The Wetland DEM Ponding Model

Kevin Shook

WDPM Workshop March 19, 2014

Global Institute for Water Security

The Wetland DEM Ponding Model (WDPM)

- NOT a hydrological/hydraulic mode
- Simulates redistribution of runoff on a DEM
- Distribution of water validated by remote sensing

DEM runoff algorithms

Conventional D8 algorithm

- Drains in direction of max. slope
- Fast
- 'pits' are problematic

Shapiro and Westervelt algorithm

- Drains in all downhill directions
- Iterative
- Drainage changes as storage fills

Modules

- The model has 3 modules:
 - 1. Add adds water
 - 2. Subtract removes water
 - 3. Drain drains water
- All modules use the Shapiro and Westervelt algorithm

1. Add

- Adds a spatially uniform depth of water
- Can use a runoff coefficient
- Water is redistributed
- Edges of DEM act as dams

Add

10 mm added

100 mm added

Smith Creek SK, Sub-basin 5, 10m LiDAR DEM

2. Subtract

- Removes a specified depth of water
- Does not currently allow for any spatial variability
- The process is not just the reverse of adding water
 - Adding and subtracting change the frequency distributions of water areas in very different ways

Subtract - Smith Creek

100 mm added

100 mm added, 100 mm subtracted

Smith Creek SK, Sub-basin 5, 10m LiDAR DEM

3. Drain

- Drains water from lowest point on DEM
- Only useful for DEMs with streams
- Might not want to use this module, if your objective is to see how streams back up onto the landscape

Drain – Smith Creek

100 mm added

Smith Creek SK, Sub-basin 5, 10m LiDAR DEM

Validation

- The WDPM has been validated against remotely-sensed images
- Only validates the spatial distribution of water
- The amount of water added is arbitrary

WSA simulation Highway #2, Fall 2013 – 100 mm added

15 m Ortho-DEM

Caveats and limitations

1.GPL

- 2.Amount of water added/removed
- **3.Limitations of DEMs**
- 4.Effects of roads
- 5.Execution time

1. GNU Public Licence

- The WDPM is Free Open Source Software (F.O.S.S.)
 - Distributed under the GPL version 3
 - Free as in 'free speech' as well as in 'free beer'
- Means 2 things:

1.You can't sue the authors, and

2.You have to distribute the source code if you make the program (or any program derived from it) available to others

GPL

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2. Water addition/removal

- Should be determined using a physically-based model (CRHM)
- The WDPM doesn't allow for spatial variability in fluxes
- Can't lump additions and removals together

3. DEMS

- A DEM only approximates reality
- All changes in water are relative to water stored when DEM was constructed
 - Can't go below this level
- Horizontal and vertical resolution and accuracy of DEM affect how well the WDPM works

Effect of DEM resolution by Rob Armstrong

CDED 30 m Runoff Distribution Near Winnipeg, Man

4. Roads

- Roads act like dams to runoff
- Have to include culverts and bridges
 - Breach roads in the DEM
 - Requires manual intervention with GIS

Smith Creek sub-basin 1, 5m LiDAR 10 mm added, undrained

5. Execution time

- Depends on the module, the volume of water (depth and DEM area) and the tolerance
- Subtract is always the fastest to execute
- Drain is often the slowest

WDPM recoding

- WDPM needs to be faster
- WDPM has been re-written to use CPUs and GPUs for parallel processing
 - Funded by AAFC
- Now has a GUI

Future developments

- Speed improvement by more efficient use of GPUs
- Coupling the WDPM with CRHM
 - Use CRHM to determine the fluxes of runoff/evaporation
 - Map the CRHM HRUs to the WDPM grid
- The coupled models could solve for precipitation in regions without precipitation gauges, where the water areas can be found by remote sensing

Acknowledgements

- Support by Global Institute for Water Security, Canada Research Chairs Program, Ducks Unlimited, and Agriculture and Agri-Food Canada
- WDPM recoding by Oluwaseun Sharomi and Ray Spiteri of the Department of Computer Science, University of Saskatchewan
- Program testing by Rob Armstrong of AAFC