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A B S T R A C T

Horizontal and altitudinal redistribution of snow by wind transport and avalanches can be important controls on
small- and large-scale snow accumulation patterns that control meltwater supply in alpine environments.
Redistribution processes control the spatial variability of snow accumulation, which not only controls meltwater
supply, but also regulates snowmelt timing, duration, and rates, as well as snow-covered area depletion and the
variable contributing area for meltwater runoff generation. However, most hydrological models and land surface
schemes do not consider snow redistribution processes, and those that do are difficult to verify without spatially
distributed snow depth measurements. These are rarely available in both high resolution and covering large
scales. As an increased number of hydrological models include snow redistribution processes there is a need for
additional snowcover metrics to verify snow redistribution schemes over large areas using readily available data.

This study develops novel high-resolution (20m), snowcover indices from remotely sensed imagery (Landsat-
8 and Sentinel-2) to evaluate snow redistribution models over alpine areas without in-situ or airborne snow
observations. A snowcover absence (SA) index, calculated from snow-free areas during the winter, identifies
areas of wind erosion or avalanche source areas. A snowcover persistence (SP) index, calculated from snow-
covered areas during the summer, identifies snow deposition in drifts and avalanche deposits.

The snowcover indices captured the relative differences in surface observations of snow presence and absence
between exposed and sheltered sites on an intensely instrumented ridge in the Canadian Rockies Hydrological
Observatory. Within the Tuolumne River Basin in central California (1100 km2), the SP index captured roughly
half of the spatial variability (R2=0.49 to 0.56) in peak SWE as estimated from airborne LiDAR-derived snow
depths. At the individual mountain ridge scale (~800m), variability in both ablation and snow redistribution
controlled the SP patterns over 7979 ridges. Differences in shortwave irradiance explained 76% of the SP var-
iance across ridges, but could not explain smaller-scale (~100m) SP peaks that are associated with snowdrifts
and avalanche deposits. The snowcover indices can be used to evaluate snow redistribution models of the finer
scale impacts of snow redistribution by wind and gravity as long as the larger scale influences of spatially
variable solar irradiance effects are also simulated.

1. Introduction

Mountain snow is a critical natural reservoir of water resources for
the world (Li et al., 2017; Meehl et al., 2007) and has significant eco-
nomic impacts (Sturm et al., 2017). Over the Canadian Rockies, alpine
terrain above treeline covers more than half of the total area and has a
significant contribution to snowpack storage and the areal albedo. As
blowing snow and avalanches dominate alpine snow redistribution,
these processes must be represented in land surface models to accu-
rately simulate surface energy and mass fluxes (Pomeroy et al., 1998).
However, observations of horizontal snow transport are rare at the
basin scale, posing a challenge for model development and evaluation.

Blowing snow observations fall into two categories: 1) direct mea-
surements of snow saltation or suspension (Aksamit and Pomeroy,
2016; Bintanja et al., 2001; Brown and Pomeroy, 1989; Gubler, 1981;
Schmidt and Jairell, 1987; Vionnet et al., 2017, 2013); and 2) indirect
measurements of snow redistributions before and after blowing snow
events (Fang and Pomeroy, 2009; MacDonald et al., 2010; Musselman
et al., 2015; Pomeroy and Gray, 1995). Although direct measurements
have been critical for understanding and developing the physics of
blowing snow models, indirect methods are required to evaluate the
impact of snow redistribution on snow hydrology over multiple scales
(Palm et al., 2011). Indirect measurements include manual snow depth
measurements across ridges (MacDonald et al., 2009), terrestrial LiDAR
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(Grünewald et al., 2010; Prokop, 2008; Schirmer et al., 2011; Schön
et al., 2015), and airborne LiDAR (Deems et al., 2006; Hopkinson and
Chasmer, 2009). The use of operational airborne LiDAR has become
more common and feasible over many basins (Painter et al., 2016),
however, it still remains expensive when deployed on airplanes or
drones and so is often limited to specialized field campaigns.

