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 

Abstract— A novel algorithm (TSA-SPA) that combines the 
Two-Sided Arnoldi method (TSA) and the Sensitive Pole 
Algorithm (SPA), is proposed in this paper for calculation of the 
most sensitive eigenvalues to control parameters in large power 
systems. In the proposed method, first, with the shift-invert 
transformation precondition, TSA builds two Krylov subspaces 
and obtains a reduced matrix of a much smaller scale, which 
contains eigenvalues close to the chosen shift point. Second, SPA is 
adopted to realize the most sensitive eigenvalue computation. 
TSA-SPA can find the most sensitive eigenvalues of interest, with 
satisfactory reliability and convergence, in a specified frequency 
domain. With proper selection of sizes of Krylov subspace and the 
reduced matrix, the convergence to good eigenvalue 
approximations is practically guaranteed. Moreover, with the 
deflation technique, the algorithm is also capable of finding several 
other dominant eigentriplets which may relate to inter-area and/or 
local control modes. The efficiency of the proposed algorithm has 
been validated on small and large-scale power systems. It has been 
found that compared to other available sensitive pole algorithms, 
the proposed algorithm has more robust and reliable performance. 
The proposed algorithm is suitable for practical applications in 

large-scale power systems.  
 

Index Terms— Eigenvalues, sensitivity, large-scale eigenvalue 
problems, small-signal stability, system oscillations. 

I. INTRODUCTION 

ITH the ever-increasing scale of power systems, low 
frequency oscillations occur more frequently and have 

become one of the most important problems in system planning 
and operation [1-5]. Controllers, such as power system 
stabilizers (PSS), have to be properly coordinated to ensure 
sufficient damping of oscillatory modes, i.e. damping ratios of 
the corresponding eigenvalues [6-17]. Therefore, computing 
critical eigenvalues of a poorly-damped power system sensitive 
to control parameters is essential for studying the effect of 
control parameters on these oscillatory modes and to facilitate 
control design. 

The traditional full-eigenvalue computation methods such as 
QR/QZ methods are inefficient when applied to modern 
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large-scale power systems because they require high 
computational memory for solving high dimensional problems 
[18]. Moreover, normally, only a few dominant eigenvalues are 
of interest to system operators; it is unnecessary and impractical 
to compute all eigenvalues of the system. 

Selective eigenvalue algorithms of subspace methods, e.g., 
subspace iteration, Lanczos method and Arnoldi method, are 
commonly adopted for computation of eigenvalues of large 
matrices, through matrix reduction. Among them, the Arnoldi 
method is one of the most popular techniques and is believed to 
be the most efficient approach [19-21] as it improves the slow 
convergence in subspace iteration with large dominance ratios 
[22] and also overcomes instabilities that Lanczos may 
encounter [23]. It computes only eigenvalues of interest and 
offers low computational cost with the sparse descriptor 
matrices. However, it is a single-sided method which uses one 
Krylov subspace, i.e. it can only calculate the right eigenvectors. 
Although the Nonsymmetric Lanczos method, a two-sided 
method, can calculate eigentriplets, i.e. obtain eigenvalues and 
the associated right and left eigenvectors simultaneously, 
incurable breakdowns caused by biorthogonalization between 
left and right Lanczos vectors may occur during building of 
Krylov subspaces [24].  

Dominant Pole Algorithm (DPA) is proposed in [25] to 
compute eigenvalues with the largest residue of a high order 
transfer function based on input and output vectors. Indeed, 
eigenvalues with the highest participation of state variables [25] 
can also be obtained through replacing input and output vectors 
with suitable vectors in the process of computation of DPA. 

However, the above algorithms are still unable to calculate 
the most-sensitive eigenvalues with respect to specified control 
parameters. Based on DPA, Sensitive Pole Algorithm (SPA) is, 
therefore, proposed [26] for computing poles (i.e. eigenvalues) 
most sensitive to control parameters changes, and then it is 
extended to Subspace Accelerated SPA (SASPA) by applying 
subspace acceleration [27, 28] to improve its global 
convergence. Because SASPA operates on sparse descriptor 
matrices, it is also useful for analyzing large-scale systems. 
SASPA can obtain several most sensitive eigenvalues and the 
corresponding eigenvectors through suitably selecting pole 
estimates by shift strategy and deflation method.  

Based on the idea of subspace methods, a novel algorithm 
(TSA-SPA) which combines Two-Sided Arnoldi method (TSA) 
and SPA is developed to compute the most sensitive 
eigenvalues and to improve robustness, flexibility and 
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scalability of the SPA method. TSA method [29] not only 
inherits the advantages of the Arnoldi method but also does not 
have the breakdown problem of nonsymmetric Lanczos method. 
Shift-invert transformation [22, 30] is adopted as the 
precondition in TSA to reduce the region for eigenvalue search 
and then SPA is adopted to make sensitive eigenvalues 
dominant in the region of interest. Compared to SASPA, which 
scans the whole complex plane, TSA-SPA focuses on a specific 
area, as dictated by the shift. Further, the shift is not required to 
be updated with subspace expansion and thus the LU 
factorization needs to be executed only once and can be stored 
for use in successive iterations, making computation cheaper 
than SASPA. Furthermore, Implicitly Restarted Arnoldi 
Method (IRAM) [31] is adopted in TSA. IRAM has high 
efficiency in altering the starting vector as it greatly improves 
the convergence while keeping the size of subspace constant 
with small scale; and enables the convergence speed to remain 
almost unaffected by shift point selection. Finally, deflation 
technique [28, 31, 32] is adopted in the proposed method to find 
several other dominant eigenvalues without modification of 
either the reduced matrix or spanned Krylov subspaces.  

