of
depressions (known locally as “potholes” or “sloughs”) that cover the landscape.

Statement of Need

Conventional hydrological models are unable to simulate the spatial distribution of ponded
water in prairie basins dominated by depressional storage. When the depressions are filled, the
detented water may overflow to another depression, through a process known as “fill and spill”
(Spence & Woo, 2003). Therefore, the fraction of a depression-dominated prairie basin that
contributes flow to the outlet changes dynamically with the state of water storage within the
basin. The WDPM simulates the spatial distribution of ponded water, as it is added, removed
or drained, and can be used to calculate the changing connected/contributing fraction of a
prairie basin.

Program Description

The WDPM distributes simulated water over a digital elevation model (DEM), which is an
array of land surface elevations. The program has three modules:

= add, which adds specified depth of water to the DEM. Addition of water can be caused
by rainfall, but in the Canadian Prairies, it is dominantly due to the melt of snow trapped
in depressions and from runoff from adjacent areas (Hayashi et al., 1998).

= subtract, which subtracts a specified depth of water from the DEM. Subtraction of
water may be caused by infiltration to the soils, but in the Canadian Prairies, it is
dominantly due to evaporation (Hayashi et al., 1998).

= drain, which drains water from the lowest point in the DEM.

WDPM does not attempt to compute the magnitudes of the additive or subtractive fluxes,
which must be established by measurement or through the use of a physically based model of
prairie hydrology such as the Cold Regions Hydrological Modelling platform (CRHM) (Pomeroy
et al., 2007).

The model output is the depth of water over each cell of the DEM. WDPM is not a hydraulic
model; it is a model of the state of the distribution of water in a landscape after the fluxes have
been redistributed. FLUXOS-OVERFLOW is a 2-D hydrodynamic model capable of modelling
overland flow rates in the prairies (Costa et al., 2020), but it is much slower than WDPM,
and it requires more parameters and more forcing data.
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The methodology of WDPM is similar to other simple water distribution models such as
the Scalable Pothole terraln analysis aLgorithm (SPILL) (Shaw et al., 2012), and FlowFill
(Callaghan & Wickert, 2019) which also apply specified fluxes of water to DEMs. Apart
from the differences in the algorithms used by these programs and that of WDPM (which is
described below), the greatest difference between WDPM and these models is that WDPM is
intended to model the state of water on a Prairie landscape, including its spatial distribution
and the connected/contributing fraction of the basin. Thus WDPM is intended to be run using
successive additions and removals of water. Although several models allow for landscapes to
be filled with water, few simulate its removal.

The WDPM also differs from simplified models such as the Pothole Cascade Model (PCM)
(Shook et al., 2021, 2013) which apply water fluxes to depressions that are modelled as
discrete storage units. Although such models are very computationally efficient, and can
reproduce the variable connected /contributing fractions of Prairie basins (Shook et al., 2013),
very similarly to WDPM, they cannot simulate the aggregation and disaggregation of water
areas, and cannot model the spatial distribution of water in a Prairie basin.

The Prairie Region Inundation MApping (PRIMA) model is similar to WDPM in that it allows
both additions and removals of water on Prairie landscape DEMs (Ahmed et al., 2020) through
iterative movement of water. PRIMA has been shown to be more efficient than WDPM version
1.0, in that it moved more water per iteration, although WDPM had reduced computational
cost per iteration (Ahmed et al., 2020). However, PRIMA does not yet use parallel processing,
so its execution time cannot be compared to that of WDPM. Furthermore, PRIMA has not
yet been compared to the newest version 2.0 of WDPM, which is more efficient than version
1.0.

All WDPM modules use the algorithm of Shapiro & Westervelt (1992) to redistribute the
simulated water. This algorithm is iterative. In each iteration, the excess water, which is the
depth of water required to be removed to make the surface flat, is computed for each DEM
cell. As shown in Figure 1, water can be distributed to a lower cell or to a higher cell with
insufficient water. In each iteration, up to one-eighth of available water can be distributed to
any of the neighbouring cells. The algorithm is repeated until the water surface is flat, which
is determined by the maximum difference between successive values of the matrix every 1000
iterations. When the maximum cell difference is within a specified tolerance or the volume of
water draining in 1000 iterations is smaller than a specified value, then the program terminates
and the water depth is written to an ArcGIS .asc (ASCII) file.

Flow

Water |

Figure 1: Schematic diagram of water flow from a DEM cell using WDPM.