As an alternative to terrestrial based approaches, satellite based
remote sensing can provide global coverage with varying temporal and
spatial resolutions. In alpine terrain, Bernhardt et al. (2010) used 30m
snowcover from two Landsat images to evaluate a distributed blowing
snow model, finding the model's spring snowcover was too homogenous
compared with observations. Macander et al. (2015) utilized 11,645
Landsat scenes over Alaska to develop climatological snow dis-
appearance maps to characterize caribou habitat, but stopped short of
identifying snow redistribution. Déry et al. (2005) used daily fractional
snowcover from the Moderate Resolution Imaging Spectroradiometer
(MODIS) to inform snowcover depletion curves within a land surface
model in order to capture persistent snowdrifts in the Arctic. Blowing
snow events have also been identified over the gentle terrain of Ant-
arctica (Scarchilli et al., 2010) using satellite based LiDAR and MODIS.
Over complex terrain, the MODIS snowcover products at a nominal
500m resolution are too coarse to resolve snowdrifts caused by blowing
snow. Snow redistribution features such as snowdrifts normally occur at
scales from 1mm to roughly 100m (Aksamit and Pomeroy, 2016; Clark
et al., 2011; Pomeroy and Gray, 1995).

The objectives of this study are to identify mountain regions
dominated by snow redistribution, and develop snowcover indices
suitable for testing snow redistribution models over large spatial do-
mains (> 1000 km2). The approach takes advantage of multi-year and
multi-platform snowcover records by focusing on Landsat-8 and
Sentinel-2A imagery, at 30m and 20m resolutions, respectively that
can resolve many snowdrift patterns. These platforms are limited by
repeat times (16 days and 10 days, respectively) and cloud cover, but,
combined, greatly increase the chances of capturing cloud-free tem-
poral variations in snowcover patterns caused by blowing snow and
avalanches.

The study domains and data used are described in Section 2. Section
3 details the derivation of snowcover indices and spatial analysis
methods applied. Results of the evaluation of the indices and their
pattern classification are provided in Section 4. A discussion of the
applications and limitations of snowcover indices is given in Section 5
and summary conclusions in Section 6.

2. Study domains and data

2.1. Study domains and site measurements

Three study domains (Fig. 1a, e) are used for the analysis and
evaluation of derived snowcover indices. The Fortress Mountain Snow
Laboratory (hereafter Fortress) is located in the Canadian Rockies at
50.82°N, −115.21°W and ranges in elevation from 2100m to 2890m
(red area in Fig. 1e, expanded in Fig. 1b). Fortress is part of the Ca-
nadian Rockies Hydrological Observatory and includes in-situ meteor-
ological and snow measurements of an alpine environment re-
presentative of much of the eastern slopes of the Canadian Rockies.
Data was collected between 2014 and 2018 (and continuing), thus
overlapping temporally with remote observations (see Section 2.2).
Two meteorological stations used for this study are shown in Fig. 1c.
The exposed Fortress Ridgetop station (hereafter Exposed) is in a wind-
exposed environment with frequent blowing snow erosion. In contrast,
the sheltered Fortress Southface station (hereafter Sheltered) is located
70m southeast of the ridge within a cluster small trees on a south facing
slope. Sub-nival krummholz vegetation (Jones et al., 2001) results in
the frequent deposition of windblown snow and locally deep snow ac-
cumulations. At both sites, snow depths were measured with ultrasonic
sensors (SR-50) at 15-min intervals, and bi-weekly snow surveys near

both sites measured snow depth and snow water equivalent (SWE)
using an ESC-30 or Mount Rose sampler and scale following Pomeroy
and Gray (1995). Incoming shortwave was measured at a 15-min
sampling interval at the Exposed site with a Kipp & Zonen CNR4 net
radiometer.

Areal evaluation of snowcover indices was conducted in the
Tuolumne River Basin (black square in Fig. 1a, expanded in Fig. 1d)
located in the central Sierra Nevada at 37.93°N,−119.57°W, because of
the availability of multiple years of Airborne Snow Observatory (ASO)
flight data (Painter et al., 2016). Painter et al. (2016) estimated SWE
derived from LiDAR snow depth and Snobal density modeling, ag-
gregated to a 50m resolution. Data for the flights nearest to the timing
of peak SWE were obtained. Quality controlled and gap-filled short-
wave irradiance observations from the Tuolumne Meadows station
(Lundquist et al., 2016) were used to drive calculations of spatially
distributed shortwave irradiance across the domain following Dozier
and Frew (1990).

The third study domain (white area in Fig. 1a, e) encompasses a
west-east transect (hereafter Transect) across the Canadian Rockies
(51.27 to 50.74°N and −119.13 to −113.91°W) to identify regional
patterns in snow redistribution from the maritime to alpine to prairie
snow climates (Sturm et al., 1995).

2.2. Satellite data

Landsat-8 and Sentinel-2A imagery were obtained and analyzed
using the Google Earth Engine (GEE; Gorelick et al., 2017). The GEE
workflow employed consisted of data import, cloud masking, shadow
masking, forest cover masking, and normalized difference snow index
(NDSI) (Hall et al., 1995) calculation and classification. The GEE code
can be scaled globally.

