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Abstract: This paper proposes a novel optimal generation scheduling model for virtual power plant 

(VPP) considering the degradation cost of energy storage system (ESS). The VPP is generally formed 

by a mix of distributed energy resources, and the ESS is an important installation for flexible VPP 

dispatch due to its controllable and schedulable behaviours. For the operations of battery storage 

systems, the ambient temperature and depth of discharge have significant impacts on the wear and 

tear of the ESS as well as battery degradation cost. Furthermore, the battery degradation cost is 

modelled and approximated by a piecewise linear function, and then incorporated into the proposed 

optimal VPP scheduling model. Consequently, the optimal VPP scheduling problem is formulated as 

a two-stage stochastic mixed integer linear programming in order to maximize the expected profits 

of the VPP. The proposed model has been successfully implemented and tested through a 

representative case study, and the influence of battery degradation cost on optimal VPP scheduling 

has also been thoroughly analysed and demonstrated. 

 

Nomenclature 

 

Acronyms 

BEV battery electric vehicle 

CTPP conventional thermal power plant 

CVaR conditional value at risk 

DoD depth of discharge 

ESS energy storage system 

EV electric vehicle 

MILP mixed integer linear programming 

PHEV plug-in hybrid electric vehicle 

PV photovoltaic 

VPP virtual power plant 

WPP wind power plant 

 

Sets 

B Sets of batteries 

P Sets of day-ahead market price scenarios 

S Sets of PV power output scenarios 

W Sets of WPP power output scenarios 

T Sets of time periods 

 

Constants 

,0bg  Initial energy stored in battery b (MWh) 
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maxbg  Maximum capacity of battery b (MWh) 

minbg  Minimum capacity of battery b (MWh) 

max

cg  Maximum power output of the CTPP (MW) 

min

cg  Minimum power output of the CTPP (MW) 

,s t
g  PV power output in time period t and PV power output scenario s (MW) 

,w tg  WPP power output in time period t and WPP power output scenario w (MW) 

min

downL  Constant equals to min [T , min( ) (1 )init off

down down onT T T− ⋅ − ], which is the number of time periods that 

the CTPP has to be down from the beginning of the planning horizon (h) 
min

upL  Constant equals to min [T ,
min( )init off

up up onT T T− ⋅ ], which is the number of time periods that the 

CTPP has to be up from the beginning of the planning horizon (h) 

ru Ramp-up limit of the CTPP (MW/h) 

rd Ramp-down limit of the CTPP (MW/h) 

cS  Start-up cost of CTPP (€) 
init

downT  The number of time periods that the CTPP has been down before the beginning of the 

planning horizon (h) 
min

downT  Minimum-down time of the CTPP (h) 

off

onT  CTPP on-off status before the beginning of the planning horizon (equals to 1 if 0init

upT > , and 

0 otherwise) 
init

upT  The number of time periods that the CTPP has been up before the beginning of the planning 

horizon (h) 
min

upT  Maximum-up time of the CTPP (h) 

bδ
+  Maximum energy can be charged to battery b during one period (MWh) 

bδ
−  Maximum energy can be discharge from battery b during one period (MWh) 

bη
+  Charge efficiency of battery b 

bη
−  Discharge efficiency of battery b 

downϕ  Down-regulation price ratio 

upϕ  Up-regulation price ratio 

,p t
λ  Electricity price in the day-ahead market in time period t and day-ahead market price scenario 

p (€/MWh) 

p
π  Probability of the pth day-ahead market price scenario 

sπ  Probability of the sth PV power output scenario 

wπ  Probability of the wth WPP power output scenario 

 

Variables 

, , ,

C

w s p tC  Fuel cost of the CTPP (€) 

, , , ,

B

w s p b tC  Degradation cost of battery b (€) 

, , , ,w s p b tg  Energy stored in battery b at the end of time period t (MWh) 

, , , ,w s p b tg +
 Energy charged to battery b during time period t (MWh) 
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, , , ,w s p b tg −
 Energy discharged from battery b during time period t (MWh) 

, , ,

c

w s p tg  CTPP power output (MW) 

, , ,

down

w s p tg  Electricity sold in the balancing market (MW) 

, , ,

up

w s p tg  Electricity purchased in the balancing market (MW) 

, , , ,w s p b tG  Electricity sold (positive) or purchased (negative) in the day-ahead market (MW) 

, , , ,w s p b tu  Binary variable equals to 1 if battery b is charged, and 0 otherwise 

, , , ,w s p b tv  Binary variable equals to 1 if battery b is discharged, and 0 otherwise 

, , ,w s p t
x  Binary variable equals to 1 if the CTPP is on, and 0 otherwise 

, , ,w s p ty  Binary variable equals to 1 if the CTPP is started up at the beginning of the time period, and 0 

otherwise 

ζ  Auxiliary variable for computing the CVaR (€) 

, ,w s pη  Auxiliary variable for computing the CVaR (€) 

 

1. Introduction 

Renewable energy technologies have caught great attention in recent years because of the growing 

environmental consciousness. Various investment and incentive schemes in this field have been carried 

out worldwide, especially in wind power and photovoltaic (PV) generations [1, 2]. However, the inherent 

fluctuation and volatility characteristics of wind power and PV generations have brought significant 

instability to power systems and the profit obtained by individual agents is usually lower than some other 

advanced energy generations. Besides, it is risky for the owners of wind power plants (WPPs) and PV 

plants to trade in electricity markets since the imbalance costs are inevitable and the incentive schemes are 

not desirable within a contracted time limit [3, 4]. Consequently, renewable energy sources, energy storage 

systems (ESSs) and dispatchable power plants are combined to form a single virtual power plant (VPP). 