The rest of this paper is organized as follows. Section II 
covers background of the proposed algorithm. Section III 
introduces the proposed TSA-SPA algorithm. Section IV 
provides a comprehensive study of the application of the 
proposed algorithm on a small power system. Section V then 
applies the proposed algorithm to large-scale power systems. 
Finally, conclusions are provided in Section VI. 

II. BACKGROUND 

The mathematical model of a linearized single-input 
single-output (SISO) dynamic system around an operating point 

0x  can be expressed as: 

*

( ) ( ) ( )

( ) ( ) ( )
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where n nA  is the state matrix, ( ) nt z  is the state 

vector, ( )u t is the input variable, ( )y t  is the output variable, 
nb  is the input column vector, nc  is the output column 

vector and D  is the direct transmission matrix of unit rank. 

Without loss of generality, 0D . Superscript * denotes the 

conjugated transpose function while T denotes the transpose 
function in this paper.  

A. Brief Overview of SPA 

Transfer function ( )sH  of the dynamical system in (1) can 

be expressed as a sum of residues iR C  over finite first-order 

k poles. Commonly, poles with small residues are neglected due 
to the little influence they have on the transfer function [25]. 
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where the residues are 

* *( )( )i i iR  c x y b                                      (3) 

and vectors ix , iy  denote the corresponding right and left 

eigenvectors, respectively, of pole i . 

Besides, the eigenvalue sensitivity of a parameter p can be 
determined by: 

   *i
i i

p p

 


 

A
y x                                           (4)  

DPA [25] determines the pole with the largest residue and the 
corresponding eigenvectors based on the given input and output 
vectors b  and c . The eigenvalue with the largest sensitivity 
can be calculated by computing the pole with the largest residue 
of a modified dynamic system where ( ) ip  b A x  and 

*( ) ip  c A y , making the largest residue 
* * * 2( )( ) ( ( ) )i i i i iR p   c x y b y A x  accord with eigenvalue 

with the largest sensitivity. SPA [26], therefore, extends DPA to 
compute the most sensitive eigentriplet by renewing vectors b  
and c , no longer the input and output constant vectors in DPA, 

until the right and left eigenvectors ix  and iy  are converged 

and the above specific conditions are satisfied. The procedure of 
SPA is shown in Alg. 1 as follows, and the detailed proof can be 
referred to in [26].  

 

Algorithm 1: SPA Algorithm 
 

INPUT: Matrix A , ( )p p  A A , pole estimate 0s and 

tolerance    

OUTPUT: Sensitive pole  and corresponding right and left 
eigenvectors x and y   

1> Set 0k  , 0v , 0
nw  s.t. 0 0p A v and *

0 0p A w  

2> while not converged do  

3> 
2p k p kb A v A v  

4> * *

2p k p kc A w A w   

5> Solve 1
n

k v C from 1( )k ks  I A v b  

6> Solve 1
n

k w C from *
1( )k ks  I A w c  

7> Compute the new pole estimate  

                           
*

1
1 *

1 1

k
k k

k k

s s 


 

 
c v

w v
 

8> 1 1 1 2
/k k k  v v v and 1 1 1 2

/k k k  w w w The 

pole 1ks  with 1kx v and 1ky w has 

converged if  
1 2k

s 


 Ax Ix   

9> Set 1k k    

10> end while 
 
However, for large-scale systems, when solving the linear 

problem, Steps 5 and 6 in SPA become time-consuming due to 

the higher dimension n of Matrix A  and ks  has to be updated 

via iterations in the n-dimension. To accelerate global 
convergence, SASPA [26] application is proposed, by 
integrating subspace acceleration in SPA, to search the most 
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sensitive poles in a matrix of a much smaller scale. The main 
idea behind subspace acceleration is that given a pole estimate, 

candidate vectors kv  and kw  can be obtained and kept in  Steps 

5 and 6 of Alg. 1 and two subspaces are built by candidate 

vectors 1 2[ , , , ]m mV v v vK  and 1 2[ , , , ]m mW w w wK , where 

m  denotes the two subspaces’ dimensions. In each subspace, 

vectors are orthogonalized to each other by using modified 
Gram-Schmidt [32]. Matrix A  is, therefore, substituted by 

*
m mW AV  and the most sensitive eigenvalues and the 

corresponding eigenvectors 1kv  and 1kw  can be calculated 

from the projected eigenproblem ( *
m mW AV , *

m mW V ). With a 

carefully selected new pole estimate, SASPA can also find out 
other sensitive eigenvalues successfully through deflation 
procedure. For large scale power systems, a dynamic criterion is 
applied in shift strategy for a good new pole estimate. The new 
eigenvalue is obtained when the difference between sensitivity 
of the new eigenvalue and the already found eigenvalues is 
larger than a specified value. 

