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Abstract—The recently-developed Two-sided Arnoldi and 
Sensitive Pole Algorithm (TSA-SPA) is effective and robust in 
computing the most sensitive eigenvalues with respect to control 
parameter changes in large-scale power systems. This paper 
extends the TSA-SPA to handle different system parameters, 
including control, system operating and network parameters. The 
proposed algorithm makes use of perturbation in reduced matrix 
obtained from Arnoldi/TSA method through linearization and 
successfully avoids the need for TSA-SPA to formulate the whole 
state matrix of the system and to explicitly calculate the elements’ 
variations in system state matrix. A new deflation method is also 
proposed and adopted in the generalized algorithm to find other 
sensitive eigenvalues. Simulation results illustrate that the 
generalized algorithm is able to not only maintain the excellent 
properties of TSA-SPA in terms of convergence and robustness, 
but also consider various parameter changes effectively in large-
scale power systems. 

 

Index Terms—Eigenvalues, sensitivity, large-scale power 
systems, small-signal stability problems. 

I. INTRODUCTION 

IGENVALUE methods are an effective means to analyze 
oscillation problems in power systems [1-10]. The 

traditional model-based methods, which perform the 
eigenvalue analysis through linearizing the dynamic model of 
the power system, have been widely used. With the advent of 
phasor measurement unit (PMU) technology, measurement-
based modal analysis methods [11-12] have been proposed 
recently. Real-time signals measured from PMUs are analyzed 
to estimate dominant eigenvalues and correlations between 
dominant eigenvalues and changes of system operating 
conditions can also be established. Measurement-based 
methods have successfully solved the problems of model-based 
methods, including uncertainty of models and long computing 
time, but their performance and system information entirely 

 
 

depend on the signals captured by PMUs. Observability of 
PMUs on dominant eigenvalues changes with operating 
conditions. Development of a reliable monitoring system with 
a suitable number and locations of PMUs to robustly capture 
dominant and specified eigenvalues is a very challenging task. 
Besides, measurement based methods may not capture the well-
damped eigenvalues which can provide useful information to 
the operator. Research on both model-based and measurement-
based methods is necessary to achieve complementary solutions 
although this paper focuses on model-based methods. 

Based on the linearized power system model, complete 
eigenvalues computation can be realized by the well-known QR 
method, which has high numerical stability and accuracy. When 
applied to large systems, it becomes inefficient owing to it 
being incapable of incorporating sparsity techniques [13]. 
Moreover, in most applications, there is no need to calculate the 
whole set of eigenvalues like the QR method does. Therefore, 
selective eigenvalue computation methods have been 
developed to focus on calculating only some eigentriples 
(eigenvalues and the corresponding right and left eigenvectors) 
of interest. Analysis of Essentially Spontaneous Oscillations in 
Power Systems (AESOPS) [14] and the subsequent Program for 
Eigenvalue Analysis of Large Systems (PEALS) algorithm [15] 
are proposed to compute electro-mechanical modes of 
oscillation for large power systems. S-Method [16] is efficient 
for finding the unstable modes. Sequential Two-stage Eigen 
analysis for Power Systems (STEPS) [17] can be used for 
computing eigenvalues for a small study zone. Dominant Pole 
Algorithm (DPA) effectively computes the eigenvalues 
dominant in power system transfer functions [18]. 

Eigenvalue sensitivity analysis can evaluate the impact of 
system parameters’ changes on the specified eigenvalues, 
which are related to oscillation problems, and provide a 
guideline on the magnitude and direction of the parameters’ 
changes to solve the problems. These system parameters 
include control parameters of controllers; system operating 
parameters, such as generators’ outputs and loads; and system 
network parameters, such as reactance of transmission lines. 
Eigenvalue sensitivity has been widely applied in control 
coordination, generation redispatch and other applications in 
power system analyses. In large-scale power systems, 
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eigenvalues with high sensitivity with respect to system 
parameters are normally focused upon because only limited 
eigenvalues can be calculated. Sensitive Pole Algorithm (SPA) 
[19] has been proved successful for finding the most sensitive 
eigenvalues with respect to changes of control parameters in 
large-scale power systems. Arnoldi method [20] is a powerful 
method, which has been widely used for computing eigenvalues 
of large matrices in specified regions, through matrix reduction, 
but it uses one Krylov subspace in the calculation so only right 
eigenvectors can be computed. Two-Sided Arnoldi method 
(TSA) is a two-sides subspace method [17], which can 
effectively obtain both right and left eigenvectors. By 
integrating SPA with TSA, the Two-sided Arnoldi and 
Sensitive Pole Algorithm (TSA-SPA) [21] is proposed to 
compute sensitive eigenvalues for a specified region of interest 
in complex plane and the corresponding eigenvectors in a more 
efficient way, especially in large-scale power systems. 

However, both SPA and TSA-SPA are limited to changes of 
control parameters and they cannot be directly applied to other 
types of system parameters such as operating parameters and 
network parameters. To consider the perturbation on these 
system parameters, the whole state matrix needs to be formed 
explicitly and the sparsity of the state matrix is destroyed, 
making eigenvalue computation by either of the two methods 
infeasible for large-scale systems. 

This paper extends TSA-SPA to a generalized method, which 
can compute most sensitive eigenvalues with respect to 
different types of system parameters. The generalized method 
first reduces the initial problem to a much smaller dimension by 
using TSA and then the sensitive eigenvalues are computed in 
SPA by iterative vectors’ updating associated with the 
perturbation of the reduced matrix. Formulation of the whole 
state matrix is avoided and the generalized method is able to 
find the most sensitive eigenvalues to changes of different types 
of system parameters with excellent convergence and 
robustness. Finally, a new deflation method is developed to find 
several other sensitive eigenvalues with the generalized method. 

The rest of this paper is organized as follows. Section II 
covers background of the proposed algorithm. Section III 
introduces the generalized TSA-SPA algorithm. The 
effectiveness of the proposed algorithm is demonstrated in a 
small power system in Section IV and a large-scale power 
system in Section V. Finally, conclusions are provided in 
Section VI. 

II. BACKGROUND 

The mathematical model of a linearized single-input single-
output (SISO) dynamic system around an operating point can 
be expressed as [22]: 

�
�̇(�) = ��(�) + ����(�)

  ����(�) =  �∗�(�) + ����(�)
        (1) 

where � ∊ ��×�  is the state matrix, �(�) ∊ ��  is the state 
vector, ���(�) is the input variable, ����(�)  is the output 
variable, � ∊ ��  is the input column vector, � ∊ ��  is the 
output column vector and � ∊ �  is the direct transmission 
matrix of unit rank. Without loss of generality, � = 0 . 

Superscript * denotes the conjugated transpose function. 

A. Brief Overview of TSA-SPA 

Transfer function �(�) of the dynamical system in (1) can be 
expressed as a sum of residues � ∊ ℂ over finite first-order k 
poles. Commonly, poles with small residues are neglected due 
to the small influence on the transfer function [18]. 

1

( )
k

i

i i

R
s

s 




H           (2) 

where the residues are 

* *( )( )i i iR  c x y b           (3) 

and vectors �� , ��  denote the corresponding right and left 
eigenvectors, respectively, of pole ��. 

Besides, the eigenvalue sensitivity of a parameter p can be 
determined by: 
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The eigenvalue with the largest sensitivity can be calculated 
in SPA [19] by computing the pole with the largest residue of a 
modified dynamic system where � = (�� ��)��⁄  and  � =
(��∗ ��)��⁄ , making the largest residue �� = (�∗��)(��

∗�) =
(��

∗(�� ��)��⁄ )� in accord with the eigenvalue with the largest 
sensitivity. The detailed proof can be referred to in [19].  

