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a b s t r a c t 

Groundwater resources are under increasing threats from contamination and overuse, posing direct 

threats to human and environmental health. The purpose of this study is to better understand drivers 

of, and relationships between, well and aquifer characteristics, sampling frequencies, and microbiological 

contamination indicators (specifically E. coli ) as a precursor for improving knowledge and tools to assess 

aquifer vulnerability and well contamination within Ontario, Canada. 

A dataset with 795, 023 microbiological testing observations over an eight-year period (2010 to 2017) 

from 253,136 unique wells across Ontario was employed. Variables in this dataset include date and loca- 

tion of test, test results ( E. coli concentration), well characteristics (well depth, location), and hydrogeo- 

logical characteristics (bottom of well stratigraphy, specific capacity). Association rule analysis, univariate 

and bivariate analyses, regression analyses, and variable discretization techniques were utilized to identify 

relationships between E. coli concentration and the other variables in the dataset. 

These relationships can be used to identify drivers of contamination, their relative importance, and there- 

fore potential public health risks associated with the use of private wells in Ontario. Key findings are that: 

i ) bedrock wells completed in sedimentary or igneous rock are more susceptible to contamination events; 

ii ) while shallow wells pose a greater risk to consumers, deep wells are also subject to contamination 

events and pose a potentially unanticipated risk to health of well users; and, iii ) well testing practices 

are influenced by results of previous tests. Further, while there is a general correlation between months 

with the greatest testing frequencies and concentrations of E. coli occurring in samples, an offset in this 

timing is observed in recent years. Testing remains highest in July while peaks in adverse results occur 

up to three months later. The realization of these trends prompts a need to further explore the bases for 

such occurrences. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Globally, groundwater resources are in high demand for agricul- 

ural, domestic, and industrial purposes. Over 50% of the world’s 
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opulation uses groundwater as a source of drinking water, while 

5% rely solely on groundwater for all domestic use. Groundwa- 

er resources have become a casualty of these competing demands, 

esulting in an estimated 20% of aquifers being over-exploited 

 UN Water, 2015 ). Over-exploitation creates additional challenges 

eyond the loss of water supplies, including saltwater intrusion, 

oss of wetlands and springs, and land subsidence. Poor aquifer, 

aste, and wastewater management pose additional threats to 
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Fig. 1. Fate and transport mechanisms driving E. coli concentrations in private wells (i.e., contamination risk) considering a coupled-systems approach, adapted from 

( Di Pelino et al., 2019 ), where numbered text represent drivers used to develop explanatory models. 
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roundwater through contamination by chemicals, radionuclides, 

nd microorganisms. Once contaminated, remediation is particu- 

arly challenging due to large water volumes, long residence times, 

nd physical inaccessibility of aquifers ( Foster and Chilton, 2003 ). 

here groundwater is still available for use, this ongoing over- 

xploitation and contamination introduces a cause for urgency in 

anaging groundwater supplies more effectively, particularly for 

uman health. 

An estimated 22% of Canadians rely on groundwater for their 

omestic water supply ( Murphy et al., 2017 ; Rivera, 2017 ), with 

2% (~ 4.5 million) relying on privately owned and maintained 

roundwater supplies ( Murphy et al., 2016 ) that are outside gov- 

rnmental regulation and oversight. In the Great Lakes system, 

roundwater is considered the sixth great lake ( Fong et al., 

007 ); however, ongoing microbiological groundwater contamina- 

ion within the Great Lakes system ( Fong et al., 2007 ) threatens 

ublic health. The combination of heavy reliance on this ‘sixth 

reat lake’ as a drinking water source, ever-increasing contam- 

nation, and lack of government-imposed regulation for private 

ystems present significant public health challenges. Historically, 

pproximately 189 of 288 reported Canadian waterborne disease 

utbreaks occurred in privately owned wells or small drinking 

ater systems ( Schuster et al., 2005 ), this leaves approximately 

.9 million Canadians at risk due to reliance on these systems 

 Murphy et al., 2016 ). Challenges facing private and small systems 

nclude limited resources for maintenance, management, and pro- 

ection ( Rivera, 2017 ), and lack of regulation. 

Microbiological groundwater contamination events occur peri- 

dically across space and time resulting in sporadic patterns of 

cute gastrointestinal illness (AGI) caused by consumption of con- 

aminated water. These cases of AGI are difficult to track even in 

igh income countries, not only due to their sporadic nature, but 

lso significant under-reporting as individuals rarely seek medi- 

al attention ( Murphy et al., 2016 ), and difficulties in confirming 

he exposure pathway ( Schuster et al., 2005 ). As such, the num- 
2 
er of actual groundwater-related cases of AGI is generally as- 

umed to be significantly higher than reported ( Murphy et al., 

016 ). To effectively mitigate these events and reduce risk, it is 

rucial to determine how and when pathogens are entering and 

ravelling through the groundwater system. The four main factors 

mpacting the fate and transport of microbiological contaminants 

n aquifers are weather patterns, hydrogeologic conditions, pres- 

nce of a source of microbiological contamination, and well con- 

itions (location, construction, and maintenance) ( O’Dwyer et al., 

018 ). Escherichia coli ( E. coli ) is used as a standard indicator for

aecal contamination. Any contamination risk can be mitigated or 

xacerbated through human behaviours and practices, including 

ell maintenance, water quality testing, water treatment, and wa- 

er consumption patterns ( Fig. 1 ) ( Di Pelino et al., 2019 ). 

The health risks associated with dependence on drinking water 

ells, combined with the increasing potential for groundwater to 

ecome contaminated, present a risk that most private well users 

re unaware of, and unable to access information on, beyond indi- 

idual well sample results ( Di Pelino et al., 2019 ; Kreutzwiser et al., 

010 ). As such, a need exists to improve our understanding of 

roundwater susceptibility and human health risk models. 