However, for SASPA, subspaces are built by solving linear 
problems in Steps 5 and 6 of Alg. 1 with updated pole estimate 

ks ; selection of ks  based on the selection strategy may 

influence convergence speed. Furthermore, LU factorization in 
n - dimension should then be executed in every iteration, which 

can increase computation cost. Besides, the found eigenvalues 
may scatter throughout the complex plane and sensitive 
eigenvalues in areas of interest might not be included due to the 
limited dimension of the subspace. To address these limitations, 
a novel TSA-SPA method is proposed and explained in detail in 
the next section.  

B. Two-Sided Arnoldi Method 

As shown in Alg. 2, Krylov subspace kV  of k dimensions is 

first built by Arnoldi method [33], and eigenpairs are computed 

from the k  k upper Hessenberg matrix kH . Since the upper 

Hessenberg matrix is much smaller than Matrix A, Arnoldi 
method is very effective in solving large-scale eigenvalue 
problems. Unlike Nonsymmetric Lanczos method, the Krylov 

subspace in Arnoldi method is built by only Matrix A projection 
and no bi-orthogonal procedure between Krylov subspaces is 
executed. Arnoldi method can calculate eigenvalues with the 
largest modulus or the largest real part, etc. [33]. However, 
Arnoldi method suffers several disadvantages. First, the size of 
Krylov subspace needs to be large enough to achieve a good 
eigenspace approximation of Matrix A. As can be seen from 

Step 9 of Alg. 2, if factor 1,k kh   of residual matrix 1, 1
T

k k k kh  v e  is 

zero, then eigenvalues of kH  (termed as Ritz value) are 

eigenvalues of A. To reduce 1,k kh   to a very small value, Krylov 

subspace kV  has to be expanded adequately, which may require 

high memory storage [31]. Thanks to the restarting technique 
[34], the size of Krylov subspace can be held constant. In this 
paper, the IRAM, instead of the standard Arnoldi method, is 

adopted in TSA. Secondly, as shown in Alg. 2, columns of kV  

and upper Hessenberg matrix kH  are obtained by means of 

single-side Arnoldi recurrence. The main deficiency of the 
procedure is that only right eigenvectors can be obtained and 
that does not yield a good approximation of the left eigenvector 

unless Matrix A is symmetric [29].  
TSA method, a powerful alternative to subspace methods 

(Alg. 3), is proposed to solve this problem [29]. The orthogonal 

projections of Matrices A and TA  are executed independently. 

Bases for the two Krylov subspaces 1 2[ , , , , , ]k i kV v v v vK K  

and 1 2[ , , , , , ]k i kW w w w wK K＝  are built independently in 

TSA, which means the bi-orthogonal procedure executed 

between Schur vectors iv  and iw  is not required and, therefore, 

breakdown will not occur. As long as kU  (Step 3 of Alg. 3) has 

full rank, reduced matrices kH
)

 ( 1 *
k k k k


)

H U W AV ) and kM
)

 

( * 1
k k k k


)

M W AV U ) can always be obtained satisfactorily, as 

the residual matrix biorthogonal to the left (right) Krylov 

subspaces *
1, 1 0T

k k k k kh   W v e  and * *
1, 1 0k k k k km   e w V . 

Compared with nonsymmetric Lanczos method, TSA is 
numerically stable and easier to implement [29].  

 

Algorithm 2: Arnoldi Method 
 

INPUT: Matrix A, initial vector 1v  and reduced matrix 

dimension k  

OUTPUT: Eigenvalues i and corresponding right 

eigenvectors ix , 1, ,i k K  

1> Normalize 1v  

2> for 1 to i k  do 

3> i iw Av  

4> *
ji j ih  v w , 1, ,j i K  

5> 
1

i

i i ji j
j

h


 w w v   

6> 1,i i ih   w
２

 

7> 1 1,i i i ih v w  

8> end do 

9> Let , 1[ ]k
k ji i jh H , which satisfying  

1, 1
T

k k k k k k kh   AV V H v e and 1[ , , ]k kV v vK  

10> Compute the eigenpairs , 1, ,i i i k  z( ),  of kH  by 

the QR method 
11> Compute the right eigenvectors , 1, ,i k i i k x V z K , 

i  is eigenvalue of matrix A once satisfies 

2ii i  Ax x  

C. Precondition Transformation 

Arnoldi method is translation invariant, i.e. the 
corresponding eigenvectors for Matrix A and its transformation 
are the same. Shift-invert transformation enables Arnoldi 
method to compute eigenvalues located near certain regions of 
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the complex plane. The transformation, i.e. 1( )SI   T A I , 

maps eigenvalues   close to the shift point  , away from the 

origin, and eigenvalues far from  , close to zero. In other 

words, the eigenvalue is changed to 1( )   I , which makes 

eigenvalues adjacent to the shift point have the largest modulus. 
The transformation is very useful, especially when   lies in a 

cluster of complex eigenvalues. This can be easily implemented 
in Arnoldi method by replacing it with Step 3 of Alg. 2 by 

solving iw  from ii vwIA  )(  . In this paper, complex shift 

  is determined by the specified damping ratio and frequency. 

Illustration of shift-invert transformation is shown in Fig. 1.  
 

