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Abstract--A novel probabilistic optimal power flow (P-OPF) model 

with chance constraints that considers the uncertainties of wind 

power generation (WPG) and load is proposed in this paper. An 

affine generation dispatch strategy is adopted to balance the sys-

tem power uncertainty by several conventional generators, and 

thus the linear approximation of the cost function with respect to 

the power uncertainty is proposed to compute the quantile (which 

is also recognized as the value-at-risk) corresponding to a given 

probability value. The proposed model applies this quantile as the 

objective function and minimizes it to meet distinct probabilistic 

cost regulation purposes via properly selecting the given proba-

bility. In particular, the hedging effect due to the used affine 

generation dispatch is also thoroughly investigated. Besides, an 

analytical method to calculate probabilistic load flow (PLF) is 

developed with the probability density function of WPG which is 

proposed to be approximated by a customized Gaussian mixture 

model whose parameters are easily obtained. Accordingly, it is 

successful to analytically compute the chance constraints on the 

transmission line power and the power outputs of conventional 

units. Numerical studies of two benchmark systems show the 

satisfactory accuracy of the PLF method, and the effectiveness of 

the proposed P-OPF model. 

Index Terms—Chance constraint, Gaussian mixture model, 

optimal power flow, probability density function, value-at-risk, 

wind power generation. 

I. INTRODUCTION 

ind power generation (WPG) has been tremendously 

developed worldwide so far. This also gives rise to a 

notable issue that if power systems with highly penetrated 

WPG still dispatch and operate by conventional deterministic 

manners, their security and economy can no longer be ensured 

as confidently as before because of high uncertainties of WPG 

[1], [2]. Thus, extension of the traditional optimal power flow 

(OPF) to take into account the uncertainties of WPG has be-

come particularly important and has received increasing atten-

tion in recent years [3]-[5]. 

Actually, the OPF with consideration of load uncertainties 

has been widely referred to as a probabilistic OPF (P-OPF) 

problem, and several typical approaches to compute P-OPF 

include two-point estimation [6], first-order second moment 

method [7], [8], cumulant method [9], [10], and so on. Their 
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common essence is that the random variables (RVs) which are 

assumed to be or close to normally distributed are parameter-

ized in the deterministic OPF so that its solutions (cost, node 

injection, line flow and bus voltage) are implicit functions of 

these RVs. The first few statistical moments of the solutions are 

then calculated according to these functions, and thus the 

probability density functions (PDFs) of the solutions can be 

approximately constructed. Compared to the methods relying 

on the implicit relationships between the solutions of the de-

terministic OPF and the parameterized RVs, it is advocated in 

[11] that the probabilistic characteristics of all RVs (including 

the solutions) should be directly incorporated into the optimi-

zation problem itself. Therefore, the probability of the event 

that the total conventional generation plus WPG is not less than 

the total load being larger than a given value has been used in 

[11] as a constraint, but the objective function is still deter-

ministic so that the influence of the WPG uncertainties on the 

total generation cost has not been considered. Similarly, the 

deterministic objective function is employed in [12] with fea-

sible yet indirect consideration of uncertainties of load flow 

caused by the WPG. Specifically, a novel and straightforward 

idea has been utilized to investigate impacts on the generation 

cost due to the WPG uncertainties by way of penalizing the 

expected surplus and deficit between the practical WPG and its 

planed committed value in the objective function of P-OPF 

model [13]-[15].  

Another large category of methods to consider uncertainties 

in the P-OPF is the chance-constrained OPF (CCOPF) 

[16]-[21]. A feasible CCOPF model has been proposed in [22] 

where the expectation of the cost function is minimized, subject 

to the constraints expressed in terms of occurrence probabilities. 

However, only uncertainties of loads which are dealt with by 

the time-consuming Monte Carlo (MC) simulation are consid-

ered. Analogous CCOPF model is also constructed in [17] 

where the back-mapping and the linearization methods simplify 

the approximate probabilistic calculations during the nonlinear 

programming. Then, this work is extended by [18] to handle the 

non-Gaussian distributed WPG involved in the CCOPF model 

of distribution systems using an analytical approximation 

method. It is noted that the MC simulation is still required to 

calculate the derivatives of the chance constraints with respect 

to the control variables. Particularly, literature [19] considers a 

chance-constrained unbalance OPF problem with multiple 

objectives for distribution systems; the efficient two-point 

estimation is utilized to approximately evaluate the chance 

constraints. A novel CCOPF method proposed in [20] equiva-

lently transforms the chance constraints into the tractable de-
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terministic constraints primarily depending on the hypothesis 

of Gaussianity of uncertain power sources and loads. Fur-

thermore, literature [21] successfully slacks such Gaussianity 

assumption on the uncertain power sources; the transformation 

to the deterministic constraints is also exquisitely fulfilled only 

requiring the upper and lower bounds of the uncertain power 

sources’ outputs.  