This unique aggregation not only can overcome the uncertainties of intermittent renewable generations and 

improve the power quality, but also enable the VPP agent to make more profits. Studies on the 

collaborative scheduling optimization, risk aversion and the ESS utilization have been investigated for 

VPP management in recent years [5-9]. 

The main goal for a VPP agent is to optimize the scheduling and make profit. A short-term offering 

model for a VPP based on stochastic programming was presented in [10] to maximize its expected profit 

in both the day-ahead and balancing electricity markets. Considering the long-term bilateral contracts, 

Hrvoje Pandžić et al. proposed a VPP model containing a pumped hydro storage plant to optimize the 

profit [11]. Nevertheless, the risk of actual profit is not tackled in the aforementioned studies, and thus the 
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conditional value at risk (CVaR) was applied as a risk evaluation technique for a VPP model to lower the 

risk of low profit scenarios in electricity markets [12]. With a weighted CVaR, a coordinated trading of 

WPP and conventional thermal power plant (CTPP) was presented in [13], which significantly improves 

the expected profits in the lowest lucrative scenarios. Electric vehicles (EVs) have received significant 

attention as an emerging energy storage form for the VPP. An agent-based approach was presented in [14] 

to increase the profit of the VPP with a special payment for EVs participation. In order to analyse the cost 

and emission impacts caused by plug-in hybrid vehicles (PHEVs) application in the VPP, Okan Arslan et 

al. developed an energy management model for a VPP including PHEVs and distributed energy resources 

[15]. 

Although it is convenient and clean to use EV batteries as the ESS for a VPP, the battery lifespan 

limitation and wear and tear caused by frequent charging and discharging will bring remarkable impacts 

on VPP scheduling with EV batteries. An optimal control strategy was proposed in [16] for PHEV battery 

fleets to maximize the efficiency of the power-train as well as minimize the battery degradation cost. 

Furthermore, the correlations among charging/discharging patterns, depth of discharge (DoD), ambient 

temperature and the degradation cost of battery electric vehicle (BEV) batteries were formulated in [17] on 

the basis of rigorous mathematical analysis. Numerical results show that DoD and ambient temperature are 

two important factors which can cause considerable degradation cost to BEV batteries. 

So far, the influence of battery degradation cost on the optimal VPP scheduling in the day-ahead and 

balancing markets has not yet been studied. It is obvious that a battery has a limited lifespan, namely a 

cycle life, due to its inherent physical and chemical characteristics [18]. Factors such as DoD, ambient 

temperature, and high discharge currents play crucial roles in shortening the battery cycle life [19, 20], and 

thus lead to an inevitable cost to VPP participation. Although the degradation cost of a single battery can 

be negligible for simplicity, for a VPP comprising plenty of batteries, the degradation cost has a significant 

impact on the overall expected profit. Therefore, it is worth modelling the battery degradation cost in the 

VPP scheduling problem. Concerning the reviewed work, the main contribution of this paper is to 

incorporate the battery degradation cost into the proposed model and in-depth analysis of the effects of 

battery degradation cost on the VPP scheduling. 

A novel optimal scheduling model for a VPP is proposed in this paper. The battery fleets are used as 

the energy storage medium not only to compensate the fluctuation of WPP and PV generations, but also to 

provide optimal operations to maximize the expected profit. Using piecewise linearization methods, the 

VPP model with battery degradation cost, uncertain renewable generations and market price is formulated 

as a two-stage stochastic mixed integer linear programming (MILP). 
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2. Problem Formulation 

2.1 Uncertainty modeling 

 

Both the day-ahead and the balancing markets are considered in this paper to provide flexible 

electricity trade for a VPP operator. The VPP submits bids/offers to the day-ahead market for several 

hours (usually 10-14 hours) prior to the operation hour. The balancing market enables the VPP operator to 

purchase or sell electricity close to real time for regulating energy deviations caused by uncertain WPP 

and PV generations. Following current practice in European power market, a dual pricing scheme is 

provided for the VPP operator to purchase electricity in the balancing market at a price higher than that in 

the day-ahead market (up-regulation), and sell electricity in the balancing market at a price lower than that 

in the day-ahead market (down-regulation) [10, 12]. 

The VPP model consists of a WPP, a PV power plant, a CTPP and battery fleets. Since there are 

uncertainties in day-ahead market price, WPP and PV generations, it is important to predict them 

accurately for optimal scheduling of the VPP. Investigations on uncertainty prediction techniques of these 

uncertainties are abundant and fruitful [21-25]. In this paper, the historical data are used to form scenarios 

with equal probability of occurrence for modeling uncertainties [10, 11]. 

A classical two-stage stochastic programming is used to tackle the aforementioned uncertainties [26, 

27]. In the first stage, the VPP operator should make decisions on the amount of sold/purchased electricity 

in the day-ahead market, before all the uncertainties become known (here-and-now decisions). In the 

second stage, the VPP operator should decide the operations of the CTPP and battery fleets after the 

revelation of uncertainties (wait-and-see decisions). The goal of the VPP operator is to maximize the 

expected profit. A top-level flowchart of the two-stage stochastic programming is shown in Fig. 1. 
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Fig. 1.  Top-level flowchart of the two-stage stochastic programming 

2.2 Battery degradation cost 

 

Battery fleets are utilized in the VPP not only to tackle the intermittent renewable generations, but 

also to enable the VPP operator to sell electricity with high market prices. Several factors contribute to the 

battery degradation cost, while most of the previously reported studies only consider the DoD in the 

scheduling problems. Consequently, the DoD combined with ambient temperature is taken into account to 

model the battery degradation cost. 