In the widely-used Arnoldi method [23], Krylov subspace �� 
of k dimensions is firstly built and eigenpairs are then computed 

from the kk upper Hessenberg matrix �� . Since the upper 
Hessenberg matrix is much smaller than Matrix A, the Arnoldi 
method is very effective in solving large-scale eigenvalue 
problems. In TSA method, the orthogonal projections of 
Matrices A and ��  are executed independently, where T  
denotes the transpose function in this paper. Bases for the two 
Krylov subspaces �� = [��, ��, … , �� , … , ��]  and �� =
[��, ��, … , �� , … , ��]  are built independently. As long as 

�� = ��
∗��  has full rank, i.e. det ( kU ) ≠ 0 , the reduced 

matrices �� � (�� � ≡ ��
����

∗���) and �� � (�� � ≡ ��
∗�����

��) 

can always be obtained. It is deduced that �� � ≡ �� and �� � ≡
��  once TSA converges, where ��   and ��   satisfy (5) and 
(6), respectively. 

��� = ����          (5) 
���� = ����           (6) 

Eigenvalues with the largest modulus and the corresponding 
right and left eigenvectors can therefore be calculated based on 

the reduced matrices �� � and �� �. 
With suitable preconditions, transformations such as shift-

invert transformation [23] applied to Matrix A, the computation 
of eigenvalues with the largest modulus can be converted into 
eigenvalues close to a specified shift point  . By selecting the 

shift point, eigenvalues in different specified regions can be 
calculated and studied. The details of TSA can referred to in 
[24]. 

In TSA, eigenvectors corresponding to the calculated 
eigenvalue ��  can be easily obtained by �� = �����  and �� =
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�����, where ��� and ��� are eigenvectors of reduced matrices 

�� �  and �� � , respectively, with dimensions k k . Thus, the 
sensitivity of eigenvalues to the control parameter in (4) can be 
rewritten in the following form: 

* * *i
i i ri k k ri

p p p

  


  

A A
y x y W V x＝       (7) 

It has been proved in TSA-SPA [21] that the eigenvalue with 
the largest sensitivity can be calculated by setting � =

��
����

∗ ��

��
��  and  � = ��

∗ ��

��
����

�� . The detailed proof can 

be referred to in [21]. The procedure of TSA-SPA is shown in 
Alg. 1 as follows.  

Algorithm 1: TSA-SPA Algorithm 

INPUT: Matrix�, �� ≡ (�� ��)⁄ , shift point �, 

eigenvalue estimate ��, reduced matrix 

dimension k , number of computed eigenvalues 

l  and tolerance � 

OUTPUT: Most sensitive eigenvalue i  and the 

corresponding eigenvectors ix and iy , 

1, ,i l K  

1> Execute TSA algorithm to generate kV , kW
 
and 

set 
*

k k kU W V , 
*

k k kN W AV  

2> Compute matrix 
*

p k p kN W A V  

3> Set 0m  and 0i  , 0 0, k
r r v w s.t. 0 0p r N v  

and 
*

0 0p r N w  

4> while i l  do 
5> while not converge do 

a. 
2r p rm p rmb N v N v  

b. 
* *

2r p rm p rmc N w N w  

c. Calculate ����� ∊ ℂ
� from 

1( )m k k rm rs  U N v b  

d. Calculate ����� ∊ ℂ
� from 

*
1( )m k k rm rs  U N w c  

e. Renew eigenvalue 
*

1 1
1 *

1 1m

rm k rm
m

rm k r

s  


 


w N v

w U v
 

f. 1 1 2ri rm rm x v v  and 

1 1 2m mri r r y w w  

g. If 1 2k ri m k ris  N x U x , then 

1i i   and eigenvalue of matrix kN  

is 1i ms  , compute the eigenvectors 

i k rix V x  and i k riy W y ; i  is 

eigenvalue of Matrix A, once it satisfies 

2ii i  Ax x  or 
2

* *
i i i  A y y  

h. Set 1m m   

6> end while 

7> Compute the matrix �� =
�

��
∗��

����
∗, 

8> Compute the matrix i i T I T  

9> Update sensitivity index p i p iA T A Τ  

10> Compute the matrix 
*

p k p kN W A V  

11> end while 

B. Deflation Methods 

Deflation methods are used to modify a matrix to eliminate 
the influence of a given eigenvector so that new eigenvalues 
other than the corresponding eigenvalue can be found 
sequentially. Widely-used deflation methods are reviewed in 
this section. 

Wielandt deflation method [20] is one of the most effective 
methods for modifying the converged eigenvalue, which has 
been found to be less dominant (smaller in amplitude) and then 
continuing to compute other dominant eigenvalues. In the 
computation process, knowledge of only the converged right 
eigenvector �� is required. The deflated matrix is of the form 

�� = � − ����∗         (8) 

where � is an arbitrary vector such that �∗�� = 1, and � is an 

appropriate shift. The eigenvalues of �� are the same as those 
of �  except for eigenvalue ��  which is transformed into 
eigenvalue �� − �. One of the most common choices is to set 
� = ��  where ��  is the converged left eigenvector. This is 
referred to as Hotelling’s deflation [20]. It can be proved that 
the choice � = ��  can achieve an optimal result.  
 STEPS [17] adopted a deflation method described in [25]. It 
was used in conjunction with the inverse power method for 
sequential computation of the complete eigentriples in a 
specified study zone. The component in the direction of the 
known eigenvector is removed from the new eigenvector, 
which ensures that the found eigenvalue will not be obtained 
again.  

An effective deflation method reported in [26] is proposed to 
realize multiple computation of sensitive eigenvalues in 
SASPA. The original matrix � is updated once the converged 
eigentriple is obtained, as shown below: 

�� = ∏ �� −
����

∗

��
∗��

�� �∏ �� −
����

∗

��
∗��

��       (9) 

The renewed matrix �� has the same eigentriples as matrix � 

but with the found eigenvalues transformed into zero. Two 

subspaces are then expanded with ∏ �� −
����

∗

��
∗��

�� �  and ∏ �� −�

����
∗

��
∗��

� �, respectively, where � and � are the iterative vectors. 

III. GENERALIZED TSA-SPA METHOD 

Equation (1) in Section II represents a general model of the 
dynamic system. A power system has numerous components so 
it is normally represented by a set of differential equations 
together with a set of algebraic equations [22]. The Jacobian 
matrix of the entire set of equations, at an operating point (��, 
��), can be rewritten as 
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�∆�̇
�

� = �
�� ��

�� ��
� �

∆�
∆�

�         (10) 

where �  denotes state variables of differential 
equations;  � denotes the algebraic variables �� , �� , ��  and �� 
are the sub-matrices of the sparse Jacobian matrix applicable 
for large-scale systems’ analysis. The power system state 
matrix can be obtained by eliminating the equations for 
algebraic variables in the Jacobian matrix: 

∆�̇ = ��� − ����
�����∆� = �∆�     (11) 

A major drawback of state matrix � is lack of sparsity. As 
described in [22], state matrix � need not be fully formed when 
adopting the Arnoldi method for obtaining the reduced matrix 
��. Since TSA inherits the advantage of Arnoldi method that 
can exploit sparsity effectively, therefore, for the generalized 
TSA-SPA method, the state matrix � also need not be fully 
formed for getting the perturbation matrix �� ≡ �� ��⁄  

(�� ��⁄  is calculated by perturbation method ∆� ∆�⁄ ). Instead, 
matrix �  and ∆�  are reduced to ��  and ∆��  respectively, a 
much smaller scale, by using TSA, maintaining the good linear 
relationship between ∆� and ∆��, as described in detail below. 