For each study domain, Landsat-8 tiles and 16 Sentinel-2A tiles
(Table 1) were obtained that contained<30% cloud cover during each
satellite's operational period (March 2013 to May 2017, and June 2015
to May 2017, respectively). The availability of pixels of varied sea-
sonally (Fig. 2), due to higher cloud cover and shadowing during winter
months. Landsat-8 clouds were masked using the GEE simpleCloudScore
algorithm with a confidence value of 80%. This value was selected to
provide the best classification of clouds over our study domains, but
may not be optimal over other regions. Sentinel-2A clouds were masked
using an algorithm similar to simpleCloudScore (sentinelCloudScore),
after the quality control flags provided by the European Space Agency
were found to perform unsatisfactorily over our study domains. The
tile-average solar azimuth and solar zenith angles were used in con-
junction with the Temporal Dark Outlier Method (Housman et al.,
2015) to calculate cloud shadows for both satellites. Terrain shadow
masking was especially important during winter months when large
shadow areas occurred during overpasses. Terrain shadows were cal-
culated using the GEE hillshadow algorithm and the 30m resolution
Shuttle Radar Topography Mission (SRTM) Version 3 void-filled DEM
(Farr et al., 2007). Because SRTM only covers 56°S to 60°N, the ASTER
GDEM product at 100m spatial resolution can be used as an alternative
but with less accurate shadow estimation (not used here). Forested
areas were masked using the Hansen et al. (2013) tree cover dataset
based on Landsat data; all 30-m pixels with tree cover> 30% were
excluded from our analysis. Lakes were masked using the Pekel et al.
(2016) dataset, where pixels with 70% annual water occurrence are
discarded. Finally, the NDSI was used to classify snow pixels with NDSI
values> 0.4 and non-snow pixels with NDSI values less than or equal
to 0.4. Datasets were combined by resampling the Landsat-8 (30m) to
match the Sentinel-2A (20m) grid, using the nearest neighbor ap-
proach.

2.3. Global environmental multiscale model shortwave irradiance

Observations of incoming shortwave irradiance are sparse over the
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Transect domain, and so output from Environment and Climate Change
Canada's Global Environmental Multiscale Model (GEM) at 2.5 km re-
solution was assessed. The 00Z 48-h forecasts were archived between
November 2014 and August 2016, and combined into a continuous time
series by selecting only the 6 to 30 forecast hours. GEM shortwave ir-
radiance values were then downscaled to account for slope and shading
of terrain below the 2.5 km resolution, as described in Section 3.2.1.

3. Methods

3.1. Snowcover indices development and evaluation

3.1.1. Snowcover indices
To capture spatial patterns of snow deposition and erosion, Snow

Persistence (SP) and Snow Absence (SA) indices are proposed. SP re-
presents the normalized snowcover duration between April and August
and is calculated for each pixel as:

=P N
N

snow

total (1)

where Nsnow is the total number of snow covered days (Fig. 3a) and Ntotal

is the total number of images available (Fig. 3c). Resulting SP values
(Fig. 3e) ranged from 0 (always snow free) to 1 (always snowcovered).
Because Ntotal was not the same for all pixels due to satellite footprints
and the presence of cloud and shadows, pixels where Ntotal was<20%
of the domain maximum Ntotal were masked to remove poorly sampled
data points from the analysis. This step primarily removed pixels on
steep north-facing slopes that were subject to shadowing, which re-
presented 0.9% of the Fortress domain, 0.3% of the Transect domain,
and 0.9% of the Tuolumne domain by area.

The SP index methodology was repeated to calculate SA
(Fig. 3b,d,f), using images taken between November and March when
continuous snowcover is expected. The SA is calculated as:

=SA N
N

bare

total (2)

where Nbare is the total number of snow-free days at each pixel. SA
values ranged from 0 (always snowcovered) to 1 (always snow free).
Over the Fortress domain, SA values were mostly 0 except for the ridge
in the upper right of Fig. 3f. GEE scripts to produce snowcover indices
are provided at (https://code.earthengine.google.com/
0fc31697a8cd8a961b7c4a1929c8c5a0).

3.1.2. Point evaluation: Fortress stations
At Fortress, calculated SP and SA values were compared to mea-

sured snow depths and snowcover durations at pixels covering the
station towers and snow survey sites. Relative differences in snowcover
for the Exposed and Sheltered sites on Fortress Ridge were examined
through station data (Fig. 1c) and snow redistribution indices.