Among the studies on battery degradation cost modeling [17, 28-30], this paper adopts the methods 

proposed in [17, 28], in which the battery degradation cost is formulated as the wear and tear for VPP 

participation due to the extra cycling under extreme ambient temperature and the change in DoD during 

charging/discharging periods. Besides, additional thermal management system and DoD deviation control 

aggregator are necessary in battery life regulation [31]. In this paper, the worst case that none of them are 

implemented is studied for better understanding the effect of battery degradation cost on optimal VPP 

scheduling. 

In this paper, the DoD can be formulated as follows, 

max

DoD 1 v

v

g

g
= −       (1) 

where vg  is the energy stored in the battery; maxvg  is the maximum energy capacity of battery [15]. 
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The studied battery fleets include lead-acid batteries and nickel metal hydride (NiMH) batteries. 

Using the data points provided by the manufacturer, the correlations between DoD and cycle life of the 

two types of batteries can be obtained using MATLAB curve fitting tool and expressed by (2) and (3), 

respectively. 

DoDlead acid lead acidL a b− −= +      (2) 

where a and b are coefficients of cycle life dependence on DoD; lead acidL − and DoDlead acid− are cycle life in 

the number of cycles and DoD of the lead-acid battery, respectively. Here, a=−4230 and b=4332. 

1

0 2

DoD DoD
( ) exp( (1 ))
DoD DoD

ref NiMH
NiMH

NiMH ref

L ββ β= −    (3) 

where 0β , 1β  and 2β  are coefficients of cycle life dependence on DoD; DoDref
, RL , DoDNiMH  and NiMHL  

are the rated DoD, rated cycle life, DoD and cycle life of the NiMH battery, respectively. In this paper, 

0 1400β = , 1 0.886β =  and 2 0.3997β = − were obtained from the curve fitting results. 

The correlations between ambient temperature and cycle life for the two types of batteries can be 

obtained by experimental data and curve fitting method, as showed in (4) and (5), respectively. 

exp( )lead acidL k Tα− =       (4) 

where k  and α  are coefficients of cycle life dependence on the temperature; lead acidL −  and T are cycle life 

in the number of cycles of the lead-acid battery and ambient temperature in degree centigrade, respectively. 

In this paper, k=3291 and 0.05922α = − . 

3 2

NiMHL aT bT cT d= + + +      (5) 

where a, b, c and d are coefficients of cycle life dependence on temperature; NiMHL  and T are cycle life in 

the number of cycles of the NiMH battery and ambient temperature in degree centigrade, respectively. In 

this paper, a=0.002424, b=0.4879, c=6.742 and d=1524. 

As an example, the correlations among ambient temperature and cycle life, DoD and cycle life of the 

NiMH battery are presented in Fig. 2a and Fig. 2b, respectively. As shown in the figures, the cycle life is 

inversely proportional with both DoD and ambient temperature. In other words, deep discharging and high 

ambient temperature can notably shorten the cycle life. It is important to note that the cycle life reduces 

more with the increase of DoD than that of temperature. 
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a 

 

b 

Fig. 2.  The correlations among DoD, ambient temperature and cycle life of the NiMH battery 

a The correlation between ambient temperature and cycle life of the NiMH battery 

b The correlation between DoD and cycle life of the NiMH battery 

 

Using the model proposed by Kempton [28], the degradation cost vC  is defined as, 

DoD

b
v

N v ref

C
C

L E
=

⋅ ⋅
      (6) 

where bC  is the battery capital cost in € considering replacement labour; NL  is the battery lifespan in 

number of cycles; vE  is the total energy storage of the battery in kWh, and DoDref
 is the reference DoD. 

NL  and vE  can be calculated under a reference condition (ambient temperature 20 CT = ° , DoD 80%ref = ). 

In this paper, the overall effect of ambient temperature and DoD on the battery lifespan is defined as, 
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VPP
ATEM ADoD

R

L L
L

L

⋅
=       (7) 

where VPPL  is the battery lifespan with VPP participation; RL  is the rated battery cycle life estimated by 

manufactures under rated ambient temperature and DoD; ATEML  and ADoDL  are the actual cycle life of a 

battery respectively, which can be acquired from (2)−(5). 

Hence, the battery degradation cost with VPP participation considering the overall effect of ambient 

temperature and DoD can be expressed as, 

VPP

VPP DoD

b

v ref

C
C

L E
=

⋅ ⋅
     (8) 

The degradation cost of lead-acid battery can be obtained from (2), (4), (7) and (8), which is defined by, 

VPP
( DoD ) exp( ) DoD

lead acid b R

lead acid v ref

C L
C

k a b T Eα
−

−

⋅
=

⋅ + ⋅ ⋅ ⋅
    (9) 

Moreover, the degradation cost of NiMH battery can be obtained from (3), (5), (7) and (8), which is 

presented by, 

1

VPP

3 2

0 2

DoD DoD
( ) exp( (1 )) ( ) DoD
DoD DoD

NiMH b R

ref NiMH
v ref

NiMH ref

C L
C

aT bT cT d E
ββ β

⋅
=

⋅ ⋅ ⋅ − ⋅ + + + ⋅ ⋅

 (10) 

2.3 Formulation 

 

The objective function of optimal VPP scheduling model with battery degradation cost is formulated 

as follows: 

max 
, , , , , , , , , ,

, , , , , , , , , ,

[ ( )

]

w s p

down up

w s p p t w s p t w s p t down w s p t up

t T w n s n p n

C B

w s p t w s p t c w s p b t

G g g

C y S C

π π π λ ϕ ϕ
∈ ∈ ∈ ∈

⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅

− − ⋅ −

∑∑ ∑ ∑
                       (11) 

subject to: 