A. Eigenvalue Computation 

In TSA-SPA, forming the perturbation matrix �� is 

inevitable for calculating the most sensitive eigenvalues. For 
changes of control parameters, the perturbed elements are all in 
the sub-matrix �� of the Jacobian matrix, therefore, �� is still 

sparse due to ∆�� = 0 . However, for the changes of other 
system parameters such as power transfer, large numbers of 
elements in sub-matrix ��  vary, making heavy computational 
costs unavoidable for formation of the state matrix �  and 
consequently matrix �� . Since state matrix �  is dense, it is 

highly possible for �� to be dense as well. Losing sparsity is 

undesirable, as a dense matrix often occupies large storage 
space in random access memory (RAM) and increases 
computation cost. 

To solve the problem, a generalized TSA-SPA is proposed. 
According to the Arnoldi/TSA method [21], the following 
equation can be obtained by applying a small perturbation to 
(5). 

(� + ∆�)(�� + ∆��) = (�� + ∆��)(�� + ∆��)  (12) 

where for the sake of conciseness, all definitions of symbols are 
the same as in Section II; ∆� is the abbreviation of ��∆�; ∆�� 

is the reduced matrix of ∆�  and is calculated by ∆�� = ��
� −

�� , where ��
�  denotes ��  after perturbation. Neglecting the 

perturbation’s quadratic terms, (12) can be expressed as 

�∆�� + ∆��� = ��∆�� + ∆����                    (13) 

Pre-multiplying �� and post-multiplying  �∗ to (13), 

�∗�∆���� + �∗∆����� = �∗��∆���� + �∗∆������  (14) 

Since �∗� = ��∗ , ���� = � and ���� = ��� , it can be 
deduced that 

�∗∆�� = �∗��∆����                                (15) 

Based on the definition of sensitivity of eigenvalues equation 
(4), (15) can be written as 

∆�/∆� = ��
∗��∆����                                (16) 

where �� = ��
∗�� , Similarly, based on �∗ = ��

∗��
∗ , the 

sensitivity of eigenvalues can be calculated by 

∆�/∆� = ��
∗∆��

∗����                                (17) 

It can be readily seen that the sensitivity can be calculated 
in the matrices with reduced dimension, and computation of 
the perturbation matrix �� is avoided and replaced 

successfully by reduced matrices. From equations (16) and 
(17), it can be seen that if the relationships are built as � =

∆����� and � = ∆����� , then the eigenvalue with the largest 

residue of the reduced matrix ��
∗��� is: 

�� =(�∗�����)(���
∗ ���) 

= (���
∗ ∆��

∗�����)(���
∗ ��∆�����)                            (18) 

= (��
∗ ��

��
��)

� =  (
���

��
)� 

The largest residue �� accords with the one obtained by SPA. 
Therefore, similar to TSA-SPA, the generalized TSA-SPA 
algorithm can also compute the most sensitive eigentriples. 
During iterations, vectors �  and � are renewed by the right and 
left eigenvectors ���  and ���  with pre-multiplication with 
matrix ��∆�� and ��∆�� respectively, until eigenvectors ��� 
or ��� converge.  

It is noted that when precondition transformation is adopted, 
i.e. shift-invert transformation in this paper, the largest residue 

of (18) no longer equals to (
���

��
)�. Assume the eigenvalue �� 

becomes ��
�  after perturbation and the sensitivity of the 

eigenvalue 
���

��
 can be approximated by 

��
����

��
. It can be easily 

proved that the eigenvalue’s sensitivity of the reduced matrix is 
��

����

���
����(����)��

. To correct the sensitivity of eigenvalues of the 

reduced matrix, ∆��  should be calculated by ∆�� = ��
� ��

−

��
��, and ∆�� = ��

� ��
− ��

��, where ��
�   denote �� after 

perturbation. 
The procedure of the proposed algorithm is shown in Alg. 2. 

Similar to the TSA-SPA, the initial eigen-problem is reduced to 
(��, ��) by using TSA at first, and then the most sensitive 
eigenvalues are calculated from (��, ��)  by SPA. Different 
from the TSA-SPA, ∆� is reduced to ∆��  and ∆�� by TSA. 
The main advantage is that the sparsity technique can be still 
applied in the proposed algorithm. Besides, during iteration, 
vectors renewed at Steps 4a~4d have only dimension of k, 
where k<<n, thus it has small computation cost. Moreover, 
similar to TSA-SPA, shift-invert transformation can also be 
realized in Step 1 for building the two Krylov subspaces �� and 
�� ; thus (�� , ��)  usually contains several eigenvalues 
around the given shift point. Finally, with the deflation 
procedure, the proposed algorithm can readily calculate several 
other sensitive eigenvalues. 

 
 

Algorithm 2: Generalized TSA-SPA Algorithm 



 5

INPUT: Jacobian Matrix �, Jacobian matrix under 
perturbation ��, shift point , eigenvalue estimate

0s , reduced matrix dimension k , number of 

computed eigenvalues l  and tolerance   

OUTPUT: Most sensitive eigenvalue i  and 

corresponding eigenvectors ix and iy  

1> Execute TSA algorithm to Jacobian matrix � to 

generate kV , kW and set 
*

k k kU W V , 
*

k k kN W AV  

2> Execute TSA algorithm to Jacobian matrix under 
perturbation �� to generate matrix ∆��  and ∆�� 

3> Set 0m  and 0i , 0 0, k
r r v w s.t. ∆����� ≠

0 and ∆�� ��� ≠ � 
4> while not converge do 

a. �� = ∆�����/‖∆�����‖� 

b. �� = ∆�� ���/�∆�� ����
�
 

c. Calculate ����� ∊ ℂ
� from 

(���� − ��)����� = ���� 
d. Calculate ����� ∊ ℂ

�from 
(���� − ��)∗����� = ��

∗ �� 
e. Renew eigenvalue 

*
1 1

1 *
1 1m

rm k rm
m

rm k r

s  


 


w N v

w U v
 

f. 
1 1 2ri rm rm x v v  and 

1 1 2m mri r r y w w  

g. If 
1 2k ri m k ris  N x U x , then 1i i   

and eigenvalue of matrix kN  is 1i ms  , 

compute the eigenvectors i k rix V x and

i k riy W y ; i  is eigenvalue of Matrix A, 

once it satisfies 
2ii i  Ax x  or 

2

* *
i i i  A y y  

h. Set 1m m   
5> end while 

B. New Deflation Method  

The available deflation methods discussed in Section II.B 
cannot be directly applied to the proposed algorithm. Deflation 
methods of Wielandt, Hotelling and one adopted in STEPS fail 
to eliminate the influence of both right and left converged 
eigenvectors simultaneously, which leads to the change of 
sensitivity of eigenvalues in the deflation process. The deflation 
method proposed in SASPA is effective and reliable for finding 
several distinct sensitive eigenvalues but the deflation is applied 
to state matrix � and thus has high computation cost for large 
systems. For the deflation method proposed in TSA-SPA, the 
perturbation matrix �� is essential and it is no longer available 

in the proposed algorithm in this paper. To realize computation 
of several distinct sensitive eigenvalues in the reduced matrix, 
an effective deflation method in conjunction with the 
generalized TSA-SPA is proposed, as shown in Alg. 3. For 
finding the several sensitive eigenvalues, just modifying the 

obtained eigenvalues’ amplitude is insufficient. At the same 
time, inappropriate elimination of the given eigenvector may 
induce large sensitivity to the associated eigenvalues. The main 
advantage of the proposed deflation method is that once an 
eigenvalue is obtained, it is no longer dominant (not sensitive) 
in the deflation procedure. Different from deflation method 
proposed in [26, 27], the deflation procedure calculates all the 
sensitive eigenvalues in the same reduced matrix ��  and no 
additional renewal of the subspace is needed (see Step 4e and 
Step 4f in Alg. 3). Following this deflation method, a continued 
multiplication of the correct factor matrix for the iterative 
vector is adopted for better rounding off error elimination (see 
Step 3 in Alg. 3). 