 
Fig. 1. Illustration of shift-invert transformation with shift point   

 

Algorithm 3: Two-sided Arnoldi Algorithm 
 

INPUT: Matrix A, initial vectors 1v , 1w and reduced matrix 

dimension k   

OUTPUT: Eigenvalues i and corresponding right and left 

eigenvectors ix and iy , 1, ,i k K  

1> Apply Algorithm 2 to 1{ , }A v  to generate ( , )k kV H , 

satisfying  1, 1
T

k k k k k k kh   AV V H v e  

2> Apply Algorithm 2 to 1{ , }TA w  to generate ( , )k kW M , 

satisfying  1, 1
T T

k k k k k k km   A W W M w e  

3> *
k k kU W V   

4> Correct matrix kH to 1 *
1, 1

T
k k k k k k k kh

  
)

H H U W v e   

5> Correct matrix kM to * * * * 1
1, 1k k k k k k k km 
  

)
M M e w V U  

6> Compute the eigenvectors rix and riy from kH
)

and 
*
kM

)
; compute i k rix V x and i k riy W y ; kH

)
and *

kM
)

 

have the conjugated eigenvalues i and *
i  once 

satisfies 
2ii i  Ax x  or 

2

* *
i i i  A y y  , 1, ,i k   

III. COMBINED TSA-SPA ALGORITHM 

In TSA (see Step 6 in Alg. 3), eigenvectors corresponding to 
the calculated eigenvalue i  can be obtained from vectors rix  

and riy  in Krylov subspace, i.e. i k rix V x  and i k riy W y , 

where rix  and riy  are eigenvectors of matrices kH
)

 and kM
)

, 

respectively, with dimension k k . Thus, the sensitivity of 

eigenvalues to the control parameter in (4) can be rewritten in 
the following form: 

* * *i
i i ri k k ri

p p p

  


  

A A
y x y W V x＝                                (5) 

Besides, since TSA reduces Matrix A  of n-dimension to 

k-dimension matrices 1 *
k k k k

H U W AV
)

 and 1
k k k k

M U H U
)

 

independently, as shown in Steps 4 and 5, it can be readily 
deduced that 

   1 *k
k k k

p p
 


 

H A
U W V

)

                                     (6) 

* 1k
k k k

p p
 


 

M A
W V U

)

                                     (7) 

In Step 6, eigenvectors rix  and riy  satisfy that 

k ri i riH x x
)

 and * *
ri k i riy M y
)

; therefore, from Steps 4 and 

5, it can be deduced that eigenvectors rix  and riy  satisfy the 

following equations, respectively: 

* *
k k ri i k k ri i k ri  W AV x W V x U x                    (8) 

* * * * *
ri k k i ri k k i ri k  y W AV y W V y U                      (9)       

Therefore, from (5)-(9), if ( )k rip  
)

b H x  and 

*( )k rip  c M y
)

, instead of vectors b  and c  in Alg. 1, the 

eigenvalue with the largest residues of the reduced matrix 
*

k kW AV  is: 

* *

* * 1 * 1 *

* 2 2

( )( )

( )( )

( ) ( )

   

   

i k ri ri k

ri k k k k ri ri k k k k ri

i
i i

R

p p

p p



 



 


 


 

 

c U x y U b

A A
y W V U U x y U U W V x

A
y x

 

The largest residue iR  accords with the one obtained by SPA. 

Therefore, similar to SPA, the proposed TSA-SPA algorithm 
can also extend DPA to compute the most sensitive eigentriplet.  
During iterations, vectors b  and c are renewed by the right and 

left eigenvectors rix  and riy , with multiplying matrix 
*

k p kW A V , until eigenvectors rix  and riy  are converged.  

 The procedure of the proposed algorithm is shown in Alg. 4: 

the initial eigen-problem is reduced to ( , )k kN U  by using TSA 

at first, and then the most sensitive eigenvalues are calculated 

from ( , )k kN U  by SPA. From the algorithm, it can be seen that 

vectors renewed at each iteration, Steps 5a and 5c, have 
dimension k only, where k << n, and the linear problems solved 
in Steps 5c and 5d are also of relatively small dimensions. This 
boosts computation speed of the proposed algorithm. Moreover, 
Shift-invert transformation is realized in Step 1 for building the 

two Krylov subspaces kV and kW ; thus ( , )k kN U  usually 

contains several eigenvalues around the given shift point. It is 
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noted that as a rule of thumb, Krylov subspace of size twice that 

of the reduced matrix kN  is practically sufficient to guarantee 

convergence to good eigenvalue approximations [30]. 
Furthermore, sparsity technique can be adopted since both 

matrix A  and matrix pA  are sparse, so the algorithm can be 

implemented at a fast speed. Finally, with the deflation 
procedure, the proposed algorithm can readily calculate several 
other sensitive eigenvalues. It is noted that although QR/QZ 

methods may be applied directly to ( , )k kN U  to compute all 

eigenvalues, it still cannot tell which eigenvalue is the most 
sensitive one, unless sensitivities of all eigenvalues are 
calculated one by one, which is time consuming when dozens of 
eigenvalues are obtained. It also needs to be noted that matrix 

*
k k kN W AV  need not be formed explicitly like SASPA, 

instead, kk AVW *  equals to kk HU
)

, and thus the matrix 

multiplication problem can be solved in k k -dimension. 