, , , , , , 1 , , ,w s p t w s p t w s p tx x y−− ≤  , , ,w s pw n s n p n t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
                                         

(12) 

min , , , , , , max , , ,

c c c

w s p t w s p t w s p tg x g g x⋅ ≤ ≤ ⋅  , , ,w s pw n s n p n t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
                            

(13) 

, , , , , , 1

c c

w s p t w s p trd g g ru−− ≤ − ≤               , , ,w s pw n s n p n t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                             (14) 

min

, , ,

1

0
downL

w s p t

t

x
=

=∑                                       , ,
w s p

w n s n p n∀ ∈ ∀ ∈ ∀ ∈                                         (15) 
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min 1
min

, , , , , , 1 , , ,(1 ) ( )
downt T

w s p t down w s p t w s p t

t t

x T x x
+ −

′ −
′=

− ≥ ⋅ −∑  , , ,w s pw n s n p n∀ ∈ ∀ ∈ ∀ ∈
 

min min[ 1, 1]down downt L T T∀ ∈ + − +                         (16) 

' , , , 1 , , ,, , ,
[1 ( )] 0

T

w s p t w s p tw s p t
t t

x x x−
′=

− − − ≥∑  
min

, , , [ 2, ]w s p downw n s n p n t T T T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ − +      (17) 

min

, , ,

1

(1 ) 0
upL

w s p t

t

x
=

− =∑               , ,w s pw n s n p n∀ ∈ ∀ ∈ ∀ ∈                                                      (18) 

min 1

min

, , , , , ,

upt T

w s p t up w s p t

t t

x T y

+ −

′
′=

≥ ⋅∑  
min min

, , , [ 1, 1]w s p up upw n s n p n t L T T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ + − +           (19) 

, , , , , ,( )] 0
T

w s p t w s p t

t t

x y
′=

− ≥∑  
min

, , , [ 2, ]w s p upw n s n p n t T T T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ − +                  (20) 

min , , , , maxb w s p b t bg g g≤ ≤     , , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                           (21) 

, , , ,0 ,0w s p b bg g=                  , , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                           (22) 

, , , , , , , , 1w s p b t w s p b tu v+ ≤         , , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                           (23) 

, , , , , , , ,0 w s p b t b w s p b tg uδ+ +≤ ≤ ⋅  , , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                          (24) 

, , , , , , , ,0 w s p b t b w s p b tg vδ− −≤ ≤ ⋅  , , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                          (25) 

, , , , , , , , 1 , , , , , , , ,

1
w s p b t w s p b t b w s p b t w s p b t

b

g g g gη
η

+ + −

− −
= + ⋅ − ⋅    , , , ,

w s p
w n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈  (26) 

, , , , , , , , , , , , , , , , , , , , , ,

c up donw

w s p t w t s t w s p t w s p b t w s p t w s p t w s p b t

b B b B

g g g g g G g g− +

∈ ∈

+ + + + = + +∑ ∑  

, , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈            (27) 

1,1, , 1,2, , 2,2, , , , ,w sp t p t p t n n p tG G G G= ⋅⋅⋅ = ⋅ ⋅⋅ =      ,pp n t T∀ ∈ ∀ ∈                                                     (28) 

, , , , , , , , , , , , , ,, , , {0, 1}w s p t w s p t w s p b t w s p b tx y u v ∈      , , , ,w s pw n s n p n b B t T∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈           (29) 

In the above formulation, the expected profit of the VPP is maximized by the objective function (11) 

which includes electricity sold/purchased in the day-ahead market (
, , ,w s p tG ), sold in the down-regulation 

balancing market ( , , ,

down

w s p tg ) and purchased in the up-regulation balancing market ( , , ,

up

w s p tg ), as well as the 

fuel cost ( , , ,

C

w s p tC ) and start-up cost (
, , ,w s p t cy S⋅ ) of the CTPP and the battery degradation cost ( , , , ,

B

w s p b tC ). 
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Here, 
upϕ  and downϕ  are up-regulation price ratio and down-regulation price ratio, respectively. In this 

paper, 1.3upϕ =  and 0.7downϕ = . 

Constraints of the CTPP are presented in (12)−(20). Constraint (12) denotes the correlation between 

binary 
, , ,w s p tx  and 

, , ,w s p ty . 
, , ,w s p tx  equals to 1 if the CTPP is on, and 0 otherwise. 

, , ,w s p ty  equals to 1 if the 

CTPP is started up, and 0 otherwise. Constraint (13) presents the minimum and maximum power output 

limits of the CTPP. Constraint (14) enforces the ramp rate limits. Minimum-down time constraints are 

expressed in (15)−(17), indicating that if the CTPP is switched off, it has to remain off for min

downT  hours. 

Constraint (15) enforces the CTPP to stay off for min

downL  hours if the CTPP has already been off at hour 0. 

Then, the minimum-down time constraint for all combinations of consecutive hours of size min

downT  is 

enforced by constraint (16). Constraint (17) is used to meet the minimum-down time constraint for the last 

min 1downT −  hours. Constraints (18)−(20) enforce the minimum-up time constraint in a similar manner as 

described above. 

Constraints (21)−(26) are related to the battery fleets. Constraint (21) enforces the minimum and 

maximum energy storage limits for each battery. The initial energy stored in each battery is stated by 

constraint (22). Constraint (23) describes the fact that charging and discharging cannot be done 

simultaneously. 
, , , ,w s p b tu  and 

, , , ,w s p b tv  are binary variables. 
, , , ,w s p b tu  equals to 1 if battery b is charged, and 0 

otherwise. 
, , , ,w s p b tv  equals to 1 if battery b is discharged, and 0 otherwise. Constraints (24) and (25) enforce 

the maximum charging and discharging power of each battery, respectively. Constraint (26) declares the 

energy stored in each battery between two consecutive periods. 
bη
+  and 

bη
−  are the charging and 

discharging efficiency of each battery, respectively. 