It is essential to prove that the iterative Steps 4a and 4b can 
effectively avoid the repeated convergence to the same 
converged eigenvectors while sensitivities of other eigenvalues 
are not changed. Thus, two cases are discussed separately: 

1> ��� converges to the same eigenvector as in previous 
iterations, i.e. ��� → ��� ; In this case, the iterative 
vector can be written as (for the sake of conciseness, 
only the iterative vector ��  is adopted in the proof, the 
continuous multiplication is also omitted since the proof 
is similar): 

�� = �� −
������

∗ ��

���
∗ �����

� ∆����� 

Thus, from Equation (18), the right part of residue 
index ��, ���

∗ ���� can be written as:  

���
∗ ����  

           = ����
∗ ��∆����� − ���

∗ ��

������
∗ ��∆�����

���
∗ �����

� 

= �
��

��
− ���

∗ �����

��

��

���
∗ �����

� = 0 

Therefore, the iterative vector can never converge to the 
same converged eigenvectors since the residue index is 
eliminated and is zero; in other words, the sensitivity of 
the pre-converged eigenvalue is reduced to zero. 
Furthermore, with the continuous multiplication of the 
correct factor matrix, any convergence to the previously 
converged eigenvectors is avoided successfully. 

2> ��� converges to a new eigenvector ���. In this case, the 

iterative vector can be written as : 

�� = �� −
������

∗ ��

���
∗ �����

� ∆�����      (19) 

Similar to Case 1, the right part of residue index �� , 

���
∗ ���� can be written as:  

���
∗ ���� = ���

∗ ��∆����� −
���
∗ ��������

∗ ��

���
∗ �����

∆����� 

It is easy to prove that numerator of the second item of 
the above equation ���

∗ ����� ≡ 0. Therefore, the second 

item of the above equation equals to zero. As a 
consequence, the relationship is the same as Equation 
(12). In other words, the residue index remains 
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unchanged. Thus the iterative vector keeps the 
sensitivity of eigenvalues unchanged and therefore, it is 
guaranteed that other sensitive eigenvalues can be found 
in the iterations.  

From the point of view of implementation, Steps 2 and 3 of 
Alg. 2 do not need to be formed explicitly. The only operation 
required is matrix-vector operation in small scale. More 
specifically, the update of vectors (Step 2 and Step 3 of Alg. 2) 
can be incorporated in Step 4a, as shown in Alg. 4, the vector 

�� , for example, can be formed, where ���and ���denote the 

converged eigenvector corresponding to ��, respectively. 

Algorithm 3: Deflation in TSA-SPA 

INPUT: � = {���, … , ���} with �∗� = �, satisfying 
������ = �������; � = {���, … , ���} with 
�∗� = �, satisfying �∗����� = ��

∗����� , � =

1, … , � and number of computed eigenvalues l  

OUTPUT: Most sensitive eigenvalue �� and 

corresponding eigenvectors �� and ��, � = � +

1, … , �; 1, ,i l K  

1> Set 0 0, k
r r v w s.t. ∆����� ≠ 0 and ∆�� ��� ≠

� 

2> Form the correct factor matrix � −
������

∗ ��

���
∗ �����

, � =

1, … , � 

3> Form the matrix ∏ �� −
������

∗ ��

���
∗ �����

��
���  

4> while not converge do 

a. �� = ∏ �� −
������

∗ ��

���
∗ �����

��
��� ∆����� 

b. �� = ��/‖��‖�  

c. �� = ∏ �� −
������

∗ ��
∗

���
∗ ��

∗ ���
��

��� ∆�� ��� 

d. �� = ��/‖��‖� 
e. Calculate ����� ∊ ℂ

� from 
(���� − ��)����� = ����  

f. Calculate����� ∊ ℂ
�from 

(���� − ��)∗����� = ��
∗�� 

g. Renew eigenvalue 
*

1 1
1 *

1 1m

rm k rm
m

rm k r

s  


 


w N v

w U v
 

h. ��� = �����/‖�����‖� and ��� = �����/
‖�����‖� 

i. If ‖����� − ���������‖� < � , then 
eigenvalue of matrix �� is �� = ����, compute 

the eigenvectors i k rix V x and i k riy W y ;�� is 

eigenvalue of Matrix A, once it satisfies 
‖��� − ����‖� < � or ‖�∗�� − ��

∗��‖� < �  
j. Set � = � + 1 

5> end while 
 

Algorithm 4: Update vectors in deflation method 

INPUT: ���, ∆�� , ���, ��� 

OUTPUT: ��  
1> ��� = ∆����� 
2> do � = �, 1, −1 

a. ��� = �����; ���� = ����� 

b. �����
=

(���,��)

����,�����
∗ ���  

c. ��� = ��� − �����
 

3> end do 
4> �� = ��� 

IV. SIMULATION RESULTS OF A SMALL POWER SYSTEM  

This section describes numerical results of application of the 
generalized TSA-SPA in the IEEE 9-bus system. Static and 
dynamic data of the system can be found from [21]. This paper 
studies four scenarios with perturbation on different parameters 
including (1) increasing ���� of PSS installed at Generator G2; 
(2) increasing load at Bus 5; (3) increasing active power output 
at Generator G2 and decreasing active power output at 
Generator G3; and (4) decreasing reactance of Lines 7-8 and 8-
9. Perturbation is set as 1% of the initial values. Sensitivity of 
eigenvalue is calculated by ∆�� |∆�|�⁄ , where ∆�� denotes the 
variation of sensitive eigenvalue ��  under perturbation and 
|∆�|� denotes the 2-norm of the perturbed parameter vector ∆�. 
The simulations were carried out on PC (3.16-GHz Intel Core 
Duo, 3.25GB usable RAM) and the program is written in 
Fortran 90. This system has 21 state variables. Size of Krylov 
subspace, reduced matrix dimension k, number of wanted 

eigenvalues l  and tolerance   are set to be 20, 8, 4 and 10-6, 
respectively. Initial vectors are chosen as 

 0 0 1, ,1 k
r r R  v w K

 
(cf. Step 3 of Alg. 2). 

In this study, four sensitive eigenvalues are calculated for 
each scenario by the generalized TSA-SPA using deflation 
method, as shown in Tables I to IV. The shift point is selected 
as the point of damping ratio of 50% with frequency 2.0Hz, i.e.,

( 7.26, 12.57)    . The sensitivities and state variables with 

maximum participation factor (PF) for these eigenvalues are 
tabulated; d�, ���, ���

� , ���
�  denote rotor angle, exciter input, q-

axis and d-axis component of the voltage behind transient 
reactance of generator Gi, respectively. 