Typically, deflation procedures are often employed to make a 
rank one modification of the original matrix so as to displace the 
eigenvalue calculated, while keeping all other eigenvalues 
unchanged. In this paper, the idea of Wielandt deflation method 
[31] is adopted in the residue index renewal. Instead of 
modifying the eigenvalue obtained, sensitivity of the associated 
eigenvalue is changed to zero while keeping sensitivities of 
other eigenvalues unchanged. Its main advantage is that once an 
eigenvalue is obtained, it is no longer dominant in the deflation 
procedure, while the reduced matrix and the spanned subspaces 
are preserved without any modification. The deflation 
procedure for residue index renewal is shown in Steps 7 to 10 of 
Alg. 4. Compared to SASPA, other sensitive eigenvalues are 

calculated in the same reduced matrix kN , whereas SASPA 

renews the subspaces in the n-dimension complex plane. 
Therefore, the computational burden of the proposed method 

can be reduced reasonably. Besides, since matrix pA may keep 

sparse, the renewed matrix pN in Step 10 does not deteriorate 

its sparseness much.  

IV. SIMULATION RESULTS OF A SMALL POWER SYSTEM  

This section describes numerical results of application of the 
proposed algorithm in the IEEE 9-bus system. Static and 
dynamic data of the system can be found from [35]. Control 

parameter p  is chosen to be PSSK  of PSS installed at generator 

G2 with the model shown in Fig. 2, where   is rotor speed 

deviation, PSSK  is PSS gain, wT , 1T  and 2T  are time constants 

and SV  is PSS output. This simulation is carried out on PC 

(1.4-GHz Intel Core Duo, 2GB RAM) and the program is 
written in Matlab 7.1. This system has 21 state variables. Size of 
Krylov subspace, reduced matrix dimension k, number of 

wanted eigenvalues l  and tolerance   are set to be 20, 8, 4 and 

10-5, respectively. Krylov subspace of size twice that of the 

reduced matrix kN  is used to practically guarantee 

convergence to good eigenvalue approximations. Initial vectors 

are chosen as  0 0 1, ,1 k
r r R  v w K (cf. Step 3 of Alg. 4).  

 

Algorithm 4: TSA-SPA Algorithm 

INPUT: Matrix A , ( )p p  A A , shift point , eigenvalue 

estimate 0s , reduced matrix dimension k , number 

of computed eigenvalues l  and tolerance   

OUTPUT: Most sensitive eigenvalue i  and corresponding 

eigenvectors ix and iy , 1, ,i l K  

1> Execute TSA algorithm to generate kV , kW and set 
*

k k kU W V , *
k k kN W AV  

2> Compute matrix *
p k p kN W A V   

3> set 0m  and 0i  , 0 0, k
r r v w  s.t. 0 0p r N v  and  

*
0 0p r N w  

4> while i l  do 

5> while not converge do 

a. 
2r p rm p rmb N v N v  

b. * *

2r p rm p rmc N w N w  

c. Calculate 1
k

rm C v  from 

1( )m k k rm rs  U N v b   

d. Calculate 1
k

rm C w from 
*

1( )m k k rm rs  U N w c  

e. Renew eigenvalue 

                              
*

1 1
1 *

1 1m

rm k rm
m

rm k r

s  


 


w N v

w U v
 

f. 1 1 2ri rm rm x v v  and 

1 1 2m mri r r y w w    

g. If 1 2k ri m k ris  N x U x , then 1i i   

and eigenvalue of matrix kN  is 1i ms  , 

compute the eigenvectors 

i k rix V x and i k riy W y ; i  is 

eigenvalue of Matrix A, once it satisfies 

2ii i  Ax x  or 
2

* *
i i i  A y y   

h. set 1m m   
6> end while 

7> Compute the matrix 
*

*

1
i ri ri

ri ri

T x y
y x

, 

8> Compute the matrix i i T I T  

9> Update  sensitivity index   p i p iA T A Τ   

10> Compute the matrix  
*

p k p kN W A V  

11> end while 
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 PSSK
w

w

T

T

s1

s


SV

SminV

SmaxV

2T

T

s1

s1 1





 
Fig. 2. PSS model installed on Generator G2 

 
This study first sets the shift point of damping ratio of 50% 

with frequency 2.0Hz, i.e. ( 7.26, 12.57)    . The proposed 

method succeeds in computing the four most sensitive 
eigenvalues in the first 4 iterations, i.e. three times of deflation 
processes, as shown in Table I. Their sensitivities and state 
variables with maximum participation factor (PF) for these 
modes are tabulated (in Table I); 2RV  denotes exciter input of 

generator G2; 2 , 3  denote rotor angles of generators G2 and 

G3, respectively; 
1

'
qE denotes the q-axis component of the 

voltage behind transient reactance '
dX .  