This study uses a data-driven approach to modelling ground- 

ater fate and transport. These approaches have contributed 

o the understanding of contaminant transport in groundwater 

 Buckerfield et al., 2020 ; Knoll et al., 2019 ) and reduce compu- 

ational requirements when compared to process-based models 

 Castalletti et al., 2012 ). Data-driven approaches have been used 

uccessfully in modelling E. coli behaviour in fractured rock envi- 

onments ( Yosri et al., 2021 ), predicting groundwater nitrate con- 

entrations ( Knoll et al., 2019 ), identifying solute transport path- 

ays in fractured aquifers ( Yosri et al., 2021 ), and characteriz- 

ng uncertainty in coastal plain watershed systems ( Samadi et al., 

018 ). 

The goal of this study is to better understand drivers of, and 

elationships between, climate (seasonality), well and aquifer char- 



K. White, S. Dickson-Anderson, A. Majury et al. Water Research 197 (2021) 117089 

a

t

t

n

l

a

c

t

L

t

w

2

2

O

s

b

T

W

D

f

w

c

t

s

c

s

t

2

b

a

s

i

w

i

s

o

t

t

d

d

e

g

t

2

w

a

t

t

t

d

a

c

l

p

T

D

cteristics (geology, well depth), sampling behaviour (frequency, 

iming), and E. coli (presence, concentration). This is undertaken 

hrough a novel application of supervised machine learning tech- 

iques, namely GAMLSS, to a large dataset capturing both hydro- 

ogical and microbiological variables for private wells. These vari- 

bles are collectively assessed within explanatory models as a pre- 

ursor for improving understanding of aquifer vulnerability to con- 

amination and assessing well water quality. This work builds on 

atchmore et al. (2020) , which individually assessed geology and 

esting frequency to inform testing recommendations for private 

ell users within a health risk framework. 

. Methods 

.1. Dataset 

The analyses in this paper have been undertaken using an 

ntario-specific groundwater dataset that consists of 795,023 well 

ample observations for 253,136 unique private wells that have 

een tested 1 to 446 times between 2010 and 2017, inclusive. 

he dataset was created through the amalgamation of Ontario’s 

ell Water Information System (WWIS) and Well Water Testing 

atabase (WWTD). More information on these databases can be 

ound in Latchmore et al. (2020) . 

Parameters in the dataset are described in Table 1 , along 

ith additional relevant dataset information and generated sub- 

lassifications for selected variables, established according to cri- 

eria in the literature for the purpose of these analyses. The 

pecific classification methods are presented in S1.1. These sub- 

lassifications are used in lieu of, or alongside, discrete values in 

ome analyses to fit regulatory definitions or account for uncer- 

ainty. 
able 1 

escription of variables contained within the merged WWIS and WWTD dataset, includin

Parameter Description 

Well Use Intended use of well water (Domestic, Agriculture, L

Commercial, Public) 

E. coli Result Number of E. coli reported in sample by laboratory.

Reporting Range: 0 – 80 CFU/100 mL 

Total Coliforms (TC) Result Number of TC reported in sample by laboratory. Lab

Range: 0 – 80 CFU/100 mL 

Location Location of well geographically, in longitude and lat

Date of Observation Date of water sample collection 

Geological Formation Stratigraphy of geologic formation in which well is 

(originally recorded in ft) 

Pump Test Information recorded from pump test includes stati

water level after pumping, pump test rate, and pum

(originally recorded in GPM/ft) 

Well Depth Distance from ground surface to bottom of well (or

in ft) and classification of well depth 

Date of Well Construction Year well construction was completed 

Status Qualitative microbiology comments based on labora

of the sample (See Table S2.3) 

3 
.2. Data processing 

While the original dataset was assessed for quality as described 

y Latchmore et al. (2020) , additional cleaning, data conversion, 

nd sub-classification ( Table 1 ) were required to enable the as- 

essment of factors driving the presence of E. coli in private wells 

n Ontario, as described in S1.1. Only observations associated with 

ells that were in use and classified as domestic or multiple use 

ncluding domestic in the dataset were included in these analy- 

es. To better understand potential relationships, selected continu- 

us variables were classified into data bins to account for uncer- 

ainty in the data (e.g., specific capacity, E. coli concentration) or 

o align variables with well regulations, standards, and recommen- 

ations (e.g., well depth, testing frequency). In the instance of well 

epth, well regulations and data distribution were considered to 

nsure categorical bins were evenly distributed. Latitude and lon- 

itude are utilized as gradients over space rather than point loca- 

ions. As such, they have been disaggregated into half-degree bins. 

.3. Statistical analyses 

Probability of E. coli contamination in Ontario private wells 

as investigated with respect to seasonality, geological formation, 

nd well depth, using numerous data exploration and visualization 

echniques. The specific capacity was calculated based on pump 

est data in the dataset (See S1.1). To assess changes over time, 

rends were explored based on intra- and inter-annual patterns at 

ifferent temporal resolutions. These resolutions include monthly, 

nnual, and the entire study period. Note that 0.06% of wells ac- 

ount for approximately 20% of E. coli test results because of the 

arge number of samples taken from these wells during the study 

eriod. Given that each E. coli sample represents a data point in 
g sub-classifications derived for the purpose of these analyses. 