Constraint (27) is the energy balance equality constraint. It indicates that the electricity generated by 

CTPP, WPP and PV power plant, plus the electricity purchased in the balancing market and the electricity 

discharged from battery fleets, equals to the electricity sold (
, , ,

0
w s p t

G ≥ ) or purchased (
, , ,

0
w s p t

G ≤ ) in the 

day-ahead market plus the electricity sold to the balancing market and the electricity charged to battery 

fleets. Constraint (28) denotes that 
, , ,w s p t

G  is only related to the time and day-ahead market prices, 

ensuring that only one bidding curve is submitted to the day-ahead market in each hour, irrespective of the 

WPP and PV power outputs. Finally, binary variables are defined by constraint (29). This model 

guarantees a flexible operation for the CTPP and battery fleets to meet the realization of various scenarios. 
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3. Case Studies 

In this paper, the operator aims to find the optimal scheduling decisions for a VPP considering 

battery degradation cost. A WPP, a PV power plant, a CTPP and the battery fleets are combined to form 

the VPP. 

 

3.1 Simulation environment 

 

The considered time horizon is 24 hours, and the characteristics of the CTPP are shown in Table 1. 

In order to linearize the model, a 2-block piecewise linear function is used to approximate the quadratic 

CTPP fuel cost function. It is assumed that the CTPP has been shut up for 1 hour (i.e., 1init

downT = ) before the 

considered time horizon. 

5 equiprobable WPP power output scenarios based on historical data are showed in Fig. 3a. These 

data are obtained from a WPP with rated capacity of 10.2 MW, located in Weybourne, Norfolk coast area 

of UK. Fig. 3b presents 5 equiprobable power output scenarios of a PV power plant with rated capacity of 

10 MW. They are formed using historical data collected from EEX transparency platform [32]. Fig. 3c 

shows 5 equiprobable day-ahead market price scenarios based on real data obtained from APX Power UK 

[33]. 

Table 2 shows the characteristics of the two studied batteries. The correlations among degradation 

cost, DoD and ambient temperature of the lead-acid battery are presented in Fig. 4a, and Fig. 4b is related 

to NiMH battery. As shown in the two figures, degradation cost increases with rising ambient temperature 

and DoD due to the reduction of cycle life. Besides, degradation cost of NiMH battery is lower comparing 

with that of lead-acid battery in the same ambient temperature and DoD. Fig. 4c and 4d show the 

correlation between degradation cost and DoD of the lead-acid battery and NiMH battery under different 

ambient temperature, respectively. The two figures indicate that with the same DoD, high ambient 

temperature causes high degradation cost. Besides, degradation cost increases logarithmically with the 

increase of DoD for the lead-acid battery but exponentially for the NiMH battery. Piecewise linear 

functions are used to fit the nonlinear degradation cost function in order to keep linearity of this model 

[15]. Battery fleets in this paper are composed of 500 lead-acid batteries (battery fleet a) and 500 NiMH 

batteries (battery fleet b), thus the maximum and minimum capacity of the battery fleets are 28.935 MWh 

and 3.215 MWh, respectively. It is assumed that the initial energy storage of the battery fleets is 3.215 

MW. In this paper, the degradation cost is counted only when the battery fleets are operated by the VPP 

operator. 
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Table 1  CTPP data 

a (MBtu/ 

MW2h) 

b (MBtu/ 

MWh) 

c 

(MBtu) 

Start-up Fuel 

(MBtu) 

Fuel Price 

(€/MBtu) 

Pmax 

(MW) 

Pmin 

(MW) 

Min-up 

(h) 

Min-down 

(h) 

Ramp 

(MW/h) 

0.0029 6.05 40.53 20.14 1 16 3.5 3 3 5 

Table 2  Battery data 

Characteristics Lead-acid battery NiMH battery 

Rated capacity, kWh 28.3 36 

Maximum capacity, kWh
a
 25.47 32.4 

Minimum capacity, kWh
a
 2.83 3.6 

Initial energy storage, kWh 2.83 3.6 

Maximum charging/discharging power, kWh
a
 5.66 7.2 

Charing/discharging efficiency, % 91.4 92.5 

Rated depth of discharge, % 80 70 

Capital cost, € 2716.8 4032 

Cycle life, cycles
b
 1000 1500 

a For prolonging battery lifespan, the maximum and minimum capacity are set to be 90% and 10% of the rated capacity, 

respectively. Additionally, the maximum charging/discharging power could not exceed 20% of the rated capacity [14]. 

b Assuming the ambient temperature is 20℃. 
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b 

 

c 

Fig. 3.  5 WPP power output, 5 PV plant power output and day-ahead market price scenarios 

a 5 WPP power output scenarios 

b 5 PV plant power output scenarios 

c 5 day-ahead market price scenarios 
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d 

Fig. 4. The correlations among degradation cost, ambient temperature and DoD of the lead-acid battery and NiMH battery 

a The correlations among degradation cost, ambient temperature and DoD of the lead-acid battery 

b The correlations among degradation cost, ambient temperature and DoD of the NiMH battery 

c The correlation between degradation cost and DoD of the lead-acid battery under different ambient temperature 

d The correlation between degradation cost and DoD of the NiMH battery under different ambient temperature 

 

3.2 Computational results 

 

Assuming the ambient temperature is 20℃, Fig. 5 presents the expected hourly and cumulative 

profit of the VPP together with the hourly and cumulative degradation cost in case 1 (with battery 

degradation cost) and case 2 (without battery degradation cost). In hour 1, the initial energy stored in the 

battery fleets is discharged to sell in the day-ahead market in case 2. While in case 1, no electricity is 

discharged from the battery fleets to avoid the degradation cost, resulting in lower profit than case 2. Since 

the day-ahead market prices are the lowest in the following 4 hours, the electricity produced by the VPP is 

used to charge the battery fleets in both of the two cases. From hour 6 to 24, the hourly profits vary with 

the day-ahead market prices. In other words, electricity produced by the VPP is sold in the day-ahead 

market when the market prices are high but used to charge the battery fleets when the market prices are 

low. Comparing to case 2, the profits in most of these hours are lower in case 1 due to the degradation cost. 