The proposed method requires 0.1560s CPU time to calculate 
four sensitive eigenvalues while SASPA [36] takes 0.3120s to 
fulfill the same task. Comparison of computation costs is given 
in Table II. In the Iteration column, the item in the summation 
denotes the number of iteration steps required for obtaining 
each sensitive eigenvalue. For TSA-SPA, the first item of the 
summation denotes the number of iterations in n -dimension for 

building Krylov subspaces for a given size of reduced matrix k  
and each item in parentheses denotes iterations executed for 
obtaining one sensitive eigenvalue from the reduced matrix. It 
can be seen that the number of LU factorizations is one in 
TSA-SPA, and it increases with the number of wanted 
eigenvalues in SASPA. Thus, TSA-SPA can save 
computational expense in LU factorization. Also, as shown in 
Iteration of Table II, even when the number of wanted 
eigenvalues ( l ) rises, TSA-SPA needs the same number of 
iterations for building the Krylov subspaces. Besides, it can be 
observed that iterations in k  dimensions for finding the most 
sensitive eigenvalues are not more than that needed in SASPA, 
in which iterations are executed in n  dimensions (each item in 
the summation denotes the number of iterations for obtaining 
one sensitive eigenvalue). This property enables TSA-SPA to 
have relatively stable computation cost. The reason for 
TSA-SPA having this property could be that TSA-SPA focuses 
on a specific area, as dictated by shift point, while SASPA scans 
the whole complex plane, using the shift strategy. It also needs 
to be mentioned that the CPU time for obtaining sensitive 
eigenvalues by TSA-SPA does not show obvious variation with 
change in the shift point, while for SASPA, the CPU time may 
vary with initial shift selection. For example, if the number of 
wanted eigenvalues is 4 and the initial shifts are selected as 
(-7.26, 12.57), (0, 1) and (1, 0), the CPU time is almost constant 
for TSA-SPA, while for SASPA, it takes 0.3120s, 0.4212s and 
0.5304s, respectively.  

 
 
 

 
TABLE I 

SENSITIVE EIGENVALUES FOR KPSS OF PSS INSTALLED AT GENERATOR G2 

Deflation   
 number 

Eigenvalue 
(symbol) 

Sensitivity  
State 

variable with 
max. PF 

0 
-5.8025+j7.7888 

(Dot ●) 
-0.313 - j0.151 

2R
V  

1 
-0.0339+j8.5278 

(Circle ○) 
0.148 + j0.153 

2
  

2 
-0.6452+j12.7459 

(Star *) 
0.074 - j0.001 

3
  

3 
-0.4487+j1.1950 

(Diamond ◆) 
-0.003-j0.0145 

1

'

q
E  

 

TABLE II 
COMPARISON OF COMPUTATION COST OF TSA-SPA WITH SASPA 

Method k  l  

Num. 
of LU 
factor- 
izations  

Iteration 
CPU  
time (s) 

TSA-SPA 

8 4 1 33+(4+6+4+6) 0.1560 
8 5 1 33+(4+6+4+6+10) 0.1872 
8 6 1 33+(4+6+4+6+10+2) 0.2340 

10 4 1 35+(4+5+6+10) 0.1716 
10 5 1 35+(4+5+6+10+6) 0.2028 
10 6 1 35+(4+5+6+10+6+6) 0.2596 

SASPA 
- 4 16 4+7+9+9 0.3120 
- 5 19 4+7+9+9+10 0.4056 
- 6 27 4+7+9+9+10+7 0.5148 

 

Robustness of the proposed method is tested by comparing its 
convergence area (Fig. 4) with SPA (Fig. 3). A symbol at point 
(x, y) in complex plane means that the respective methods start 
with an initial eigenvalue estimate 0 js x y   and converge to 

the eigenvalue corresponding to the symbol in Table I. Symbol 
  in Fig. 3 denotes less sensitive eigenvalues, i.e. eigenvalues 
with absolute value of sensitivity less than 0.05. It can be 
observed that SPA can find several sensitive eigenvalues, 
depending on the selection of shift. It is noted that SPA can find 
another real sensitive eigenvalue -16.4684 (with sensitivity 
0.203 marked by ■). With change in the shift around the 
eigenvalue, TSA-SPA can also find it, as seen in Fig. 5. For 
TSA-SPA, in all cases, the proposed method obtains the same 
sensitive eigenvalue (-5.8025 + j7.7888), which is closer to the 
shift point, and there are no bad computation results (less 
sensitive eigenvalues). The proposed method is clearly much 
more robust to the initial shift selection than SPA.  

 
Fig. 3. Sensitive eigenvalue convergence areas for SPA in the 9-bus system 
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Fig. 4. Sensitive eigenvalue convergence areas for TSA-SPA in the 9-bus 

system 

 
Besides, the influence of the change of shift point on the 

calculated eigenvalues is also studied (Fig. 5). A symbol at point 
(x, y) in complex plane means the proposed method starts with a 
shift point jx y    and converges to the eigenvalue 

corresponding to the symbol in Table I. Similar to Figs. 3 and 4, 
symbol  in Fig. 5 denotes the less sensitive eigenvalues, i.e. 
eigenvalues with absolute value of sensitivity less than 0.05. For 
the shift-invert transformation, eigenvalues obtained are 
symmetric to the real axis and shift point   has great influence 
on eigenvalues computed, but the sensitive eigenvalues in a 
region can always be found with reasonable shift points. If the 
sensitive eigenvalues locate far from the shift points, no 
eigenvalue will be obtained, i.e. symbol  in Fig. 5. In other 
words, the shift points can be used to select the region to be 
studied, demonstrating the flexibility of the proposed algorithm, 
and it would be a very useful function, especially in large-scale 
power system. 