Sub-classifications derived for current analyses 

ivestock, Domestic and Multiple Use including Domestic 

 Laboratory non-detects (ND): 0 

Category 1: 1-10 

Category 2: 11-50 

Category 3: 51 + 

oratory Reporting No Significant Evidence: ≤ 5 

May Be Unsafe to Drink: > 5 

itude Binned into 0.5 degree ranges 

situated Consolidated (further categorised as igneous, 

metamorphic, sedimentary) (See Table S2.1) 

Unconsolidated (further categorised as high, medium, low 

permeability) (See Table S2.2) 

c water level, 

p test duration 

Specific Capacity (GPM/m) = Pumping Rate/Drawdown 

Low (0 - < 3.3 GPM/m) 

Moderate (3.3 – 16.4 GPM/m) 

High ( > 16.4 GPM/m) 

iginally recorded Shallow/Moderate ( < 12.5 m) 

Moderate 1 (12.5 m ≤ x < 18.3 m) 

Moderate 2 (18.3 m ≤ x < 24.4 m) 

Moderate 3 (24.4 m ≤ x < 31.1 m) 

Moderate 4 (31.1 m ≤ x < 41.8 m) 

Moderate 5 (41.8 m ≤ x < 61 m) 

Deep ( ≥ 61 m) 

tory processing 
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pace and time, the fact that they originate from a small num- 

er of wells helps to differentiate the impact of variable factors 

e.g., seasonality) from fixed factors (e.g., geology, well character- 

stics). Further, the distribution of fixed variables (i.e., well depth, 

ottom of well stratigraphy, and specific capacity) were compared 

etween a dataset containing all E. coli samples and one contain- 

ng observations from individual wells represented by the highest 

. coli sample result. The distributions remained similar, indicating 

hat highly sampled wells did not over-weight the models. 

Before exploring more complex relationships using machine 

earning methods, univariate and bivariate analyses were con- 

ucted on all independent variables. Univariate analyses were con- 

ucted to explore the data distribution of each individual variable. 

ivariate analyses were conducted to identify empirical relation- 

hips between individual variable pairs. Specifically, the probabil- 

ty of contamination given well depth and the probability of con- 

amination given bottom stratigraphy were calculated (See S1.1). 

hese were followed by machine learning techniques, i.e., associ- 

tion rule and regression analyses. Regression analyses were cho- 

en over other (non-regression) supervised machine learning tech- 

iques that require greater computational intensities (i.e., random 

orests) or that cannot be interpreted sufficiently to ensure adher- 

nce to physical processes (i.e., artificial neural networks). The gen- 

ralized additive model for location, scale, and shape (GAMLSS) re- 

ression model was chosen due to the highly skewed distributions 

zero-inflated) of some variables. GAMLSS is able to deal with zero- 

nflated variables through use of general distribution families (i.e., 

ighly skewed with the addition of zero-inflated and zero-adjusted 

amilies) ( Stasinopoulos and Rigby, 2007 ). The large number of ob- 

ervations with a zero E. coli count (87%) prohibits the use of lin- 

ar models (LM), generalized linear models (GLM), or general ad- 

itive models (GAM) ( Stasinopoulos and Rigby, 2007 ). Association 

ule analysis was chosen as a supplementary technique to further 

xplore select variables due to its ability to discover interesting re- 

ationships and strong rules between variables in large datasets, 

hile being considered a “fast mining algorithm” ( Hahsler et al., 

005 ). 

.3.1. Regression analyses 

A series of regression analyses (R package “gamlss ”; Rigby and 

tasinopoulos, 2005 ) were conducted to develop explanatory mod- 

ls for E. coli concentration based on seasonality, hydrogeology, 

ell characteristics, and human behaviour (Table S2.4). A collinear- 

ty matrix was developed (utilizing Phi and Pearson’s coefficient) 

nd correlated variables, as well as obvious confounders, were re- 

oved from the set of model input variables. The corresponding 

odels use a distributional regression approach where all param- 

ters of the conditional distribution of the response variable are 

odelled using explanatory variables ( Rigby et al., 2019 ). Indepen- 

ent variables (Table S2.4) were selected to develop a series of 

odels to explain E. coli concentrations, each exploring different 

lements of the risk pathway ( Fig. 1 ): seasonal (Driver 1 in Fig. 1 ),

ydrogeological (Driver 2 in Fig. 1 ), well characteristics (Driver 3 

n Fig. 1 ), and testing practices (Driver 4 in Fig. 1 ). This method of

eparating models combines the power of machine learning with 

ubject matter expertise, to understand the interactions and im- 

acts of variables representing a specific driver of E. coli contami- 

ation along the risk pathway. Once developed, explanatory mod- 

ls for Drivers 1-3 informed development of an “informed model”

ased on all relevant variables in the dataset. 

Based on subject matter expertise, various combinations of in- 

ependent variables were included in models to assess their ability 

o explain the dependent variable ( E. coli concentrations or test- 

ng frequencies). In some cases, continuous, categorical, and binary 

orms of the same independent variable were assessed for per- 

ormance against evaluation criteria (e.g., model option 1 uses bi- 
4 
ary bottom stratigraphy, and model option 2 uses categorical bot- 

om stratigraphy). All models were evaluated against each other 

mploying 10-fold cross validation, using the appropriate mixed 

odel “fitting families”, as defined by Rigby et al. (2019) . Fitting 

amilies were chosen to incorporate discrete, categorical, and con- 

inuous variables. Families chosen are as follows: zero adjusted 

ogarithmic distribution (ZALG) and zero adjusted inverse Gaussian 

istribution (ZAIG) ( Rigby et al., 2019 ). 

The “best model” was identified as the one with the lowest 

ross validated Global Deviance ( Rigby et al., 2019 ; Rigby and 

tasinopoulos, 2005 ). It is important to note that this enables a 

omparison between models but does not reflect model accuracy. 

o consider model accuracy, residual analyses were conducted on 

he “best” models. 