3.1.3. Distributed evaluation: Tuolumne ASO measurements
Snowcover indices calculated for Tuolumne (2013–2016) were

Fig. 1. (a) Map of study domain locations. (b) Fortress domain located in Canadian Rockies. (c) Perspective view looking south-west over Fortress Ridge. (d)
Tuolumne River Basin located in southern Sierra Nevada. e) Transect across Canadian Rockies used for regional indices analysis.

Table 1
Number of Landsat-8, Sentinel-2A tiles available and used for calculating the SP
and SA, for each domain.

Domain Landsat-8
tiles< 30%
cloud

Sentinel-2A
tiles< 30%
cloud

SP tiles
(April–August)

SA tiles
(November–March)

Fortress 77 18 61 34
Transect 300 56 220 136
Tuolumne 264 214 309 169

Fig. 2. Availability of pixels classified as snow or soil from Landsat 8 (red) and
Sentinel 2 (blue) over the Fortress study domain. Forest coverage is 41%.
Squares show coverage of individual tiles for all years of a given month. Circles
with lines show monthly means for all available years (2013–2017). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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compared to LiDAR-based SWE over the Tuolumne domain by resam-
pling SP indices (20m resolution) to the 50m SWE grid. For each water
year (2013–2016), the ASO flight nearest to peak SWE was used to
evaluate the snowcover indices' ability to capture SWE spatial varia-
bility.

3.2. Ablation vs. snow redistribution effects on snow persistence

Assuming that differences in snow duration between pixels was
primarily due to snow accumulation and not ablation (snowmelt +
sublimation) energy is fundamental to development of the SP index. To

test the hypothesis that ablation energy controls the SP spatial pattern,
SP values were compared against the primary source of ablation energy:
shortwave irradiance. The comparison was made over the full extent of
each study domain and over individual mountain ridges. Mountain
ridges are of interest because they have both the largest spatial differ-
ences in shortwave irradiance as well as high rates of snow redis-
tribution due to high winds and steep slopes.

3.2.1. Shortwave irradiance calculations
Distributed maps of incoming shortwave radiation were calculated

over the Fortress and Tuolumne domains using in-situ observations and

Fig. 3. Total number of snowcovered days between April and August (a) and snow-free days between November and March (b), at each pixel for years 2013 to 2017.
(c, d) Total number of available (not cloud, not shadow, not missing) images at each pixel, for each month range. Note different colour bar limits between SA and SP.
The normalized SP values (e) and SA values (f). Dark green pixels indicate forest, orange pixels water, and magenta pixels insufficient number of images available (i.e.
due to shadowing). Linear features at right of domain are highway-40 and local service roads. Black contours show elevation increments of 100m. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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over the Transect domain using GEM output. The Fortress Ridge station
(Exposed) was selected for the Fortress domain, as it has minimal ter-
rain shading and the radiometer dome remains snow-free due to per-
sistent high wind speeds. Similarly, the Tuolumne station was selected
because it has undergone careful quality control and in-filling following
Lapo et al. (2015). Hourly GEM irradiance values at the 2.5 km grid
were downscaled to the snowcover indices resolution (20m) using the
nearest neighbor approach. An evaluation of GEM shortwave with
measurements at the Exposed station found a bias of −35Wm−2 and a
coefficient of determination of 0.67.

Shortwave irradiance was then adjusted for each domain based on
slope and aspect using Garnier and Ohmura (1970), and terrain sha-
dows were calculated at hourly time steps following Dozier and Frew
(1990). See (https://github.com/Chrismarsh/CHM) for code used. Fi-
nally, the accumulated shortwave irradiance (MJm−2) during SP
months (April to August) of years 2014 through 2016 was calculated
and compared to SP values over each domain.

3.2.2. Ridge identification and analysis: Fortress domain
Individual ridges were identified using the highest resolution terrain

dataset available: the Canadian Digital Elevation Model (Natural
Resources Canada, 2007) at a 0.75 arc sec (≈23m) spatial resolution.

First, the second eigenvalue of the Hessian matrix was calculated to
isolate concave features. Then, Otsu (1979) global thresholding and
Zhang and Suen (1988) skeletonization was applied to produce ridges
with single pixel widths. Finally, the probabilistic Hough line detection
(Hough, 1962) was used to identify individual linear ridges> 400m in
length, resulting in 38,716 ridges identified over the Transect domain.