In hour 2, 4, 5, 14, 15, 16 and 22, the profits in case 1 are higher than case 2, because the VPP operator 

chooses to charge the battery fleets during these hours in case 2 while sells electricity to day-ahead market 

in case 1 for averting the degradation cost. Besides, degradation cost in hour 3, 8, 12, 15 and 21 increases 

owning to the fact that market prices start to fall during these hours and battery fleets are used to store the 

electricity. The highest profits of both the two cases are acquired in hour 18 because of the highest market 

prices in most scenarios. The expected daily profit of the VPP is 23,841.65 € but falls to 20,839.87 € (i.e., 
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a 12.59% reduction) when battery degradation cost is counted. It is worth to note that the overall 

degradation cost throughout the day is 779.17 € which is not the difference between the expected daily 

profits of the two cases. Because degradation cost has significant impacts on the optimal VPP decisions, 

which will be illustrated in the following sections. 

Electricity sold in the day-ahead market for different market price scenarios in the two cases is 

shown in Fig. 6a and 6b, respectively. As shown from Fig. 6a, electricity sold in hour 5 is higher than that 

of the contiguous few hours, since the CTPP starts to generate power with its maximum capacity in hour 5. 

While in the following few hours, electricity is used to charge the battery fleets. It is important to note that 

for all scenarios in case 1, the largest amount of electricity is sold in hour 16 rather than in hour 18 which 

exhibits the highest market price. This is because market price begins to rise from hour 16 in most of the 

scenarios, and thus the battery fleets are fully discharged for selling electricity in the day-ahead market, 

causing a significant increase of DoD as well as the battery degradation cost. As a result, the VPP operator 

tries to discharge less electricity from the battery fleets in order to realize optimal scheduling, though 

market prices become higher during the next few hours. As shown in Fig. 6b, in most of the 5 scenarios, a 

large amount of electricity is sold in the day-ahead market in hours 16-20 due to high market prices during 

these periods. On 1 Apr. and 18 Aug., the largest amount of electricity sold to the day-ahead market 

appears in hour 11. Since power output of the PV plant on 18 Aug. is the largest and market prices in the 

same day varies a bit from hour 11 to 21, the VPP operator is willing to sell the electricity in the day-ahead 

market rather than charge the battery fleets or sell it to the balancing market. Furthermore, the market price 

on 1 Apr. has a sudden rise in hour 11, and thus nearly all the energy stored in the battery fleets during the 

previous 10 hours is sold to the day-ahead market. Comparing Fig. 6a with 6b, the most significant 

difference is that electricity sold to the day-ahead market in case 1 varies less with market prices than that 

in case 2. Since the degradation cost is inevitable in case 1, the VPP operator opts to reduce the operation 

of the battery fleets, and utilize balancing market to sell/purchase more electricity to maximize the profit. 

Moreover, the results in the two figures indicate that electricity sold to the day-ahead market is directly 

proportional with the market price. In other words, more electricity is sold when the market price is high, 

and less electricity is sold otherwise. 

In order to thoroughly understand the effect of battery degradation cost on the optimal scheduling of 

the VPP, the following four scenarios in the two cases are simulated and analysed in detail: 

1. low variation of WPP and PV output, low day-ahead market prices; 

2. low variation of WPP and PV output, high day-ahead market prices; 

3. high variation of WPP and PV output, low day-ahead market prices; 
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4. high variation of WPP and PV output, high day-ahead market prices. 

 

 

Fig. 5  Expected hourly and cumulative profit of VPP together with the hourly and cumulative degradation cost in the two cases 

 
Assuming that in Fig. 7 and 8, a positive value of the day-ahead market curve indicates the 

electricity is sold, a positive value of the balancing market curve indicates electricity is purchased and a 

negative value of the battery fleet means it is charged. Besides, WPP, PV and CTPP power output are 

always positive. 

Fig. 7a and 7b show the optimal scheduling results of the VPP in the first simulation scenario for 

case 1 and 2, respectively. A comparison between the two figures indicates that, in order to perform the 

offering commitments to the day-ahead market, extra electricity (43.63MWh) is purchased by the VPP 

operator throughout the day in the balancing market in case 1. The CTPP in case 1 produces electricity at 

its full capacity during hours 10-23 while the CTPP in case 2 produces less electricity due to low day-

ahead market prices. During the considered time horizon, the overall electricity sold to the day-ahead 

market is 355.26 MWh in case 1 while 231.95 MWh in case 2, which causes a significant reduction of 

profit in case 1 due to the low day-ahead market price scenario. Since battery degradation cost is counted 

in case 1, the VPP operator chooses to purchase electricity in the balancing market and schedule the CTPP 

generate more electricity to sell in the day-ahead market during periods of high prices instead of operating 

the battery fleets. In other words, the balancing market and CTPP perform like the ESS in case 1. The 
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overall electricity flowing through the battery fleets in case 1 is 31.48 MW while in case 2 is 75.86 MW. 