Once the best model was determined, models were trained (i.e., 

earning to fit the parameters of the independent variables) using 

 randomly selected dataset containing 80% of the data, and sub- 

equently tested (i.e., assessment of trained model performance) 

n the remaining 20% of the data ( Joshi, 2020 ), as a means to fit

he model. This was conducted over 10 iterations with 10 unique 

ata splits within each model, with the regression coefficients av- 

raged across iterations to address parameter uncertainty (deter- 

ine mean and variance) in the coefficients for the final explana- 

ory model. Two-tailed hypothesis tests were used to assess the 

tatistical significance of model variables. Note that statistical sig- 

ificance of variables in these models do not render the model pre- 

ictive. Rather, significance refers to the importance of the variable 

n explaining E. coli presence or concentration in a well while the 

agnitude of the coefficient indicates relative impact. Ultimately, 

he goal of these models is to explain casual relationships, not pre- 

ict the probability of an event occurring ( Sainani, 2014 ). 

Finally, to assess variable importance, each independent vari- 

ble was removed one by one, and cross validated Global Deviance 

alues were calculated and compared to assess the impact. The 

most important” variable to the model is defined as the variable 

hat results in the greatest increase in cross validated Global De- 

iance when removed from the model. 

.3.2. Analyses of hydrogeological settings and well characteristics 

Assessment of the impacts of the bottom layer stratigraphy 

categorized by rock type and grain size) on E. coli concentra- 

ion (CFU/100mL) was undertaken utilizing Association Rule Min- 

ng Analysis using the Apriori algorithm (R package “arules ”; 

ahsler et al., 2005 ), which identifies statistically interesting rela- 

ionships in large datasets. The “interestingness” of a rule is based 

n four key measurements: confidence , which is the estimate of 

he conditional probability of an itemset Y given another itemset 

 ( Hahsler et al., 2005 ); support , which is the proportion of obser-

ations in the dataset which contain the itemset X ( Hahsler et al., 

005 ); lift , which is the deviation of the support from the expected 

alue, given independence ( Hahsler et al., 2005 ); and, standard- 

zed lift , which is the lift relative to its upper and lower bounds 

 McNicholas et al., 2008 ). Standardized lift was used as the ranking 

ethod in this study as it calls upon support, confidence, and lift, 

nd as such presents a natural and unambiguous method of rank- 

ng association rules ( McNicholas et al., 2008 ). All analyses were 

onducted with a minimum level of support of 0.005 to increase 

he number of rules derived, a minimum confidence level of 0.9 to 

nsure a sufficient level of confidence and to narrow down derived 

ules, and two to six items to ensure that the relationships consid- 

red are complex, but not overly so ( McNicholas et al., 2008 ). 

.3.3. Well sampling analyses 

Frequency and timing of well testing were explored in con- 

unction with the index sample status for each well within the 
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ecorded dataset period. To explore whether the test message re- 

urned drove well testing frequency (subsequent test or no subse- 

uent test), all individual wells were further reclassified into four 

esting status categories: first test “no significant evidence” of E. 

oli , first test “no result”, first test “may be unsafe” to drink, and 

rst test “unsafe to drink”. While this analysis could be undertaken 

n any two consecutive samples, almost half of the unique wells 

n this dataset were only tested once over the eight-year study pe- 

iod. As such, the initial test also represents the only “previous”

est for a large proportion of wells, with “no subsequent test” be- 

ng an important behavioural decision. All values for the following 

alculations were standardized and plotted based on total number 

f tests and number of tests within each testing frequency group 

see S1.2). Decay curves were then created utilizing the nonlinear 

east squares (nls) method (see S1.2) to estimate the parameters 

y o , y f , α) of the decay equation ( Watson, 2020 ). 

Utilizing this decay function, the decay rate for each initial test 

tatus was determined and compared. 

Further analyses were undertaken to determine whether user 

esting events coincide with typical seasonal weather, such as 

pring thaws and summer dry-wet patterns, as well as high fre- 

uencies of adverse results. User testing was determined by sum- 

ing all observations in a given month of a given year. Adverse 

esting results for each month were standardized with respect to 

ear (see S1.2). 

. Results and discussion 

Models for each driver are described and discussed in the fol- 

owing sections. Each model is described in (Table S2.5) and sum- 

arised in Fig. 2 . 

.1. Seasonal drivers (driver 1 in Fig. 1 ) 

E. coli presence and concentration in the environment is driven, 

n part, by seasonal changes in temperature, precipitation, and land 
Fig. 2. Summary of explanatory variables acro

5 
se. Thus, an understanding of when samples are most likely to be 

dverse is necessary for enhanced testing awareness and recom- 

endations. Seasonal drivers explored include season delineations 

nd intra- and inter-annual relationships ( Fig. 2 ; Table S2.5; Figures 

2.1-S2.6). No trends emerged from the bivariate analyses, likely 

ue to the complexity of E. coli fate and transport processes. 

The best GAMLSS explanatory model included latitude and lon- 

itude, which were statistically significant, and Season delineation 

 (i.e., winter commencing in January), which was not statistically 

ignificant but holds explanatory value. The most significant im- 

act on E. coli concentration in this model is latitude; with each in- 

reasing half-degree of latitude, E. coli concentrations decrease by 

.16 ± 0.01 CFU/100mL (p-value < 0.01) (Figure S2.1; Table S2.5). 

atitude likely accounts for variations in the onset of freeze and 

haw across Ontario and therefore can be considered a proxy in- 

icator for seasonal lag. This is reflected in the 1975-2005 average 

rst and last date for frost in different climate zones in Ontario. 

n a more southern zone, average first and last frosts occur on Oc- 

ober 8 th and May 3 rd , respectively, compared to September 16 th 

nd June 3 rd in a more northern location ( OMAFRA, 2020 ). The 

ore nuanced variations accounted for through latitude in partic- 

lar may explain the lack of consistency in seasonal delineations 

ithin the literature ( Atherholt et al., 2017 ; Rocha et al., 2015 )

s well as the lack of statistical significance for the season delin- 

ations in this model (Table S2.5). Longitude has a weaker relation- 

hip with E. coli concentration, but is a proxy for climate variations 

n tandem with latitude in Ontario. This is due to the presence of 

arge bodies of water (the Great Lakes), which modify local temper- 

ture and precipitation patterns, particularly in winter. However, it 

s recognised that climate also drives land use and land cover, and 

hat other variables, such as population density, vary spatially, so a 

ompound proxy cannot be ruled out. 