One key issue to efficiently integrate the uncertain WPG 

into P-OPF is to develop a probabilistic model for WPG which 

has acceptable accuracy and which can also facilitate subse-

quent probabilistic computing so as to avoid use of MC simu-

lation. The cumulants based expansions, i.e. Gram-Charlier 

(GC) [23], Edgeworth (EW) [24] and Cornish-Fish (CF) [25] 

have been used to approximate PDFs of RVs. However, it has 

been pointed out in [26] that the satisfactory approximation 

results can be obtained only when the PDFs of RVs are close to 

normal distribution. Thus, it is generally inaccurate to represent 

the PDF of WPG directly by these ways because it is naturally 

far from a normal distribution [27], and large errors may appear 

around the maximum and minimum power points (tail regions) 

of the PDF where it is discontinuous [26]. However, [28] at-

tempts to address such weakness through heuristically modi-

fying the result at the discontinuous points when using GC 

expansion to approximate the PDF of WPG. An innovative 

Gaussian mixture model (GMM) has been proposed to repre-

sent the PDF of WPG so that the probabilistic load flow (PLF) 

calculation can be analytically accomplished based on the pa-

rameters (coefficient, mean and variance) of all Gaussi-

an-Functions (GFs) [29], [30], and the expectation maximiza-

tion (EM) algorithm is used to recursively generate these pa-

rameters. It is inferred that GMM with EM algorithm may need 

more GFs (e.g., five in [30]) to obtain satisfactory approxima-

tion effect for the PDF of WPG because it does not care about 

the discontinuities of the PDF. So, the computational com-

plexity and time of generating GFs’ parameters as well as 

subsequent PLF would be prominently enhanced as the number 

of wind farms increases. 

Specifically, owing to use of an affine control (dispatch) 

strategy which recruits conventional generators to proportion-

ally share the duty of balancing the total power (renewable 

energy sources and loads) uncertainty with respect to its ex-

pected value (EV), two pioneer works [20] and [21] deduce the 

quite favorable analytical characteristics while computing the 

CCOPF; thus the classic quadratic programming can be utilized 

to search the optimal solution. In the context of the affine con-

trol, the conventional unit’s power output consists of two parts: 

the basic power generation which is decided irrespective of the 

uncertainty and before the realization of the uncertainty; the 

adjustable power generation which is proportional to the un-

certainty and thus only determined in the meantime with the 

realization of the uncertainty. The common objective of [20] 

and [21] is to find the optimal basic power generation and 

participation factors (proportions) of the conventional units so 

as to minimize the EV of the total cost. Clearly, the detailed 

distribution of the cost is not the concern of these researches, 

which is however the key to reveal the essence of the used 

affine generation control. 

Based on the above review, this paper proposes a novel 

P-OPF model with chance constraints which delicately copes 

with uncertainties of WPG and load. Specifically, the affine 

control is adopted to tackle with the power uncertainty in the 

proposed model. However, it is proposed to approximately 

model the cost function as a linear function of the power un-

certainty so that its quantile can be readily calculated. Ac-

cordingly, the proposed P-OPF model uses a quantile of the 

cost function corresponding to a given probability value as the 

objective function. Indeed, this quantile is well recognized as 

the value-at-risk (VaR) in the field of the risk management. 

Although the direct interpretation of the VaR minimization is 

that the cost values in a proportion of stochastic (WPG and load) 

scenarios indicated by the given probability value are con-

strained by minimizing the worst-one of them, it also makes 

clear sense regarding to the optimization of the cost’s proba-

bility distribution in the context of using the affine control to 

accommodate the power uncertainty: e.g., according to the 

given probability value, the high cost occurrence probability 

can be decreased or the low cost occurrence probability can be 

increased. What is more, the hedging effect due to the used 

affine control of the power uncertainty is also thoroughly un-

covered. Besides, inspired by the GMM method, the PDF of 

WPG is proposed to be approximated by a customized GMM 

which is a linear combination of triple GFs aiming at elimi-

nating impacts of the discontinuities to enhance overall ap-

proximation effect. In particular, the parameters of the GFs are 

readily obtained by the moment matching method. Then, an 

analytical method is developed for calculating the PLF. 

Therefore, based on the obtained analytical cumulative proba-

bility functions (CDFs) of some RVs, i.e. active power outputs 

of conventional units and active power flow of transmission 

lines, the chance constraints on these variables can be readily 

handled during solving the proposed model. 

The remainder of the paper is organized as follows. Section 

II introduces the affine control to balance the total power un-

certainty, and deduces CDFs of the conventional units’ power 

outputs and the cost function. The proposed PLF method based 

on an approximation of the PDF of WPG is introduced in Sec-

tion III. Detailed formulations and discussions of the proposed 

model and the relevant simulation studies are presented in 

Section IV and V, respectively. Section VI concludes the paper. 

II. RVS RAISED FROM AFFINE GENERATION CONTROL TO 

ACCOMMODATE POWER UNCERTAINTY 

The proposed P-OPF model uses the quantile of the cost as 

the objective function and imposes chance constraints on the 

power outputs of the conventional units which participate in 

balancing the power uncertainty. So, prior to introduction of the 

P-OPF model (Section IV), the following two subsections will 

deduce in detail the CDFs of these RVs which are necessary to 

evaluate the quantile and chance constraints.  