This is because the VPP operator in case 1 tries to use the battery fleets as little as possible to reduce the 

degradation cost. In addition, battery fleet a in case 1 is not frequently used compared with battery fleet b 

since the degradation cost of lead-acid battery is higher than that of NiMH battery. 

The optimal scheduling results of the VPP in the second simulation scenario in case 1 and 2 are 

presented in Fig. 7c and 7d, respectively. It can be seen from the two figures, a large amount of electricity 

is sold to the day-ahead market in both of the two cases because of the high market prices. The CTPP stays 

on-line all day long and generates electricity at its maximum capacity in order to accomplish the offering 

commitments. Electricity purchased in the balancing market during hours 1-3 and 5-24 in case 1 is only 

for selling in the day-ahead market. However, in case 2, a part of the electricity purchased in the balancing 

market is employed to charge the battery fleets for more profit. It is important to note that the electricity 

sold to the day-ahead market during periods of high market prices (hours 8-12 and 16-21) in case 2 is 

249.02 MWh, nearly 58% of the total electricity sold to the day-ahead market. While in case 1, this 

percentage is 54%. This is because in case 2, battery fleets are charged in periods of low market prices and 

discharged in high market prices, while they are hardly discharged in case 1 for averting the degradation 

cost. 

The results of the third simulation scenario are depicted in Fig. 8a and 8b. As shown in Fig. 8a, a 

large number of the WPP generations are sold to the balancing market, and the rest parts are either sold to 

the day-ahead market or used to charge the battery fleets. As mentioned before, selling electricity to the 

balancing market is less profitable than selling it to the day-ahead market. Nevertheless, since 
, , ,w s p tG  is 

independent of the WPP generation, the VPP operator is necessary to sell electricity to the balancing 

market rather than to the day-ahead market in some cases. Although the profit will be decreased in this 

scenario, the overall performance of the scheduling is optimum. Since battery fleets are seldom discharged 

in case 1, nearly all of the PV generations are sold to the day-head market and the CTPP is on-line for the 

whole day apart from hour 1 to fulfil offering commitments. As the result of degradation cost, the battery 

fleets are charged during hours 3, 6-10 but discharged only at hours 15-16. Comparing with case 1, the 

battery fleets in case 2 are more frequently operated to store electricity at periods of low market prices and 

sell it at high market prices with the purpose of optimized scheduling. Furthermore, the electricity sold to 

the balancing market in case 2 is less than case 1, which brings higher profit in case 2. The CTPP stays on-

line only for 7 hours in case 2 due to low day-head market prices. 

Fig. 8c and 8d depict the results of the fourth simulation scenario. Due to high market prices, the 

electricity sold to the day-ahead market in the fourth simulation scenario is higher than that in the third 
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simulation scenario in both case 1 and 2, which reaches 429.35 MWh and 450.28 MWh, respectively. The 

results in Fig. 8c indicate that balancing market in case 1 is mainly used to tackle the imbalances between 

electricity production and electricity traded in the day-ahead market caused by the WPP and PV 

generations. While in case 2, the WPP and PV generations are utilized mostly for charging the battery 

fleets. Moreover, in order to reduce the degradation cost, battery fleets in case 1 are charged during hours 

3, 6-8 and 12, which exhibit the periods of low market prices but discharged only a small amount of 

electricity (1.82 MWh) during period of high market prices (hour 19), though this brings a negative impact 

on the overall profit comparing with case 2. As a result of high day-ahead market prices, the CTPP in both 

of the two cases is running at its full capacity until hour 24. 
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b 

Fig. 6  Electricity sold to the day-ahead market in different market price scenarios in the two cases 

a Electricity sold to the day-ahead market in different market price scenarios in case 1 

b Electricity sold to the day-ahead market in different market price scenarios in case 2 
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d 

Fig. 7  The optimal scheduling results of the VPP in the first and second simulation scenarios in the two cases 

a The optimal scheduling results of the VPP in the first simulation scenario in case 1 

b The optimal scheduling results of the VPP in the first simulation scenario in case 2 

c The optimal scheduling results of the VPP in the second simulation scenario in case 1 

d The optimal scheduling results of the VPP in the second simulation scenario in case 2 
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Fig. 8  The optimal scheduling results of the VPP in the third and fourth simulation scenarios in the two cases 

a The optimal scheduling results of the VPP in the third simulation scenario in case 1 

b The optimal scheduling results of the VPP in the third simulation scenario in case 2 

c The optimal scheduling results of the VPP in the fourth simulation scenario in case 1 

d The optimal scheduling results of the VPP in the fourth simulation scenario in case 2 

 

The ambient temperature in the aforementioned two cases is assumed to be 20℃. However, in the 

real world, ambient temperature varies across a day and various areas. The expected profits of the VPP 

containing two types of battery fleets under different ambient temperatures are showed in Fig. 9. Battery 

fleets 1 contains 1000 lead-acid batteries and battery fleets 2 contains 1000 NiMH batteries. It is assumed 

that the initial energy storages of the two battery fleets are 2.83 MW and 3.6 MW, respectively. The 

results in Fig. 9 indicate that the expected profit decreases with the increase of ambient temperature, 

because with the same DoD, high ambient temperature causes high degradation cost for both lead-acid and 

NiMH batteries. Moreover, as a result of the logarithmical correlation between ambient temperature and 

degradation cost for lead-acid battery, when the ambient temperature increases, the expected profit of VPP 

containing battery fleets 1 has more reduction compared with the VPP containing battery fleets 2. 
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Fig. 9  The expected profit of the VPP containing two types of battery fleets under different ambient temperatures 

 

The above optimal scheduling results and expected profit are obtained from the risk-neutral model 

(11) without consideration of a risk measure. Nevertheless, due to the uncertainties in renewable 

generations and day-ahead market prices, the VPP agent has high risks associated with decisions trading in 

the electricity market. Therefore, the optimal scheduling decisions should hedge against these uncertainties 

to be more profitable while controlling the profit variability within a moderate range. In this paper, the 

CVaR at the α  confidence level (CVaRα ) is used as the risk measure to assess and control the risk of the 

scheduling decisions, since it has good mathematical properties and can be readily included into the risk-

neutral model. The CVaR is defined approximately as the expected profit of the (1 ) 100%α− ⋅  least 

profitable scenarios when it maximizes a discrete profit distribution [13]. 