Elevation, shortwave irradiance, and SP pixel values were extracted
within a distance of 400m perpendicular to each side of the linear
ridge. A distance of 400m was used to capture the majority of snow-
drifts and avalanched deposits (MacDonald et al., 2010; De Scally,
1992). To identify persistent snow features parallel to ridges (see
Section 4.1), the profiles along each ridge were averaged to derive
800m profiles of elevation, shortwave irradiance, and SP. Ridges were
excluded if they had elevation profiles that, 1) had a vertical elevation
change of< 20m (removed small ridges), 2) a maximum elevation
away from the detected ridgeline (removed secondary overlapping
ridges), or 3) had> 20% of missing SP values. This resulted in a subset
of 7979 ridges.

A statistical association between profiles of shortwave irradiance to
snow persistence and the maximum snowmelt due to differences in
shortwave irradiance across the ridge was estimated using the coeffi-
cient of determination (R2). An index of potential snowmelt was

Fig. 4. SP (a) and SA (b) values using images from yeas 2013 through 2016 over the Canadian Rockies transect. Letters in (a) show locations referred to in Fig. 5.

Fig. 5. Examples of reoccurring patterns of SP values within the transect domain and high-resolution imagery. Locations shown in Fig. 4a. Black arrows indicate
discussed features. Note the example images are from different times than the SP index (March to August) to illustrate the terrain. Source: WorldView-3 DigitalGlobe.
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calculated by assuming a) an average late spring/early summer albedo
of 0.6, b) all energy goes into snowmelt, and c) snow lasts until August.
It is a maximum estimate because violation of assumptions will lead to
less snowmelt (e.g. the albedo is likely be higher, energy will also go
into internal changes and turbulent heat fluxes, and snow will dis-
appear before August). The maximum snowmelt difference across the
ridge helps to interpret whether high correlations between shortwave
irradiance and snow persistence are causative.

4. Results

4.1. Snow patterns across the Canadian Rockies Transect

SP values generally increased going east to west across the Transect
domain (Fig. 4a) because of higher snow accumulations to the west.
Regions with SP values of one indicate permanent snow or ice cover
between the months of April and August. Over glaciers defined by the
Randolph Glacier inventory (RGI Consortium, 2017), SP values aver-
aged 0.97. Because SP values go to unity over glaciers, snow redis-
tribution patterns cannot be identified on glaciers or permanent
snowfields.

During the mid-winter months, SA values (Fig. 4b) remained at or
near zero across the majority of the Rockies but started to increase
along the eastern foothills and reach maximum values over the prairies.
The increase in snow-free areas during mid-winter months along the
eastern foothills may be caused by a combination of lower snow ac-
cumulations due to scouring by wind transport of snow and higher melt
or sublimation from frequent chinook events (Golding, 1978;
MacDonald et al., 2010; Pomeroy and Li, 2000; MacDonald et al.,
2018).

An examination of SP spatial patterns in three representative areas
revealed three reoccurring patterns (Fig. 5). Over the coldest regions
and highest elevations, the ridges that surround glaciers were scoured

free from snow (low values of SP on ridges, Fig. 5a). For the majority of
non-glacial alpine areas, two patterns dominate: 1) high SP values in
gullies perpendicular to main ridges (Fig. 5b, and 2) high SP values
parallel and offset of the main ridge (Fig. 5c). Both features are influ-
enced by a combination of variable patterns of ablation rates and of
snow redistribution (blowing snow and avalanching) (Musselman et al.,
2015; Pomeroy et al., 2004; De Scally, 1992). Therefore, these ridges
are a challenging test for snow redistribution and ablation models, as
they must accurately represent each process, and their interactions, to
capture observed SP patterns. Controls on mountain ridge snowcover
are further examined in Section 4.3.2.

4.2. Evaluation of Snowcover indices

4.2.1. Fortress in-situ snow observations
In-situ snowdepth measurements were used to evaluate how

snowcover indices capture observed SP and SA patterns over Fortress
Ridge. The dominant wind direction at the ridge stations during winter
months is from the south-west, parallel to Fortress Ridge, which means
that snow drifts form in topographical features or vegetation patches
running perpendicular to the ridge. At the Exposed site (Fig. 6a), snow
depths rarely exceeded 0.25m before being wind-scoured, while at the
Sheltered (Fig. 6b) site a maximum snow depth of 1.5 m occurred in the
winter of 2015–2016. These observation agree with the remotely sensed
SP index for the 2016 spring and summer (Fig. 6c), which is greater at
the Sheltered site (SP=0.25) than the Exposed site (SP=0.07).
During mid-winter months, the SA index (Fig. 6d) at the Exposed site
(SA=0.50) was greater than that observed at the Sheltered site
(SA=0.00), which qualitatively agrees with the time series of snow
depth in Fig. 6b.