 

 
Fig. 5. Eigenvalues obtained by TSA-SPA for different shift points in the 9-bus 

system 

V. SIMULATION RESULTS OF LARGE-SCALE POWER SYSTEMS 

A. A large-scale power system with 37587 states 

In this section, TSA-SPA is applied in a large-scale power 
system which represents the entire eastern US-Canada 
interconnected system. This system has 37587 state variables 
while the augmented Jacobian matrix has the order of 108331. 
Control parameter of the system is selected to be gain PSSK of 

PSS at generator 87456G . The PSS model is selected as IEEEST 

[37], as shown in Fig. 6. In this study, the first block of the PSS, 
the torsional filter, is neglected and the input signal of the PSS is 
the generator’s rotor speed deviation. Based on available 
settings of the PSS in the system, simulation is carried out, with 
the result showing that TSA-SPA can selectively compute 
sensitive eigenvalues with proper shift selection.  

This simulation is carried out on PC (1.4-GHz Intel Core Duo, 
2GB RAM) and the program is written in Fortran 90 based on 
the available open-source code of ARPACK. Initial vectors are 

chosen as  0 0 1, ,1 k
r r R  v w K , and tolerance is set to be 

10-6. Similar to the setting of the small test system, the size of 
Krylov subspace is also set to be twice that of the reduced 
matrix. The Krylov subspace dimension is set to be 120 and the 
reduced matrix has the order of 60. The region of frequencies 
from 0.2Hz to 2.0Hz and damping ratios from 1% to 8%, which 
includes both inter-area and local modes, is studied. All 
eigenvalues in this region are calculated with IRAM, using 
different shift points. 1558 eigenvalues are calculated; the top 
ten sensitive eigenvalues are as tabulated in Table III. TSA-SPA 
is then applied with a shift point of damping ratio of 5% with 
frequency 1.7Hz, i.e. (-0.5347, 10.6814), to calculate the 
sensitive local modes. The computing time is 191s for 
computing three most sensitive modes by deflation procedure, 
as shown in Table IV. TSA-SPA can selectively calculate these 
sensitive eigenvalues out of 1558 eigenvalues locating in the 
region of interest.  

 

SminV

SmaxV

2
5 61 A s A s 
2 2

1 2 3 4(1 )(1 )A s A s A s A s   

11 sT

21 sT

31 sT

41 sT

5sT

61 sT
PSSK

Input

Signal

SV

 
Fig. 6. IEEEST PSS model  

 
The influence of the change of eigenvalue estimate on 

calculated eigenvalues in case of large-scale power systems is 
also studied. As shown in Fig. 7, TSA-SPA is also very robust to 
the eigenvalue estimate shifting, similar to the small power 
system in Section IV. Since eigenvalues obtained are symmetric 
to the real axis, only eigenvalues with positive imaginary parts 
are illustrated. 
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The capability of TSA-SPA to find the most sensitive 
inter-area modes is also tested. When a shift point with damping 
ratio of 5% and frequency of 0.4Hz, i.e. (-0.1258, 2.5133), is 
assumed, TSA-SPA can obtain the four highest sensitivity 
inter-area modes sequentially by deflation procedure (as shown 
in Table V). When a suitable shift point is selected, eigenvalues 
with high sensitivity and which are closer to the shift point can 
be obtained directly. The obtained eigenvalues of inter-area 
modes for different shift points are shown in Fig. 8. Although 
highly sensitive eigenvalues in a region can also be calculated 
sequentially, using deflation procedure, selection of the shift 
point is an effective means to determine the region for 
eigenvalue searching.  

 
TABLE III 

SENSITIVE EIGENVALUES (ELECTROMECHANICAL MODES) OBTAINED BY IRAM 
 IN THE SYSTEM WITH 37587 STATES 

nu           Ranking 
number 

Eigenvalue  
Eigenvalue 

sensitivity (10-2) 
1 -0.9130 + j10.8538 -6.5792 - j0.0335 
2 -0.1651 + j11.4636 -1.8722 - j0.0211 
3 -0.9171 + j 7.3984 -1.1613 - j0.0114 
4 -0.8253 + j6.3804 -0.5710 - j0.0143 
5 -0.7280 + j7.7364 -0.1954 - j0.0342 
6 -0.1134 + j2.6185 -0.1346 - j0.0415 
7 -0.1231 + j2.3018   0.0492 - j0.0043 
8 -0.2225 + j1.6383 -0.0234 + j0.0051 
9 -0.4807 + j6.2210 -0.0217 - j0.0074 

10 -0.1261 + j2.8236 -0.0182 + j0.0055 

 
TABLE IV 

SENSITIVE LOCAL MODES OBTAINED BY TSA-SPA BY SHIFTING POINT 

(-0.5347, 10.6814) IN THE SYSTEM WITH 37587 STATES 

Deflation 
number 

Eigenvalue 
Sensitivity 

(10-2) 

State 
variable 

with max 
PF 

0 -0.9130 +  j10.8538 
-6.5792 - 
j0.0335 87456  

1 -0.1651 + j11.4636  
-1.8722 - 
j0.0211 87458  

2 -0.6325 + j10.5189 
-0.0123 - 
j0.0029 62032  

 
 