The original version of WDPM was written by in Fortran (Shook & Pomeroy, 2011) and
parallelized using OpenMP. Because the program was so slow to run (taking hours or days to
converge to a solution), the code was refactored. The program was converted to C, and an
optional Python GUI was added. Because the program is typically run by end-users on desktop
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computers, it was decided to use OpenCL to parallelise the code because this framework
permits the use of CPUs and GPUs. Using OpenCL, the matrix was subdivided into 9 sets
of cells, as shown in Figure 2, where each colour represents a separate subdivision each of
which is acted upon by a separate set of threads. The matrix locations of each subdivision
are separated by 3 rows and columns. Because transfers of water are only done from cells
immediately adjacent to each cell of interest (i.e. at a distance of 1 cell), the points in each
set are independent from each other, in that their water transfers do not affect those of the
other cells in the set for a given iteration. Therefore the order of execution of the cells in each
set does not matter, and race conditions are avoided. Note that water does transfer across
the entire DEM, as is required by the algorithm, as each of the 9 sets of cells is solved.

The refactoring of the WDPM was successful in greatly reducing execution time.
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Figure 2: Schematic diagram of WDPM matrix subdivision for OpenCL. Each colour represents a
separate set of threads.

Examples

The WDPM is distributed with a sample DEM data set, which represents a small (~10 km?)
sub-basin in southeastern Saskatchewan. The sub-basin (Smith Creek sub-basin 5) is described
fully in Shook et al. (2013). The sample DEM measures 471 x 483 elements with a horizontal
resolution of 10 m and a vertical precision of less than 1 mm.

In the first step, 300 mm of water was added, using the add module, distributed evenly over
the basin. All of the water was allowed to run off the uplands, accumulating in the depressions.
Prior to the addition of water, the basin was empty. Figure 3 shows the extent of water (depths
greater than 1 mm) resulting from the WDPM simulation. The accumulation of water in the
depressions is clearly visible. Because the edge of the DEM acts like a dam, water in the
stream channel is unable to leave the basin, causing it to back up. This unrealistic behaviour
was the reason for the development of the drain module.

When the drain module was applied, the water in the stream channel was able to drain from
the lowest point in basin, located at the basin outlet at the mouth of the stream. As shown
in Figure 4, the resulting distribution of water is a more realistic representation of the state
of the basin after the cessation of runoff.

Following the addition and draining of water, 200 mm of water was removed using the subtract
module. As shown in Figure 5, the ponds are reduced in size, and many of the smaller ones
have disappeared.
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Figure 3: Plot of WDPM simulation of water (blue) and dry ground (yellow) for addition of 300 mm
of water. The region outside the basin is shown in black. Smith Creek sub-basin 5.
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Figure 4: Plot of WDPM simulation of water (blue) and dry ground (yellow) for draining following
the addition of 300 mm of water. The region outside the basin is shown in black. Smith Creek
sub-basin 5.

Shook et al., (2021). WDPM: the Wetland DEM Ponding Model. Journal of Open Source Software, 6(64), 2276. https://doi.org/10.21105/ 5
joss.02276


https://doi.org/10.21105/joss.02276
https://doi.org/10.21105/joss.02276

Figure 5: Plot of WDPM simulation of water (blue) and dry ground (yellow) for the removal of 200
mm of water following the addition of 300 mm of water and draining. The region outside the basin
is shown in black. Smith Creek sub-basin 5.

The WDPM is computationally expensive, requiring many thousands or millions of iterations
to converge to a solution, depending on the DEM size, the depth of water used, and the toler-
ance(s) of the solution. In the examples above, the addition of 300 mm of water, smoothed to
a resolution of 10 mm, required 179,000 iterations, taking 145.23 s on a system with an Intel
i7 CPU (4 cores, 8 threads) running Linux Mint 20. Draining the water to a tolerance of 0.1
mm /0.1 m> required 240,000 iterations and took 180.6 s on the same system. Removing the
water and smoothing to a tolerance of 1 mm required 1,000 iterations, which is the minimum
possible because the program tests every 1000 iterations, taking 0.85 s on the same system.

Despite the computational cost, the program’s great advantage is that it can simulate any
storage state within a complex system of prairie depressions. This capability makes it useful
for mapping the floodplains from non-riverine floods in the Canadian Prairies. The program
outputs have been verified by remote sensing of recent floods in this region, and WDPM
has been used to develop a simpler parametric model that is more easily incorporated in
hydrological models (Shook et al., 2013). The program'’s floodplain mapping capabilities have
been used by researchers (Elboshy et al., 2019; Kiss, 2018; Schellenberg, 2017 ; Thapa et al.,
2019), for operational flood hazard mapping in the Canadian Prairies by government agencies
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(Armstrong et al., 2013) and by private consultants (Venema, 2020a, 2020b). As of July 2020,
the program has been downloaded by at least 78 different users from 11 countries.

Licence

The WDPM is licensed under the GNU GPL v3.
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