4.2.2. Tuolumne LiDAR peak SWE
LiDAR-based SWE estimates in the Tuolumne River Basin,

Fig. 6. Observed snow depths at the (a) Fortress Ridgetop (Exposed) and (b) Fortress Southface (Sheltered) stations (locations shown in Fig. 1c). Individual dots show
all snow survey measurements, while large dots show median of each survey. Snow persistence index (c) and snow absence index (d) over Fortress Ridge, with
locations of the Exposed site and Sheltered site (black dots) and survey transects (black lines). Note, the Sheltered transect is only 50m long and not visible in plot.
Black contours show elevation in 30m increments. Light green pixels indicate either forest or insufficient number of images available due to cloud or shadow. Indices
were calculated using Landsat-8 and Sentinel-2A images from November 2015 to August 2016. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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California, permitted evaluation of the role of snow redistribution in
summer snow persistence. Fig. 7(a,b) illustrate estimated SP and peak
SWE values for the 2013–2014 winter. SP values captured 59% of the
spatial variability in peak SWE (Fig. 7c), which supports the hypothesis
that snow persistence patterns are primarily controlled by the pattern of
peak SWE accumulation. Fig. 7(d,e) show an enlargement of the region
outlined in Fig. 7(a,b), which illustrates that SP values capture the lo-
cations of largest drift features in the lee of ridges (northeast). SP values
captured 46% and 59% of the basin peak SWE variability during win-
ters of 2014–2015 and 2015–2016, respectively (not shown). The
reason for the lower correlation values during the 2014–2015 winter is

not known, but may be due in part to record low snow accumulations
associated with an anomalously warm and dry winter (Margulis et al.,
2016).

4.3. Ablation vs. snow redistribution effects on snow persistence

4.3.1. Fortress and transect domain
The hypothesis that the pattern of spatially variable ablation energy

controls snow persistence patterns was tested at all three domains. SP
values showed no linear dependence with the shortwave irradiance
within the Fortress domain (R2=0.03, Fig. 8a), Transect domain

Fig. 7. Tuolumne River Basin (a) SP index for images between April and August 2014 and (b) ASO estimated SWE on April 7th, 2014. (c) Heatmap comparing (a) and
(b). 1-D histograms on top and right of (c) show frequency of ASO SWE and SP values, respectively. Zoomed in views of the red outlines in (a) and (b) are shown in (d)
and (e), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. 2-D histogram of snow persistence index versus the estimated accumulated shortwave irradiance values over the Fortress domain (a), Transect domain (b),
and Tuolumne domain (c). 1-D histograms on top and right show frequencies of shortwave irradiance and snow persistence index, respectively. SP values< 0.1 were
removed for clarity, which predominantly occurred over the prairies (see Fig. 4).
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(R2= 0.09, Fig. 8b), or Tuolumne domain (R2= 0.04, Fig. 8c). These
results suggest that differences in solar radiation (ablation) are not the
primary control on SP patterns over these alpine regions. However,
solar radiation may be locally important over mountain ridges, as ex-
amined below.

4.3.2. Mountain ridges
The average solar irradiance profile for all 7979 ridges in the

Transect domain was highly negatively correlated (R2=0.76) with the
average SP profile (Fig. 9). This value is different from the entire do-
main correlations (R2=0.03–0.09) because ridges cover roughly 40%

of the Transect domain where shortwave irradiance variability is
highest. The difference in average accumulated solar irradiance across
ridges was 36MJm−2, or an estimated 44mm of equivalent snowmelt
using assumptions in Section 3.2.2. Considering peak SWE values from
nearby snowpillow stations average 681mm, the 44mm maximum
snowmelt difference across ridges is relatively small. Therefore, al-
though solar irradiance had high correlations across the majority of
ridges, it is likely not the sole or primary cause of snow persistence
patterns.