Scenario 1 with the same conditions as in [21] is used to 
compare the performance of the generalized TSA-SPA with the 
TSA-SPA for control parameters’ perturbation. Table I shows 
the calculated eigenvalues and the corresponding sensitivity are 
the same as reported in [21], up to four decimal places, which 
clearly illustrates that linearization of the reduced matrix under 
perturbation proposed in the generalized TSA-SPA has good 
approximation to the state matrix under perturbation. It does not 
affect the accuracy of TSA-SPA and can be extended to system 
parameters changes. Tables II, III and IV show that the 
generalized TSA-SPA can also successfully calculate the 
eigenvalues sensitive to the system operating parameters under 
Scenarios 2 and 3 and network parameters in Scenario 4, 
respectively. Accuracy of the results has been confirmed by 
complete eigenvalue computation using the QR method. For 
example, in Scenario 2, the six most sensitive eigenvalues and 
the corresponding sensitivity obtained by the QR method are 
listed in Table V. Compared to Table II, it is clear that the 
generalized TSA-SPA can selectively calculate sensitive 
eigenvalues. Scenario 2 is also used to illustrate the robustness 
of the generalized TSA-SPA. Eigenvalue estimate �� in Alg. 2 
is varied in an arbitrarily given complex plane (Fig. 1). A 
symbol at point (x, y) in complex plane means that the 
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generalized TSA-SPA starts with an initial eigenvalue estimate 
�� = � + �� and converges to the eigenvalue corresponding to 
the symbol in Table V. For any initial eigenvalue estimates, the 
method obtains the same sensitive eigenvalue (-0.6452 
+j12.7459) and performs robustly.  

Besides, the influence of the shift point σ on the calculated 
eigenvalues is also studied (Fig. 2). A symbol at point (x, y) in 
complex plane means the generalized TSA-SPA starts with a 
shift point  s = � + ��  and converges to the eigenvalue 
corresponding to the symbol in Table V. Symbol   in Fig. 2 
denotes the less sensitive eigenvalues, i.e. eigenvalues not in the 
list (Table V). For the generalized TSA-SPA, shift point   has 
great influence on eigenvalues computed, but the sensitive 
eigenvalues in a region can always be found with reasonable 
shift points. In other words, the shift points can be used to select 
the region to be studied, demonstrating the flexibility of the 
generalized TSA-SPA. 

TABLE I 
SENSITIVE EIGENVALUES FOR SCENARIO 1 

Deflation   
 number 

Eigenvalue  Sensitivity 

State 
variable 

with max 
PF 

0 -5.8025 + j7.7888  -0.3131 – j0.1514 ��� 
1 -0.0339 + j8.5278   0.1482 + j0.1533 �� 
2 -0.6452 + j12.7459   0.0741 – j0.0009 �� 
3 -0.4487 + j1.1950  -0.0034 – j0.0145 ���

�  
 

TABLE II 
SENSITIVE EIGENVALUES FOR SCENARIO 2 

Deflation   
 number 

Eigenvalue  
Sensitivity 

(10-1)  

State 
variable 

with max 
PF 

0 -0.6452 + j12.7459 -0.7081 – j0.7192 �� 
1 -0.0339 + j8.5278 -0.4096 – j0.3112 �� 
2 -5.1741 1.6090 ���

�  

3 -5.8025 + j7.7889 -0.4576 + j0.0848 ��� 
 

TABLE III 
SENSITIVE EIGENVALUES FOR SCENARIO 3 

Deflation   
 number 

Eigenvalue  
Sensitivity 

(10-1)  

State 
variable 

with max 
PF 

0 -0.6452 + j12.7459 -0.1662 – j0.1624 �� 
1 -5.1741 0.1901 ���

�  
2 -3.3997 0.1487 ���

�  
3 -5.8025 + j7.7889  -0.0511 + j0.0034 ��� 

 

TABLE IV 
SENSITIVE EIGENVALUES FOR SCENARIO 4 

Deflation   
 number 

Eigenvalue  Sensitivity 

State 
variable 

with max. 
PF 

0 -0.6452 + j12.7459 0.0212 + j0.2863 �� 
1 -5.1741 -0.2154 ���

�  
2 -3.3997 0.0461 ���

�  
3 -0.4487 + j1.1949  0.0204 – j0.0331 ���

�  

TABLE V 
SIX MOST SENSITIVE EIGENVALUES FOR SCENARIO 2 OBTAINED BY QR 

METHOD 

No. 
Eigenvalue 
(symbol) 

Sensitivity 
(10-1)  

State 
variable with 

max. PF 

1 -5.1741 
(Square ■) 

1.6090 ���
�  

2 -0.6452 + j12.7459 -0.7081 – j0.7192 �� 

(Dot ●) 

3 -0.0339 + j8.5278 
(Circle ○) 

-0.4096 – j0.3112 �� 

4 -3.3997 
(Star ) 

0.4950 ���
�  

5 -0.4487 + j1.1949 
(Diamond ◆) 

-0.0792 + j0.4844 ���
�  

6 -5.8025 + j7.7889 
(Triangle ▲) 

-0.4576 + j0.0848 ��� 

 

 
Fig. 1. Sensitive eigenvalue convergence areas for generalized TSA-SPA in 

the 9-bus system 
 

 
Fig. 2. Eigenvalues obtained by generalized TSA-SPA for different shift 

points in the 9-bus system 

V.  SIMULATION RESULTS OF LARGE-SCALE POWER SYSTEMS  

In this section, the generalized TSA-SPA is applied in a 
large-scale power system, the entire eastern US-Canada 
interconnected system [28]. This system has 52 areas with 
37587 state variables while the dimension of the augmented 
Jacobian matrix is 108331. Change of different types of 
parameters including control, system operating and system 
network parameters are studied. As low frequency oscillations 
often occur in weakly connected large-scale systems, sensitive 
eigenvalues of inter-area mode are the focus. The region of 
interest in the complex plane is set to have frequencies from 
0.2Hz to 0.6Hz with damping ratios of 1% to 10%. Size of 
Krylov subspace and reduced matrix (k) are set to be 120 and 
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60, respectively. The simulation platform and other initial 
settings are same as the small power system in Section IV. 

A. Change of Control Parameter 

For performance comparison, the settings used for TSA-SPA 
in [21] are used for the generalized approach. The control 
parameters’ perturbation in [21], the gain of a PSS at generator 
G87456, is adopted. The shift points  with damping ratio of 5% 
and frequency of 0.4Hz, i.e. (-0.1258, 2.5133), and with 
damping ratio of 5% and frequency of 1.7, i.e. (-0.5347, 
10.6814) in [21] are also used for computation of inter-area and 
local modes, respectively. The proposed deflation method is 
used to sequentially compute the four highest sensitivity inter-
area (i.e. l = 4) and three local modes (i.e. l = 3) as shown in 
Table VI and Table VII, respectively. Compared to the results 
shown in [21], sensitivities of eigenvalues obtained from 
generalized TSA-SPA have the same values up to four decimal 
places, which illustrates the generalized TSA-SPA keeps the 
powerful computational feature of TSA-SPA in the application 
of large-scale power systems.  

B. Change of System Operating Parameter 

For the system operating parameters’ perturbation, 
generators’ output variations at G10873 and G14924 are adopted. 
Implicitly Restarted Arnoldi Method (IRAM), which is widely 
used for eigenvalue analysis in large-scale system [21,22], is 
first adopted to calculate all eigenvalues in this region using 
different shift points. Totally 875 eigenvalues are obtained and 
the top ten sensitive eigenvalues are tabulated in Table VIII. 
When a shift point with damping ratio of 5% and frequency of 
0.5Hz, i.e. (-0.0943, 3.1416), is assumed for the generalized 
TSA-SPA, the four highest sensitivity inter-area modes are 
successfully obtained sequentially by the deflation procedure 
shown in Table IX. The computing time is 329.1s. Besides, the 
influence of the change of eigenvalue estimate on calculated 
eigenvalues is also studied for the large-scale power system. 
Similar to the small power system in Section IV, the generalized 
TSA-SPA is also very robust to the eigenvalue estimate and the 
initial estimate will not affect the final result. Besides, the 
obtained eigenvalues of inter-area modes for different shift 
points are shown in Fig. 3. It is clear that the proposed method 
can selectively calculate these sensitive eigenvalues out of 875 
eigenvalues locating in the region of interest. 