Seasonal delineations were subject to further refinement us- 

ng individual months. The best explanatory model that emerged 

ncluded all months except April, along with latitude and longi- 

ude. This model indicates that samples collected in March ex- 
ss “best” models for each driver ( Fig. 1 ). 
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lain the greatest increase in E. coli concentrations, while sam- 

les collected in December explain the greatest decrease in E. coli 

oncentrations. July emerges with some of the highest numbers 

f adverse E. coli sample results (18.2%; n = 4,699) ( Fig. 4 ), al-

hough these results do not represent the largest increase in E. coli 

oncentrations ( Fig. 2 ; Table S2.5). The agricultural season begins 

n April/May in Ontario, typically peaking between June and Au- 

ust, affecting manure spreading ( Bach et al., 2002 ; Ontario Min- 

stry of Environment Conservation and Parks, 2020a ) and livestock 

razing patterns ( Invik, 2015 ), introducing more E. coli into the 

nvironment ( Conboy and Goss, 20 0 0 ). Further, increased ambi- 

nt temperatures lead to a more sustained E. coli growth rate 

 Porter et al., 2019 ) coupled with increased faecal excretion rates 

n cattle ( Invik, 2015 ). Increased use of summer homes increases 

ocal septic tank usage and may also increase private well wa- 

er quality testing ( Di Pelino et al., 2019 ). Additionally, groundwa- 

er systems are more vulnerable to microbiological contamination 

n the summer months when extended hot dry periods harden 

he ground and lead to cracks, which act as enhanced pathogen 

ransport pathways that are activated during sporadic heavy rain- 

all events ( Health Canada, 2020 ). High user testing in July (12.2%, 

 = 96,001), coupled with increased E. coli loads and hydrological 

rivers likely contribute to the high numbers of adverse sample 

esults in July ( Health Canada, 2020 ). While the largest, most sig- 

ificant monthly increase in E. coli concentration occurs in March 

0.25 ± 0.05 CFU/100mL, p-value = 0.03), March has one of the 

owest numbers of user tests (6.4%, n = 50,858) and as a result 

s associated with a lower number of adverse E. coli observations 

4.38%, n = 1,131) ( Fig. 4 ). Heavy rain and snowmelt typical of

arch and April ( Jones et al., 2015 ) (not deemed explanatory by 

he model, so not depicted) have been associated with the flush- 

ng of E. coli through the system ( Schuster et al., 2005 ). This in-

reases risk of contamination ( Health Canada, 2013 ), likely due to 

ncreased groundwater recharge, possibly explaining the monthly 

ncrease in E. coli concentrations in March and subsequent de- 

rease in May (p-value = 0.03). December emerges as a month 

ith some of the lowest numbers of adverse E. coli sample results 

3.1%; n = 799) ( Fig. 4 ) and largest explanatory E coli concentration

ecrease (-0.27 ± 0.05 CFU/100mL, p-value = 0.03). The findings 

or December may reflect combinations of changing processes and 

nputs, including frozen soils and reduced rainfall, thereby decreas- 

ng groundwater infiltration ( Atherholt et al., 2017 ) and reducing 

. coli availability ( Bach et al., 2002 ). Similar to the seasons model

ndings, latitude is significant in the monthly model (p-value < 

.01), with a decrease in average E. coli concentration of 0.16 ±

.01 CFU/100mL per half-degree of latitude (Figure S2.3-S2.4; Table 

2.5). Again, while most likely driven by climate patterns, a com- 

ound proxy cannot be ruled out. 

An inter-annual assessment of E. coli concentration was con- 

ucted to look for trends year over year. The average E. coli con- 

entration generally decreases from year to year between 2011 and 

017, with the exception of 2010 which was not identified as ex- 

lanatory in the model ( Fig. 2 ). All years in the model except 2013,

014, and 2015 are statistically significant and all years are sta- 

istically significantly different from one another (p-value < 0.01), 

xcept for 2011 to 2012 (Figure S2.5-S2.6). The peak average E. coli 

oncentrations in 2011 and 2012 are likely due to frequent flood- 

ng events causing mobilization of E. coli ( Latchmore et al., 2020 ; 

ntario Ministry of Environment Conservation and Parks, 2013 ). 

he years 2016 and 2017 represent a significant drop in aver- 

ge E. coli concentrations over previous years (p-value < 0.01), 

ikely due to droughts in 2016 which reduced E. coli transport 

 Latchmore et al., 2020 ). Similar to the seasonal and monthly mod- 

ls, latitude and longitude are significant variables in the annual 

odel with more northern latitudes associated with lower average 

. coli concentrations (Figure S2.5). 
6 
.2. Hydrogeological drivers (driver 2 in Fig. 1 ) 

One of the primary drivers of pathogen transport into a well 

s the local hydrogeology. While the entire stratigraphic column 

lays a role in pathogen fate and transport, this analysis focuses 

n the interface between the aquifer and the well production zone. 

or a further exploration of the effects of overburden depth and 

pecific bedrock types (limestone, shale, sandstone, and granite) 

n E. coli detection rates, see Latchmore et al. (2020) . The hydro- 

eological drivers explored here include bottom stratigraphy and 

pecific well capacity. Among the variable groups discussed in the 

ethods, binary bottom stratigraphy (i.e., consolidated or uncon- 

olidated) outperformed a categorical bottom stratigraphy, averag- 

ng an improved cross validated Global Deviance. 