5. Discussion

5.1. Clustering ridge profiles

To elucidate the differences in snow persistence profiles across
ridges, k-means clustering (Lloyd, 1982; Whitfield, 2017) was applied
to all across-ridge SP profiles, normalized by their mean. Normalization
removed regional differences in SP profiles but preserved variability
across ridges. Five distinct cluster types emerged from this analysis
(Fig. 10a) and correspond to the following SP profiles 1) bare peak, 2)
medium SP increase to the north, 3) large SP increase to the north, 4) no
difference, and 5) increased SP to the south. Fig. 10b–e illustrates an
example ridge for each cluster type. Bare peak ridges (10.6% of all
ridges) have equal snow persistence on either ridge face and pre-
dominately occur between glaciers or permanent snowfields. Because
shortwave irradiance and orographic precipitation effects cannot ex-
plain the snow-free peaks, this suggests that blowing snow and/or
avalanching redistributes this snow off the peak. The location of gla-
ciers and snowfields below these peaks, which are known to be fed by

Fig. 9. Mean profiles of SP, elevation, and accumulated shortwave irradiance
across all 7979 ridges within the transect domain. Ridges were oriented with
the south facing slope to the left.

Fig. 10. Rows show the five clusters of ridges grouped by their SP profiles shown in (a). SP profiles in (a) are normalized by their mean to highlight the variance in SP
across the ridge. Columns show example ridges for each cluster type, illustrating (b) high-resolution visible imagery, (c) change in elevation from ridge peak, (d) SP
index, and (e) accumulated shortwave irradiance between March and August. Black lines in (a) show mean cluster SP profiles. Red lines in (b–e) show detected ridges.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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wind-blown or avalanched snow, is consistent with this hypothesis
(Benn and Evans, 1998; Dadic et al., 2010; Gascoin et al., 2013).
Medium and large increase to the north cluster types (26.5% and 8.3%,
respectively) represent a spectrum of ridges where snow persists on the
north face. No difference clusters make up almost half (45%) of ex-
amined ridges and have no consistent pattern in SP across ridge pro-
files. Finally, the increased SP to the south cluster (9.6%) is interesting as
snow persists longer on the southern facing side, contrasting the mean
irradiance-SP relationship for all ridges (Fig. 9). An example of such a
ridge is Fisera Ridge in Marmot Creek Research Basin where snow re-
distribution from north to south facing slopes causes persistence on the
south face (DeBeer and Pomeroy, 2010; MacDonald et al., 2010;
Musselman et al., 2015).

5.2. Snow drifts and avalanche deposits in SP profiles

SP profiles that are characterized by snow redistribution were
identified within the individual ridge profiles. These signature SP pro-
files were defined as having a change in SP> 0.08 within a 120m
window (six 20m pixels). Fig. 11a shows an example ridge where two
local maxima in SP were detected (black stars). Ablation differences are
likely not the driver of these persistent SP maxima, as the correlation
coefficient (r) between SP and the solar irradiance within this window
was −0.36 for the center peak and+ 0.83 for the rightmost peak. The
center peak is located on the south-facing slope 20m from the ridgeline
and is almost certainly a snowdrift. The rightmost peak is located 360m
from the ridge peak and at the bottom of a steep slope (max 54°), which
likely indicates an avalanche deposit (Smith et al., 1994).

Fig. 11. Example ridge located in the Anstey Range in British Columbia (51.26344°, −118.706975°) with two identified SP maxima shown as black stars in the ridge
profiles (a). High-resolution visible imagery shown in (b) and SP index in (c). White indicates missing SP values due to shadowing or vegetation coverage> 30%.
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For all ridges where a SP maxima was identified (N=2219), 264
(11%) had a SP/insolation correlation<−0.75, which suggests abla-
tion is the primary control. For the remaining profiles (N=2065), 89%
had r values greater than −0.75, suggesting other processes than ab-
lation may be important. Of these, 105 had SP maxima within 100m of
the ridgeline and had slopes< 10°, and so were classified as likely
snowdrifts. Avalanche deposits (N=1441) were identified when SP
maxima were located further than 100m from the ridgeline and below
a slope> 20°. Identification of ridges where the primary control of
snow persistence is snow redistribution make ideal test cases for snow
redistribution schemes.

5.3. Limitations of snowcover indices

The snowcover indices presented here have a demonstrated utility
and link to on-the-ground conditions. However, there are a number of
limitations:

• SP values are always 1.0 over permanent snow or ice and therefore
cannot capture avalanching or snow drifts for these areas. However,
bare peaks surrounding glaciers (Fig. 11a) can be useful for evalu-
ating redistribution schemes, where snow may be redistributed by
wind and gravity to help feed glacier accumulation.

• Snowcover variability at scales less than the Sentinel-2A resolution
of approximately 20m could not be resolved, which means indices
cannot capture narrow snowdrifts or narrow avalanche deposits.
Note that the shortwave irradiance calculations are based on the
highest resolution DEM (~23m) that was widely available over the
study domains. Thus, terrain features< 20m that could have
caused shadowing were missed by this model. However, sha-
dows<20m would have caused persistent snowcover errors below
the 20m scale of remote sensing observations, and therefore should
not affect these results.