C.  Change of System Network Parameter 

For the system network parameters’ perturbation, reactance 
changes of the selected circuit from Bus10071 to Bus14923, which 
is the part of the tie line between east and west regions with 
length approximately more than 300 km, is adopted. The 
perturbation parameter is the reactance of the selected circuit 
with the increase of 5%. Table X lists the top ten sensitive 
eigenvalues obtained by IRAM while Table XI provides the 
four sensitive inter-area modes obtained by the generalized 
TSA-SPA with the shift point (-0.0943, 3.1416). From the 
results, it can be seen that the generalized TSA-SPA can find 
the most sensitive eigenvalues around the shift with satisfactory 
reliability.  

D. Accuracy Validation 

The eigenvalue and the corresponding sensitivity calculated 
by the generalized TSA-SPA are compared with that obtained 
by IRAM. Therefore, the results in Tables VI and VII for 
control parameters study are compared with the results reported 
in [21] while the results in Tables IX and XI for system 
operating and network parameters are compared with Tables 
VIII and X, respectively. The relative error (RE) of eigenvalues 
and the corresponding sensitivities in different cases is 
summarized in Table XII. In all cases, the generalized TSA-
SPA can achieve accurate results. It should be noted that the 
larger the sensitivity is, the less the relative error will be. For 
example, the RE of sensitive eigenvalue (-0.1261+j2.8236) is 
around 3% mainly due to its low sensitivity (Table VI), which 
is obtained in the second round of the deflection. In general, the 
RE of high eigenvalues and the corresponding sensitivities are 
less than 0.01% and 1.5%, respectively, in this large-scale 
power system, so the accuracy of the generalized TSA-SPA is 
satisfactory for practical application.  

E.  Discussion on Computational Performance 

The computation cost in the above cases is as listed in Table 
XIII. In the Iteration column, the item in the summation denotes 
the number of iteration steps required for obtaining each 
sensitive eigenvalue. The first two items of the summation 
denote the number of iterations in n-dimension for building the 
right and left Krylov subspaces for a given size of reduced 
matrix. It is clear that the computation cost is nearly the same 
as the three kinds of parameter changes, but it increases with 
the increase of the Krylov subspace dimension. Simulation 
results also agree with the recommendation in [20] that the size 
of Krylov subspace being twice the reduced matrix is 
practically sufficient to guarantee convergence to good 
eigenvalue approximations. 

In IRAM, �� can be obtained by derivatives of sub-matrices 

of system Jacobian matrix in (10) with respect to system 
parameters, i.e. �� = �̇� − �̇���

���� + ����
���̇���

���� − ����
���̇�, 

where �̇� denotes the derivative of sub-matrix �� with respect to 
system parameters. Suppose �� has dimension m, and m>>n, 
obviously the computation cost is high due to the multiple 
multiplications of the matrix; the computational complexity 
reaches to O(���), where �(∘)  is Landau’s symbol, which 
means the rate of floating-point operations’ growth. Besides, 
after k eigenvalues are obtained by IRAM, the left eigenvector 
associated with each distinctive eigenvalue has to be calculated 
by solving the linear problem as described in [26]. Additional 
LU factorization is inevitable with computational complexity of 
O( ��) . Finally, sensitivity calculation would cost �(� + 1) 
times of n-dimension vector multiplication and a Bubble sort 
method also needs to be executed to realize finding of the most 
sensitive eigenvalues, of which the average computational 
complexity is O(��) . For example, the total CPU time for 
finding the most sensitive eigenvalues of system operating 
parameter’s perturbation for a single shift point using IRAM 
with Krylov subspace dimension 100, � = 50  and � = 4  is 
1446.17s. The CPU time for the generalized TSA-SPA is 
248.97s as shown in Table XIII. 

It is worth noting that the generalized TSA-SPA aims at 
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calculating sensitive eigenvalues in the vicinity of the shift 
point so the result is a compromise between the sensitivity of 
the calculated eigenvalues and the closeness of the calculated 
eigenvalues and the shift point. As shown in Table IX and Table 
XI, the four most sensitive eigenvalues calculated may not be 
the same as the four most sensitive eigenvalues listed in Table 
VIII and Table X. 

 

TABLE VI 
SENSITIVE INTER-AREA MODES OBTAINED BY GENERALIZED TSA-SPA BY 

SHIFT POINT (-0.1258, 2.5133) UNDER CONTROL PARAMETER PERTURBATION 

Deflation 
number  

Eigenvalue 
Sensitivity 

(10-2) 

State 
variable with 

max PF 
0 -0.1134 + j2.6185 -0.1344 – j0.0417 ������ 

1 -0.2225 + j1.6383 -0.0231 + j0.0052 ������ 

2 -0.1261 + j2.8236 -0.0180 + j0.0061 ������ 

3 -0.1231 + j2.3018  0.0487 – j0.0039 ������ 

 

TABLE VII 
SENSITIVE LOCAL MODES OBTAINED BY GENERALIZED TSA-SPA BY SHIFT 

POINT (-0.5347, 10.6814) UNDER CONTROL PARAMETER PERTURBATION 

Deflation 
number  

Eigenvalue 
Sensitivity 

(10-2) 

State 
variable with 

max PF 
0 -0.9130 + j10.8538 -6.5794 – j0.0329 ������ 

1 -0.1651 + j11.4636 -1.8720 – j0.0211 ������ 

2 -0.6325 + j10.5189 -0.0126 – j0.0031 ������ 
 

TABLE VIII 
SENSITIVE EIGENVALUES (ELECTROMECHANICAL MODES) OBTAINED BY 

IRAM UNDER OPERATING PARAMETER PERTURBATION 

Ranking  
number 

Eigenvalue  
Sensitivity 

(10-4) 
1 -0.1646 + j3.7277  9.3437 – j1.1188 
2 -0.0665 + j3.6905  2.1699 – j0.9641 
3 -0.1260 + j2.8258  0.6696 – j2.2007 
4 -0.5767 + j2.0371  0.8897 – j0.8206 
5 -0.0888 + j3.0493  0.1019 + j1.1185 
6 -0.1706 + j1.9204 -0.7631 + j0.0562 
7 -0.7447 + j1.3225 -0.5359 – j0.5097 
8 -0.5737 + j2.3039  0.0837 + j1.0593 
9 -0.1123 + j2.6182 -0.1809 + j0.5620 

10 -0.2224 + j1.6380 -0.1566 + j0.5546 
 

TABLE IX 
SENSITIVE INTER-AREA MODES OBTAINED BY GENERALIZED TSA-SPA WITH 

SHIFT POINT (-0.0943, 3.1416) UNDER OPERATING PARAMETER 

PERTURBATION  

Deflation 
number  

Eigenvalue 
(symbol) 

Sensitivity 
(10-4) 

State 
variable with 

max PF 
0 -0.0888 + j3.0493 

(Star ) 
0.1145 + j1.1173 ������ 

1 -0.0665 + j3.6905 
(Square ■) 

2.1708 – j0.9461 
������ 

2 -0.1646 + j3.7277 
(Dot ●) 

9.3455 – j1.1021 ������ 

3 -0.1260 + j 2.8258 
(Circle ○) 