From the dataset, initial classifications for each well were de- 

ned as consolidated (bedrock) (63.3%, n = 499,647) or unconsoli- 

ated (36.7%, n = 289,426). Of the wells completed in bedrock (i.e., 

onsolidated), the lowest strata consisted of metamorphic (0.8%; 

 = 3,814), sedimentary (69.6%; n = 347,958), igneous (28.0%; 

 = 139,921), metamorphic and sedimentary (0.2%; n = 1,086), 

etamorphic and igneous (0.3%; n = 1,712), sedimentary and ig- 

eous (1.0%; n = 4,774), or all three rock types (0.1%; n = 382). 

he explanatory hydrogeological-based model summary demon- 

trates that an unconsolidated bottom stratigraphy increases aver- 

ge E. coli concentrations by 0.14 ± 0.02 CFU/100mL (p-value < 

.01), while consolidated did not provide explanatory power de- 

pite being considered a driver in the literature ( Atherholt et al., 

017 ; Latchmore et al., 2020 ). To explore further, bivariate analy- 

es were used to compare the likelihood of contamination in wells 

ompleted in consolidated (bedrock) and unconsolidated units. It 

as found that those completed in unconsolidated units (29.4%, 

 = 7,589) are significantly less likely to encounter contamination 

han those in consolidated units (70.6%, n = 18,232) (Table S2.6). 

An association rules analysis further examined the impact of 

edrock type on E. coli concentrations. According to the association 

ules, wells completed in metamorphic bedrock had a lower proba- 

ility of encountering higher E. coli concentrations as compared to 

hose completed in sedimentary bedrock. When non-detect (ND) 

bservations were removed from the stratigraphy analyses to re- 

uce skewing in E. coli concentration, wells completed in sedimen- 

ary and igneous materials had a higher probability of encoun- 

ering higher E. coli concentrations compared to those completed 

n metamorphic units (Table S2.7). These findings are supported 

y Conboy and Goss (20 0 0) , who found that wells completed in

imestone or dolostone (76% of the sedimentary wells in the cur- 

ent dataset) are considered at “high risk” for pathogen contami- 

ation. The study further determined that the age of sedimentary 

ocks is important, as older deposits likely contain more fractures 

nd solution channels, which act as transportation highways for 

athogens ( Conboy and Goss, 20 0 0 ) and therefore E. coli . Finally,

edrock wells with minimal overburden are more likely to become 

ontaminated due to the lack of soil available to filter pathogens 

efore they reach fractures or channels ( Conboy and Goss, 20 0 0 ;

atchmore et al., 2020 ). Surprisingly, no association rules emerged 

inking E. coli concentrations with either bottom stratigraphy per- 

eability or specific capacity, likely due to small numbers of ob- 

ervations in some subcategories. 

.3. Well characteristics (driver 3 in Fig. 1 ) 

Well characteristics impact the physical integrity of the well 

nd thus influence E. coli ingress ( Di Pelino et al., 2019 ). The well

haracteristics explored here include well depth and year of well 

onstruction. As with the hydrogeological drivers, a selection be- 

ween categorical and continuous variables for well depth was un- 

ertaken, and it was determined that categorical well depth im- 
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roved explanatory power. It should be noted that a smaller num- 

er of categories was originally used to align with provincial reg- 

lations (shallow, moderate, and deep; Ontario Ministry of Envi- 

onment Conservation and Parks, 2019 ). However, this is a skewed 

istribution that resulted in findings that were in contradiction 

o conventional understanding and could not be explained using 

rocess-based logic. This is underscoring the fact that machine 

earning must be used in combination with disciplinary expertise 

o ensure relevant models ( Reichstein et al., 2019 ). 

Well depth categories up to moderate3 were found to in- 

rease average E. coli concentrations by 0.14 ± 0.03 - 0.20 ±
.04 CFU/100mL (p-value = 0.01) (Figure S2.7-S2.8). Typically, 

ell users assume that deep wells are protected from contam- 

nation in comparison to moderate and shallow depth wells 

 Kreutzwiser et al., 2010 ). However, the fact that deep wells were 

ot found to be explanatory of E. coli concentration serves as a re- 

inder that greater depths are not protective against contamina- 

ion. A supplementary bivariate analysis underscores this finding; 

hallow wells were significantly different (p-value < 0.05) from 

eep wells at all E. coli concentrations, with shallow wells being 

ore likely to return adverse samples (p-value ≤ 0.0027) (Table 

2.8). As such, increased depth is not a reason to assume sufficient 

rotection of drinking water quality. Given a risk of complacency 

egarding the microbiological safety of deep wells, these findings 

ould represent a public health threat to the 15% of well users who 

ely on deep wells in this dataset. 

.4. Informed physical model 

The findings from the seasonal, hydrogeological, and well char- 

cteristic models were used to create an informed physical model 

 Fig. 2 , Figure S2.9-S2.10). Based on model outputs (Table S2.5) 

nd subject matter expertise, the most explanatory variables were 

ombined into a single model to explore relative importance of 

river variables. The final model consisted of binary bottom stratig- 

aphy, continuous specific capacity, categorized well depth, month 

f test, year of test, longitude, and latitude. General trends in the 

nformed physical model aligned with those of the individual mod- 

ls. The model is most sensitive to specific capacity followed by 

ottom of well stratigraphy, year, latitude, well depth, month, and 

nally longitude. This is a particularly interesting finding as the 

pecific capacity of a well is not typically considered to be a driver 

f contamination risk. More work needs to be done to determine 

hether specific capacity is a driver of contamination, or if the 

odel is selecting specific capacity as a proxy for other factors 

e.g., high permeability related to the presence of fractures). 