TABLE V 
SENSITIVE INTER-AREA MODES OBTAINED BY TSA-SPA BY SHIFTING POINT 

(-0.1258, 2.5133) IN THE SYSTEM WITH 37587 STATES 

Number  Eigenvalue 
Sensitivity 

(10-2) 
State variable 
with max PF 

1 
-0.1134 + j2.6185 

(Diamond ) 

-0.1346 - 
j0.0415 87456  

2 
-0.1231 + j2.3018 

(Square ) 

0.0492 - 
j0.0043 87456  

3 
-0.2225 + j1.6383 

(Triangle ) 

-0.0234 + 
j0.0051 87456  

4 
-0.1261 + j2.8236 

(Dot  ) 

-0.0182 + 
j0.0055 87456  

 

 

 
Fig. 7. Sensitive eigenvalue convergence areas for TSA-SPA 

 in the system with 37587 states 
 

       

 
Fig. 8. Sensitive inter-area modes obtained by TSA-SPA for different shift 

points in the system with 37587 states 

B. A large-scale power system with 4381 states 

A large-scale system in the interconnected North-Central 
China region is studied, using TSA-SPA and SASPA. This 
system has 4381 states with 654 generators and 1645 load nodes. 
The gain PSSK  of PSS at generator EGAOG , which locates at the 

centre of the grid with capacity of 2600MW, is selected as the 
control parameter of the system. The PSS model is IEEEST, as 
shown in Fig. 6, and the input signal is generator’s rotor speed 
deviation. Comparison of computational requirement of 
TSA-SPA and SASPA for finding the four most sensitive 
eigenvalues is studied. It is noted that the available open source 
SASPA is written in Matlab language and copes with the dense 
state matrix; thus it takes a long time to solve the linear problem, 
i.e. Steps 5 and 6 in Alg. 1. To speed up the computation, the 
sparse descriptor in [38] is applied. Besides, SASPA is 
implemented in Matlab 7.1, in which ARPACK is a library of 
Matlab software. Therefore, TSA-SPA and SASPA, 
implemented in Fortran 90 and MATLAB 7.1, respectively, 
lend themselves to reasonable comparison. 
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A shift point with damping ratio of 3% and frequency of 0.7 
Hz, i.e. (-0.132, 4.3982), is assumed for both TSA-SPA and 
SASPA. SASPA spans the subspace with the order of 4 while 
TSA-SPA spans the Krylov subspaces of dimension 120 with 
the reduced matrix having the order of 60. The achieved 
sensitive eigenvalues are shown in Table VI.  Number of 
iterations required for building the subspace in TSA-SPA is 
greater than what is required for SASPA but the computation 
speed of TSA-SPA is over 14 times faster than that of SASPA. It 
is clear that TSA-SPA has the advantage in computational speed 
when sensitive eigenvalues in a specified region are of interest, 
although SASPA might be faster when scanning of the whole 
complex plane is required. TSA-SPA focuses on a specific area 
by spanning the subspaces around a given shift with assumption 
of adequate subspace size while SASPA scans the whole 
complex plane by shift strategy and spans the subspaces 
subsequently, with high enough precision, which can guarantee 
the accuracy of the obtained results. Besides, TSA-SPA can find 
several sensitive eigenvalues around a given shift while SASPA 
can locate the more scattered sensitive eigenvalues, as shown in 
Table VI. With enough scanning, TSA-SPA can also identify an 
adequate number of scattered sensitive eigenvalues associated 
with control parameters. This illustrates that TSA-SPA can 
provide an effective tool to compute sensitive eigenvalues in a 
specified region of interest in complex plane. 
 

TABLE VI 
COMPARISON OF TSA-SPA AND SASPA ON SENSITIVE INTER-AREA MODES 

CALCULATION IN THE SYSTEM WITH 4381 STATES 

Method Num. Eigenvalue Sensitivity 
(10-2) 

Iteration Time 
(s) 

TSA-SPA 

1 
-0.0573 + 
j4.1627 

-8.1206 - 
j0.0215 

342 12 

2 
-0.0425 + 
j4.3658 

-4.3395 - 
j0.0412 

3 
-0.1074 + 
j4.1354 

-0.0536 - 
j0.0023 

4 
-0.1241 + 
j4.6528 

-0.04232 + 
j0.0003 

SASPA 

1 
-0.0425 + 
j4.3658 

-4.3395 - 
j0.0412 

197 174 

2 
-0.0572 + 
j4.1626 

-8.1206- 
j0.0215 

3 
-1.5846 + 
j2.3652 

-0.1135- 
j0.0321 

4 
-0.6578 + 
j7.6984 

-0.2576- 
j0.0076 

 

VI. CONCLUSION 

The proposed TSA-SPA algorithm is effective and robust in 
computing sensitive eigenvalues to control parameters. 
Pre-condition transformation enables the proposed method to 
focus on sensitive eigenvalues in a specified region of interest in 
complex plane so that electromechanical oscillation modes 
and/or control modes can be found at a satisfactory speed and 
reliability. Other sensitive eigenvalues in the region can also be 
calculated with the deflation technique, which enhances the 
flexibility of stability analysis of power systems. Numerical 
experiments confirm that the proposed method is very reliable 

for arbitrary initial eigenvalue estimate. The proposed method 
also circumvents the risk of breakdown occurrence in the 
nonsymmetric Lanczos method.  
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