Consequently, the objective function with risk measure can be formulated as follows, 
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The objective function (30) includes the expected profit of the VPP and the weighted CVaR. 

Constraint (31) is used to calculate the CVaR. Constraints (32) and (33) are linear formulation of the 

CVaR. [0, )β ∈ ∞  is a weighting parameter used to define the tradeoff between expected profit and risk 

averse. If the risk is neglected, i.e. 0β = , the VPP scheduling model becomes a risk-neutral one. As the 

β  increases, more risk averse will be considered by the VPP agent with regard to the expected profit. 

By assuming 0.4β = and 95%α = , the expected daily profit of the VPP considering risk measure in 

case 1 is 19722.86 €, which is lower than 20839.87 € in the risk-neutral case ( 0β = ). This is because the 

CVaR aims to maximize the expected profit of the least profitable scenarios at the expense of a moderate 

reduction in the expected profit. In other words, the risk of experiencing profit distributions with high 

probability of low profit is controlled by the CVaR. Fig. 10 shows the efficient frontier, i.e., a collection of 

optimal points obtained for different values of β . As can be seen from Fig. 10, the CVaR increases 

significantly with a moderate reduction of expected profit when β  increases. For example, a 37.6% 

increment of the CVaR indicates only a 6.9% reduction of the expected profit when β  is increased from 0 

to 0.5. Fig. 10 also shows that a small value of β  yields the scheduling decisions with high expected profit 

and high risk while a large value of β  represents scheduling decisions with smaller expected profit and 

smaller risk. 

 

Fig. 10  Efficient frontier 
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The proposed model contains 102,121 variables (18,000 binaries) and 89,750 constraints, which is 

solved by IBM ILOG CPLEX Optimization Studio
®

 Version 12.6 on a desktop with 3.40 GHz core i7 

processor and 16.0 GB RAM. The overall computational time is about 3 min 54 s. 

As a mathematic optimization software package, CPLEX can efficiently solve linear programming 

problems, quadratic programming problems, mixed integer programming problems, quadratically 

constrained problems, etc. Although various evolutionary algorithms and stochastic search algorithms 

have been widely applied to solve the optimization problems, these approaches have the disadvantages of 

time-consuming iterative computations and performance instability. The proposed VPP model is a large-

scale MILP problem which cannot be efficiently solved by most of the intelligent heuristic algorithms. 

Therefore, the CPLEX is utilized to cope with the proposed MILP model. A comparison among the results 

obtained with different MILP solving algorithms is presented in Table 3. 

 
Table 3  A comparison among the results obtained with different MILP solving algorithms 

Algorithms Computational time Iterations Gap (%) Objective 

Branch and cut 264.30s 52262 6.60 20839.8676 

Dynamic search 259.98s 55729 6.59 20839.8676 

MILP heuristic 234.89s 49418 5.48 20839.8676 

Relaxation induced  

neighborhood search heuristic 
314.86s 59592 5.36 20839.8676 

 

As shown in Table 3, the optimized objective value of each algorithm is the same. Although the 

branch and cut algorithm is a high performance technique for solving various MILP problems, it suffers 

from relative high gap tolerance and long computational time compared with other algorithms. Among the 

four algorithms, MILP heuristic has the highest efficiency on the computational time, the fewest iterations 

and relative lower Gap. Hence, the MILP heuristic algorithm is used to solve the proposed VPP model in 

this paper. 

4. Conclusions 

In this paper, a two-stage stochastic MILP is developed to achieve the optimal scheduling for a VPP 

with battery degradation cost. Battery fleets including lead-acid and NiMH batteries are utilized as the 

ESS. Furthermore, DoD and ambient temperature are used to model the battery degradation cost. Through 
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the comprehensive analysis for the effects of degradation cost on optimal VPP scheduling and detailed 

comparison between the two cases, the following conclusions can be drawn. 

(1) Electricity sold/purchased in the day-ahead market at each hour varies less with market prices. In 

other words, as a result of battery degradation cost, battery fleets are not frequently used to be charged or 

discharged. 

(2) In order to make profit, the CTPP is more committed even in case of low day-ahead market 

prices, since the fuel cost of CTPP is cheaper than the battery degradation cost. Therefore, more electricity 

is sold to the day-ahead market in case of low market prices. 

(3) Since the battery fleets are less operated, the VPP operator purchases more electricity in the 

balancing market and sold it to the day-ahead market in case of low variation of WPP and PV power 

outputs. Furthermore, with the high variation of WPP and PV generation outputs, the balancing market is 

mainly used to compensate the volatile generation. 

(4) The batteries with lower degradation cost are more dispatched by the VPP operator to reduce the 

degradation cost and maximize the overall expected profit. 

(5) Higher ambient temperature causes lower expected profit and the reduction is related to the 

correlation between ambient temperature and degradation cost of the battery. 

(6) The risk measure can help VPP agent hedge against the uncertain renewable generations and 

market prices to achieve optimal scheduling of the VPP while controlling the profit variability within a 

moderate range. 
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