These results demonstrate that machine learning techniques 

mployed in combination with disciplinary expertise are useful for 

eveloping data-driven explanatory models of the relationship be- 

ween E. coli concentrations in private wells and the drivers of 

his contamination. Indeed, relative sensitivity to specific capac- 

ty makes sense but also highlights a variable that is not normally 

onsidered in this context and thus requires further process-based 

nalysis. 

.5. Testing practices (driver 4 in Fig. 1 ) 

Water quality testing is critical because it is the only way to 

haracterize well water quality, which provides important informa- 

ion for both well stewardship practices and human health protec- 

ion. A regression analysis of testing patterns revealed that individ- 

al wells were tested on average 2.70 ± 0.004 times over the 8- 

ear study period (Table S2.5). Critically, this dataset does not rep- 

esent all private drinking water wells in Ontario. Many wells were 

xcluded due to incomplete information, the inability to match a 

ater test record to a well record, or never having had a sample 
7 
ubmitted to a provincial laboratory for testing. As such, given es- 

imates of the number of wells in Ontario ( Ontario Ministry of En- 

ironment Conservation and Parks, 2020b ), there may be approxi- 

ately 345,0 0 0 additional wells not captured by this dataset that, 

y definition, would be classified as sampled fewer than 16 times. 

ccording to the current dataset, 98% (n = 245,708) of individual 

ells were tested less than the two times per year threshold ( ≤ 16 

ests between 2010 and 2017), with 48% (n = 119,670) only testing 

nce over the eight-year period. This limited testing may be at- 

ributable to complacency (e.g., history of non-adverse sample re- 

ults or no concerning colour or odour), no experience of adverse 

ealth effects, or inconvenience (e.g., limited hours at sample drop 

ff locations) ( Invik, 2015 ). 

Using regression analyses, user testing frequency was found to 

e impacted by the sample result message received (excluding 

may be unsafe”, as it was not deemed important by the explana- 

ory model, so not depicted), month of user test, and year of user 

est ( Fig. 2 ; Figure S2.11-S2.12). The return of an “unsafe to drink”

essage, while not statistically significant, slightly increased the 

umber of samples taken by 0.02 ± 0.008 over the study period, 

ikely due to the health concern that this result represents to the 

ser (Table S2.5). A status that is returned as “no result” (i.e., pro- 

essing issues, chemical testing requested, appearance or order un- 

cceptable, interfering substances, unauthorized submitter) or “no 

ignificant evidence” was found to, on average, decrease the num- 

er of tests submitted (0.13 ± 0.006 and 0.05 ± 0.004, respec- 

ively), likely due to the non-alarming nature of the message (Table 

2.5). 

To explore user testing practices further, the message received 

or the first test was assessed as an indicator of subsequent test- 

ng. It was found that two fitted decay equations were required 

o best characterize the data; one for 15 or fewer tests and one 

or 16 or more tests, as the decay rates are different. For 15 or 

ewer tests, if the first test message was “no significant evidence”

73%, n = 183, 608 of initial samples), the well user was less likely 

o continue testing (decay rate = 0.96) as compared to when ini- 

ial samples were “no result” (6%, n = 15,816) (decay rate = 0.42, 

-value = < 0.0 0 01), or “may be unsafe” (13%, n = 31,656) (de- 

ay rate = 0.40, p-value = < 0.0 0 01), or “unsafe to drink” (8%, 

 = 20,341) (decay rate = 0.40, p-value = < 0.0 0 01) ( Fig. 3 ).

ayyum et al. (2020) found that a well that received an initial neg- 

tive index test (not containing E. coli or total coliforms) retested 

4% of the time, when compared to a 74% retesting rate when the 

nitial index test is positive (containing E. coli or total coliforms). 

his reflects similar trends to those found in this work – decay 

ates for retesting were highest (i.e., less retesting) when the index 

est was “no significant evidence” ( Qayyum et al., 2020 ). Addition- 

lly, all curves except “may be unsafe” and “unsafe to drink” are 

tatistically significantly different from one another. The use of the 

ord “unsafe” is likely a flag for concern amongst well users. Well 

sers testing 16 or more times over the 8-year study period are 

ikely to be routine well testers. While all of these decay curves are 

tatistically significantly different from one another, decay rates fall 

ithin a smaller range than those who test 15 or fewer times (“no 

ignificant evidence”, decay rate = 0.11845, p-value = < 0.0 0 01; 

no result”, decay rate = 0.16080, p-value = < 0.0 0 01; “may be un-

afe”, decay rate = 0.15107, p-value = < 0.0 0 01; “unsafe to drink”, 

ecay rate = 0.12197, p-value = < 0.0 0 01) (Table S2.9). Routine 

esting indicates greater awareness of appropriate well stewardship 

ractices ( Lavallee et al., 2020 ). 

The majority of samples were submitted for testing in July 

 Fig. 4 ), representing the second highest increase in user testing 

requency (month over month). It is postulated that this may rep- 

esent seasonal testers. Further, July is more conducive weather for 

riving, as well as the start of summer holiday season in Ontario 

hen people may have more time or are using seasonal residences 
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Fig. 3. Percentage of individual wells versus number of times tested over the eight-year period given an initial sample that was “no significant evidence” (73% of wells), 

“no result” (6%), “may be unsafe” (13%), or “unsafe to drink” (8%). Insets show a) under two times per year threshold (i.e., 1-15 tests), and b) at or over two times per year 

threshold tested tail (i.e., 16-446 tests) of this curve, respectively. 

Fig. 4. Occurrence of private well testing and adverse results over the study period, where non-detects are defined as 0 CFU/100mL, “All E. coli ” represents the summation 

of the three E. coli concentration categories. Vertical bars are extensions of peak adverse points each year. 
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and associated wells). Interestingly, the month with the largest 

mpact on user testing frequency is January (0.26 ± 0.01 times). 

his may be because anyone testing in January is probably more 

onsistent in their testing regime as January does not represent a 

onth that is communicated as a critical testing period, and thus 

as the fewest user tests ( Fig. 4 ). 