• Sparse shrubs in alpine terrain will limit snow erosion and redis-
tribution (Ménard et al., 2012) and may have influenced the SP
patterns found here. The impact of shrubs on snow persistence in-
dices could not be examined in the absence of a high-resolution
alpine vegetation dataset.

• SA values during mid-winter months were missing on north facing
slopes due to persistent shadowing at low solar altitudes. Future
work should use a distinctive snow classification method for sha-
dowed regions to expand the useable area of the SA index.

• The NDSI threshold value used here (0.4) worked well on average to
classify snow but was not always optimal for a given image. A
sensitivity test (not shown) found SP and SA patterns remained re-
latively unchanged while absolute values varied. SP values were
most sensitive on north-facing slopes surrounding shadows. SA va-
lues were most sensitive on ridge lines and narrow gaps between
forest.

• The Pekel et al. (2016) dataset used here does not include some
small water bodies, which can be misclassified as snow under the
current methodology.

• Single-year SP values could capture half of the peak SWE variability
over the Tuolumne domain; this skill is dependent on having suffi-
cient cloud-free images that year between April and snow depletion.
Multiple-year SP values were used for the rest of the study because
they include more images and highlight snowcover features that
persist between years. With the addition of other sensors (see bullet
below), variability in snowcover indices between years may provide
insights to changing controls on snowcover.

• Finally, we only used images from Landsat-8 and Sentinel-2A. The
snowcover indices can be extended to years prior to 2013 by in-
cluding historical Landsat images. Going forward, the addition of
Sentinel-2B in March 2017 increases the number of cloud free
images.

6. Summary

Snowcover indices using Landsat-8 and Sentinel-2A images were
developed and used to map snow redistribution features. The calcula-
tions were implemented in the Google Earth Engine (Gorelick et al.,
2017) for efficiency and to easily allow transferability to other moun-
tainous regions. The snowcover absence and persistence indices are
available globally and thus fill a critical gap in snow redistribution
observations over the majority of mountains terrain.

Snowcover indices were evaluated against both station measure-
ments and LiDAR-based spatial distributions of both snow depth and
SWE. Over an intensely instrumented ridge in the Canadian Rockies
(0.34 km2), the remotely sensed indices captured the relative differ-
ences in snow presence and absence between wind-exposed and vege-
tation-sheltered weather station sites. Within the Tuolumne River Bain
domain in central California (1100 km2), the snow persistence index
captured roughly half of the spatial variability (R2= 0.49 to 0.56 be-
tween years) of SWE, as derived from airborne LiDAR.

The relative controls of solar irradiance (ablation) and snow redis-
tribution by wind and gravity on persistent snowcover features re-
present a significant outcome of this research. Over the Transect do-
main (21,118 km2) in the Canadian Rockies there was no relationship
(R2= 0.09) between shortwave irradiance and the snow persistence
index. Over individual ridges (~800m) where shortwave irradiance
differences on each side of the ridge were the greatest, snow persistence
appears to be strongly related to potential ablation energy (R2= 0.76)
from shortwave irradiance. Yet the difference in energy for melt across
the ridges was shown to be relatively small compared to the estimates
of peak SWE, suggesting melt energy cannot alone be controlling snow
persistence patterns. Snow redistribution from south to north facing
slopes can contribute to snow persistence on some north facing slopes –
such a situation has been documented in the mountains of the Yukon,
Canada (Ménard et al., 2012; Pomeroy et al., 2003). Similarly, here
persistent snowcover features (~100m) were identified and classified
as either snowdrifts or avalanche deposits, based on their relative to-
pographic position of the SP maxima.

In summary, variability in both snow ablation and redistribution
influenced the snow persistence index, but at different spatial scales.
Thus, it is recommended that snowcover indices be used to evaluate
snow redistribution models as long as variable insolation effects are
also simulated. This has implications for snow hydrology modeling
schemes for mountains and suggests that ideally, these models should
deterministically estimate both the impacts of slope-based irradiance to
capture snowmelt energy variability and redistribution of snow to
capture meltwater availability, but with reference to the scale at which
these processes are most evident. Finally, the snowcover indices have
relevance to the fields of climatology, hydrochemistry, and snow
ecology as snowcover persistence and location control atmospheric
exchanges, nutrient fluxes, nival ecosystems and subsequent soil thaw
and plant growth (Jones et al., 2001; Curtis et al., 2014, Wilson et al.,
2016).
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