0.6584 – j2.2083 ������ 

 

TABLE X 
SENSITIVE EIGENVALUES (ELECTROMECHANICAL MODES) OBTAINED BY 

IRAM UNDER NETWORK PARAMETER PERTURBATION 

Ranking  
number 

Eigenvalue  
Sensitivity 

(10-1) 
1 -0.0665 + j3.6905  0.9813 – j2.6354 
2 -0.1254 + j2.2982  1.4276 + j1.8352 
3 -0.1006 + j3.4653  0.2617 + j1.5435 
4 -0.1103 + j2.6059  0.9565 + j0.6314 

5 -0.1646 + j3.7277  0.3519 – j0.2516 
6 -0.2224 + j1.6382 -0.0035 + j0.2496 
7 -1.4315 + j2.0070  0.0431 – j0.2297 
8 -0.7447 + j1.3225 -0.2143 + j0.0275 
9 -0.1260 + j2.8258  0.0473 + j0.1767 

10 -0.1123 + j2.6182  0.0307 + j0.1115 
 

TABLE XI 
SENSITIVE INTER-AREA MODES OBTAINED BY GENERALIZED TSA-SPA WITH 

SHIFT POINT (-0.0943, 3.1416) UNDER NETWORK PARAMETER PERTURBATION 

Deflation 
number  

Eigenvalue 
Sensitivity 

(10-1) 
State variable 
with max PF 

0 -0.1006 + j3.4653 0.2642 + j1.5473 ������ 
1 -0.0665 + j3.6905 0.9822 – j2.6350 ������ 
2 -0.1646 + j3.7277 0.3520 – j0.2537 ������ 
3 -0.1103 + j2.6059 0.9553 + j0.6335 ������ 

 

TABLE XII 
RELATIVE ERROR (RE) OF EIGENVALUE AND SENSITIVITY OBTAINED BY 

GENERALIZED TSA-SPA COMPARED WITH THAT OBTAINED BY IRAM 

Table 
No. 

Deflection 
No. 

Eigenvalue 
RE of  

eigenvalue 
(10-5) 

RE of 
sensitivity 

(10-2) 
 

VI 
 
 

0 -0.1134 + j2.6185 0.4578 0.2008 
1 -0.2225 + j1.6383 4.5968 1.3204 
2 -0.1261 + j2.8236 2.1228 3.3265 
3 -0.1231 + j2.3018 2.0245 1.2965 

 0 -0.9130 + j10.8538 0.6488 0.0096 

VII 1 -0.1651 + j11.4636 0.8257 0.0107 

 2 -0.6325 + j10.5189 1.1261 2.8531 

 0 -0.0888 + j3.0493  4.6767 1.1269 

IX 1 -0.0665 + j3.6905 4.5154 0.7590 

 2 -0.1646 + j3.7277 5.1099 0.1785 

 3 -0.1260 + j 2.8258 5.5891 0.5884 

 0 -0.1006 + j3.4653 2.8844 0.2905 

XI 1 -0.0665 + j3.6905 4.1162 0.0350 

 2 -0.1646 + j3.7277 3.6827 0.4860 

 3 -0.1103 + j2.6059 1.1911 0.2110 
 

TABLE XIII 
COMPUTATION COST OF GENERALIZED TSA-SPA UNDER SYSTEM OPERATING 

PARAMETER AND NETWORK PARAMETER PERTURBATION 

Perturbation 
Krylov 

subspace 
dimension 

k  l  Iteration 
CPU  
time 
(s) 

Control 
Parameter 

 

100 50 4 175+175+(5+8+
15+21) 

264.55 

100 50 5 175+175+(5+8+
15+21+34) 

264.58 

100 50 6 175+175+(5+8+
15+21+34+45) 

264.61 

200 50 4 207+207+(5+9+
10+15) 

371.94 

200 50 5 207+207+(5+9+
10+15+26) 

371.95 

200 50 6 207+207+(5+9+
10+15+26+37) 

371.97 

System 
Operating 
Parameter 

100 50 4 150+150+(6+6+
10+18) 

248.97 

100 50 5 150+150+(6+6+
10+18+26) 

248.99 

100 50 6 150+150+(6+6+
10+18+26+42) 

249.02 

200 50 4 200+200+(6+11
+18+27) 

397.41 

200 50 5 200+200+(6+11
+18+27+40) 

397.42 

200 50 6 200+200+(6+11
+18+27+40+43) 

397.43 
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Network 
Parameter 

100 50 4 150+150+(6+9+
20+39) 

265.56 

100 50 5 150+150+(6+9+
20+39+40) 

265.58 

100 50 6 150+150+(6+9+
20+39+40+42) 

265.61 

200 50 4 200+200+(6+10
+28+45) 

373.93 

200 50 5 200+200+(6+10
+28+45+40) 

373.94 

200 50 6 200+200+(6+10
+28+45+40+42) 

373.95 

 

 
Fig. 3. Sensitive inter-area modes obtained by generalized TSA-SPA for 

different shift points 
 

VI.  CONCLUSION 

This paper successfully generalizes the TSA-SPA to 
compute sensitive eigenvalues with respect to different types of 
parameter changes. Without forming the state matrix under 
perturbation, the proposed algorithm has advantage over TSA-
SPA, being capable of coping with the perturbation at algebraic 
equations in large-scale power system’s dynamic models and it 
does not limit the application by control parameters like the 
TSA-SPA. Pre-condition transformation is also applicable to 
the proposed method to focus on sensitive eigenvalues in a 
specified region of interest in complex plane. Other sensitive 
eigenvalues in the region can also be calculated with the 
proposed deflation technique. Numerical simulations confirm 
that the proposed algorithm is efficient and robust in computing 
sensitive eigenvalues in large-scale power systems. The 
proposed algorithm can provide a practical and effective 
analytical tool for power engineers to study the relationship 
between the stability problem and different parameters in large-
scale power systems.  

REFERENCES 

[1] H. D. Chiang, I. Dobson, R. J. Thomas, J. S. Thorp, and L. Fekihahmed, 
"On voltage collapse in electric-power systems," IEEE Trans. Power Syst., 
vol. 5, pp. 601-611, May 1990. 

[2] R. A. Jabr, B. C. Pal, and N. Martins, "A sequential conic programming 
approach for the coordinated and robust design of power system 
stabilizers," IEEE Trans. Power Syst., vol. 25, pp. 1627-1637, Aug 2010. 

[3] I. Kamwa, G. Trudel, and L. Gerin-Lajoie, "Robust design and 
coordination of multiple damping controllers using nonlinear constrained 
optimization," IEEE Trans. Power Syst., vol. 15, pp. 1084-1092, Aug 
2000. 

[4] M. Zarghami, M. L. Crow, and S. Jagannathan, "Nonlinear control of 
FACTS controllers for damping interarea oscillations in power systems," 
IEEE Trans. Power Delivery, vol. 25, pp. 3113-3121, Oct 2010. 

[5] C. Luo and V. Ajjarapu, "Sensitivity-based efficient identification of 
oscillatory stability margin and damping margin using continuation of 
invariant subspaces," IEEE Trans. Power Syst., vol. 26, pp. 1484-1492, 
Aug 2011. 

[6] D. P. Ke and C. Y. Chung, "An inter-area mode oriented pole-shifting 
method with coordination of control efforts for robust tuning of power 
oscillation damping controllers," IEEE Trans. Power Syst., vol. 27, pp. 
1422-1432, Aug 2012. 