While in some years (2010, 2011, 2013) testing frequency coin- 

ided with peak adverse sample occurrences (i.e., July), this was 

ot the case in 2012 and 2014-2017, when peak adverse sample 

ccurrences shifted to as late as September. This offset between 

esting and peak E. coli contamination events raises the question 

f timing of future peaks in adverse occurrence, and whether well 
8 
sers have adequate contamination risk information for optimal 

ell testing practices. Starting in 2014 there is a general trend 

f decreasing user testing frequency (Figure S2.11), with no obvi- 

us explanation. Lack of user testing compliance, combined with 

 divergence between peak testing and E. coli contamination peri- 

ds in latter years, and the decreasing trend in testing frequency 

 Fig. 4 ), underscore the need to better understand well user be- 

aviours, provide additional resources, and target educational cam- 

aigns. More specifically, enhanced methods are required to pre- 

ict and communicate risk of potential contamination events to 

ell users and there is a need for evidence-based testing regime 

uidelines. Increased well user outreach will improve knowledge, 
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ttitudes, and practices with respect to well sampling and testing 

o move well user sampling practices closer to the “temporal truth”

 Latchmore et al., 2020 ) of E. coli contamination events. 

. Study limitations 

The WWTD is subject to methodological limitations associated 

ith E. coli quantification; however, the uncertainties cannot be 

uantified with the available data. Further, the WWIS database is 

ubject to data entry errors, as borehole logs are hand recorded 

n the field and later transcribed into an online database, some of 

hich date back to the 1910’s. This was addressed through the re- 

oval of outliers that were outside the range of realistic values i.e., 

pecific capacities less than zero. There is no indication that these 

utliers are systematic. 

. Conclusion 

To the authors’ knowledge, supervised machine learning ap- 

roaches such as GAMLSS and Association Rule Analysis have not 

reviously been used to assess E. coli contamination risk in pri- 

ate wells. The approaches in combination with a large private well 

ataset enabled the development of explanatory models of E. coli 

oncentration as a function of seasonal, hydrogeologic, and well 

haracteristic drivers. Consensus with existing literature for many 

ndings confirms the validity of this novel approach, which also 

dentified drivers that are not typically considered but are sup- 

orted by a process-based understanding of the system. As such, 

hese findings also demonstrate the importance of coupling ma- 

hine learning approaches with disciplinary expertise. This opens 

p opportunities to develop better tools to understand drivers and 

redict contamination that can be used to evaluate and mitigate 

ublic health risk and inform better policy and stewardship prac- 

ices. The results provide valuable insight into drivers of E. coli con- 

amination, their relative importance, and therefore potential pub- 

ic health risks associated with the use of private wells in Ontario. 

pecifically, the following key findings were uncovered. 

• The best delineation for the seasonal variable identified win- 

ter as starting in January. However, the seasonal variable was 

not found to be as important as latitude to explain intra-annual 

variations in E. coli concentrations due to the spatial variability 

of climate patterns in Ontario. Specifically, latitude was found 

to better represent spatial variations in the onset of seasonal 

freeze and thaw events that drive E. coli concentrations and 

therefore should replace seasonal lag factors. 
• The use of months as a variable demonstrates the ability to cap- 

ture more granular changes in inter-annual peak E. coli concen- 

trations. The shift in peak E. coli concentrations to later in the 

year is a finding that requires further investigation. 
• Bedrock wells completed in sedimentary and igneous forma- 

tions are more likely to have higher E. coli concentrations when 

compared to those completed in metamorphic or unconsoli- 

dated formations. Previously, igneous and metamorphic forma- 

tions have not been differentiated in this manner. 
• E. coli contamination is statistically significantly impacted by 

well depth; generally, wells up to a depth of approximately 

60m are more likely to become contaminated with E. coli. 

While this is congruent with the literature, the depth thresh- 

old warrants further investigation. Further, deep wells do not 

emerge as reducing E. coli contamination. As such, increased 

depth does not guarantee that a contamination event will not 

occur - testing and stewardship are still required. 
• The informed physical model was most sensitive to specific ca- 

pacity followed by bottom of well stratigraphy, year, latitude, 

well depth, month, and longitude. The specific capacity of a 
9 
well is not typically associated with contamination risk and 

therefore warrants further investigation. 
• Testing frequency was significantly impacted by initial test mes- 

sage received. Frequency increased with an “unsafe to drink”

result and decreased with “no significant evidence” and “no re- 

sult” messages. This finding confirms the need for well users to 

be educated on the temporal changes of E. coli contamination 

of groundwater wells, the impacts of the physical environment 

and well characteristics on E. coli concentrations in their well, 

and the need for an informed, regular testing regime to protect 

their health. 
• While, in general, there is a correlation between when users 

test their wells and when the greatest frequencies and concen- 

trations of adverse results occur, a decoupling can be observed 

in recent years where testing remains highest in July but peaks 

in adverse results occur up to three months later. This finding 

has potential implications for the health of well users as they 

may not be capturing peak E. coli contamination events in their 

wells. 

This study demonstrates that a coupled systems approach that 

pplies machine learning techniques in combination with a large, 

ulti-dimensional dataset can support and advance our under- 

tanding of geo-spatio-temporal relationships and interconnections 

hat impact E. coli contamination in private wells. Recognition of 

hese interconnections offers an innovative path forward for en- 

ancing private well user awareness and stewardship. The identi- 

cation of explanatory variables, their relative importance, and ef- 

ects on E coli concentration, in combination with other data sets 

e.g., meteorological) can be used to inform and advance the devel- 

pment of future predictive data-driven fate and transport models. 
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