[7] D. P. Ke, C. Y. Chung, and Y. S. Xue, "An eigenstructure-based 
performance index and its application to control design for damping inter-
area oscillations in power systems," IEEE Trans. Power Syst., vol. 26, pp. 
2371-2380, Nov 2011. 

[8] H. Z. Huang, C. Y. Chung, K. W. Chan, and H. Y. Chen, "Quasi-monte 
carlo based probabilistic small signal stability analysis for power systems 
with plug-in electric vehicle and wind power integration," IEEE Trans. 
Power Syst., vol. 28, pp. 3335-3343, Aug 2013. 

[9] J. B. Zhang, C. Y. Chung, and Y. D. Han, "A novel modal decomposition 
control and its application to PSS design for damping interarea 
oscillations in power systems," IEEE Trans. Power Syst., vol. 27, pp. 
2015-2025, Nov 2012. 

[10] J. B. Zhang, C. Y. Chung, S. Q. Zhang, and Y. D. Han, "Practical wide 
area damping controller design based on ambient signal analysis," IEEE 
Trans. Power Syst., vol. 28, pp. 1687-1696, May 2013. 

[11] H. Khalilinia, and V. Venkatasubramanian, "Modal analysis of ambient 
PMU measurements using orthogonal wavelet bases," IEEE Trans. Smart 
Grid, vol. 99, 2015, In Early Access. 

[12] S. Dasgupta, M. Paramasivam, U. Vaidya, and V. Ajjarapu, "PMU-Based 
Model-Free Approach for Real-Time Rotor Angle Monitoring,” IEEE 
Trans. Power Syst., vol. 99, 2015, In Early Access. 

[13] J. Ma, Z. Y. Dong, and P. Zhang, "Comparison of BR and QR eigenvalue 
algorithms system small signal stability analysis," IEEE Trans. Power 
Syst., vol. 21, pp. 1848-1855, Nov 2006. 

[14] R. T. Byerly, R. J. Bennon, and D. E. Sherman, "Eigenvalue analysis of 
synchronizing power flow oscillations in large electric-power systems," 
IEEE Trans. Power App. Syst., vol. 101, pp. 235-243, 1982. 

[15] D. Y. Wong, G. J. Rogers, B. Porretta, and P. Kundur, "Eigenvalue 
analysis of very large power systems," IEEE Trans. Power Syst., vol. 3, 
pp. 472-480, May 1988. 

[16] N. Uchida and T. Nagao, "A new eigen-analysis method of steady-state 
stability studies for large power systems: S Matrix Method," IEEE Trans. 
Power Syst., vol. 3, pp. 706-714, May 1988. 

[17] A. Semlyen and L. Wang, "Sequential computation of the complete 
eigensystem for the study zone in small signal stability analysis of large 
power systems," IEEE Trans. Power Syst., vol. 3, pp. 715-725, May 1988. 

[18] N. Martins, L. T. G. Lima, and H. J. C. P. Pinto, "Computing dominant 
poles of power system transfer functions," IEEE Trans. Power Syst., vol. 
11, pp. 162-167, Feb 1996. 

[19] J. Rommes and N. Martins, "Computing large-scale system eigenvalues 
most sensitive to parameter changes, with applications to power system 
small-signal stability," IEEE Trans. Power Syst., vol. 23, pp. 434-442, 
May 2008. 

[20] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised 
Edition. Manchester: Manchester University Press, 2011. 

[21] C. Y. Chung and B. Dai, "A combined TSA-SPA algorithm for computing 
most sensitive eigenvalues in large-scale power systems," IEEE Trans. 
Power Syst., vol. 28, pp. 149-157, Feb 2013. 

[22] P. Kunder, Power System Stability and Control: McGraw-Hill, USA, 
1994. 

[23] K. Meerbergen and D. Roose, "Matrix transformations for computing 
rightmost eigenvalues of large sparse non-symmetric eigenvalue 
problems," SIMA. J. Numer. Anal., vol. 16, pp. 297-346, Jul 1996. 

[24] J. Cullum and T. Zhang, "Two-sided Arnoldi and nonsymmetric Lanczos 
algorithms," SIAM J. Matrix Anal. Appl., vol. 24, pp. 303-319, Dec 19 
2002. 

[25] J. H. Wilkinson, The Algebraic Eigenvalue Problem: Clarendon Press, 
1965. 

[26] J. Rommes and N. Martins, "Efficient computation of transfer function 
dominant poles using subspace acceleration," IEEE Trans. Power Syst., 
vol. 21, pp. 1218-1226, Aug 2006. 

[27] J. Rommes and N. Martins, "Efficient computation of multivariable 
transfer function dominant poles using subspace acceleration," IEEE 
Trans. Power Syst., vol. 21, pp. 1471-1483, Nov 2006. 

real (1/s)

im
a

g
 (

ra
d

/s
)

-0.4 -0.3 -0.2 -0.1 0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dasgupta,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Paramasivam,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vaidya,%20U..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ajjarapu,%20V..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6939746&sortType%3Ddesc_p_Publication_Year%26matchBoolean%3Dtrue%26pageNumber%3D3%26searchField%3DSearch_All%26queryText%3D%28%28PMU%29+AND+stability%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6939746&sortType%3Ddesc_p_Publication_Year%26matchBoolean%3Dtrue%26pageNumber%3D3%26searchField%3DSearch_All%26queryText%3D%28%28PMU%29+AND+stability%29


 11 

[28] L. Wang, F. Howell, P. Kundur, C. Y. Chung, and X. Wilsun, "A tool for 
small-signal security assessment of power systems," in Power Industry 
Computer Applications, 2001. PICA 2001. Innovative Computing for 
Power - Electric Energy Meets the Market. 22nd IEEE Power 
Engineering Society International Conference on, 2001, pp. 246-252. 

 
C. Y. Chung (M’01–SM’07) received the B.Eng. 
degree (with First Class Honors) and the Ph.D. 
degree in electrical engineering from The Hong Kong 
Polytechnic University, Hong Kong, China, in 1995 
and 1999, respectively. 
   He worked in Powertech Labs, Inc., Surrey, BC, 
Canada, the University of Alberta, Edmonton, AB, 
Canada, and The Hong Kong Polytechnic University, 
China. He is currently a Professor and the SaskPower 
Chair in Power Systems Engineering in the 
Department of Electrical and Computer Engineering 

at the University of Saskatchewan, Saskatoon, SK, Canada. His research 
interests include power system stability/control, planning and operation, 
computational intelligence applications, power markets, and electric vehicle 
charging. 

Dr. Chung is an Editor of the IEEE TRANSACTIONS ON SUSTAINABLE 

ENERGY and an Editorial Board Member of IET GENERATION, TRANSMISSION 

& DISTRIBUTION. He is also a Member-at-Large (Smart Grid) of IEEE PES 
Governing Board and the IEEE PES Region 10 North Chapter Representative. 
 

Bo Dai (M’12) received the PhD degrees in 
electrical engineering from North China Electric 
Power University, Beijing, China, in 2009. 
Currently, she is working as a postdoctoral fellow 
in Department of Electrical Engineering, The Hong 
Kong Polytechnic University, Hong Kong, China.  
 
 


	I. Introduction
	II. Background
	B. Deflation Methods

	III. Generalized TSA-SPA Method
	A. Eigenvalue Computation
	B. New Deflation Method

	IV. Simulation Results of A Small Power System
	V.  Simulation Results of Large-Scale Power Systems
	D. Accuracy Validation
	A. Change of Control Parameter
	E.  Discussion on Computational Performance
	B. Change of System Operating Parameter
	C.  Change of System Network Parameter

	VI.  Conclusion
	References