A. CDFs of Power Outputs of Conventional Units Partici-

pating in Balancing Uncertainties 

Normally, wind power PDFs can be computed from given 

PDFs of wind speed together with power curves of wind tur-
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bines. So, it can be inferred that for a wind turbine, there is a 

probability mass corresponding to the minimum (zero) power 

output because of the wind speed smaller than the cut-in value 

or larger than the cut-off value; and a probability mass corre-

sponding to the maximum (rated) power output due to the wind 

speed larger than the rated value and smaller than the cut-off 

value. According to the relationship between the probability 

density and the probability, the probability mass of the maxi-

mum (or minimum) power point should be the integration of 

this points’ probability density over the point. In addition, an 

impulse function δ(x) can be simply defined by the following 

characteristics: i) ∫ Aδ(x-x0)
x0
+

x0
− dx=A with A denoting the im-

pulse strength; ii) if x≠x0, then δ(x-x0)=0. Therefore, it becomes 

quite obvious that an impulse function can be used to stand for 

the probability density of the wind turbine’s power output at the 

extreme value point and the impulse strength is the probability 

mass of this point. Generally, a common shape of wind turbines’ 

power output PDFs is depicted in Fig. 1 [27]. Since generation 

of all wind turbines in the same wind farm are aggregated into 

one in this paper, PDF fwi(·) of power output of the ith wind 

farm can be mathematically described as: 

( ) ( )

( ) ( )
w w max w max w

min w min w w

c p

                c p

i i i i i

i i i i i

f p p

p p



 

= −

+ − +
              (1) 

where pwi is the active power output of the ith wind farm; pmaxwi 

and pminwi are the maximum and minimum of pwi; cmaxi and cmini 

represent the strength of the impulses (or probability masses) at 

pmaxwi and pminwi, respectively; and θi(·) is the function depicting 

the curve between the two impulses. Moreover, following [12], 

[31], the uncertain loads in this paper are assumed to be nor-

mally distributed. Therefore, PDF fLj(·) of the jth load can be 

expressed as:  

( ) ( )L L L L Lμ ,σ ,j j j j jf p g p=                     (2) 

where pLj denotes the active power of the jth load; g(·) is the GF; 

μ̅Lj and σLj are the EV and the standard deviation (STD), re-

spectively. In addition, all RVs are assumed to be mutually 

independent in this study. 

Generally, a RV can be equivalently represented by the sum 

of its EV (deterministic) and the deviation (uncertain) with 

respect to the EV. Hence, the alternative forms of (1) and (2) in 

terms of the deviations are as follows: 

( ) ( )

( ) ( )
w w max w max w

min w min w w

c p

                c p

i i i i i

i i i i i

f p p

p p



 

 =  − 

+  −  + 
          (3) 

( ) ( )L L L L0,σ ,j j j jf p g p =                           (4) 

with the following auxiliary definitions: 

( ) ( )
w w w minw minw w maxw maxw w

w w w L L L

p , p p p , p p p ,

p , p

i i i i i i i i i

i i i i i j j j

p p

p p p p 

 = −  = −  = −

 =  +  = −

(5) 

where wp i  and Lp j  are EVs of pwi and pLj, respectively; Δpwi 

and ΔpLj are the deviations of these two RVs from their re-

spective EVs. Consequently, the total uncertain power pun of 

the system due to the WPG and the uncertain loads is computed 

as follows: 

wL NN

un L w

1 1

j i

j i

p p p
= =

=  −                              (6) 

where NL and Nw are the numbers of uncertain loads and wind 

farms, respectively. It can be inferred from (3)-(6) that the EV 

of pun is zero; pun is positive if the total uncertain load power is 

larger than the total uncertain wind power, and the overesti-

mation of WPG (with respect to the EV) is simply used to 

describe this situation. Thus, the underestimation of WPG will 

mean negative pun. Furthermore, with the given PDFs (3) and 

(4), CDF of pun denoted by Fun(·) can be numerically obtained 

via MC simulation of (6). Such univariate numerical function is 

smooth and monotonic and remains unchanged during the 

optimization. Therefore, when Fun(·) is stored in advance as the 

following series of pairs: 

     un1 un un1 un2 un un2 un3 un un3p , (p ) , p , (p ) , p , (p )F F F  

where pun1, pun2, pun3,… are uniformly spaced, then its specific 

evaluation during the optimization can be efficiently fulfilled 

by the table look-up and the first-order interpolation algo-

rithms. 
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Fig. 1.  Common shape of PDF of WPG. 

 

In order to keep balance between active power generation 

and demand at any given time, pun is usually accommodated by 

some conventional units. In this paper, a straightforward bal-

ancing strategy (affine control) which has been addressed in [20] 

and [21] is employed to distribute pun among these units pro-

portionally, as follows: 

t t unpk k kp p= +            0k       t1,2,..., Nk =     (7) 

t1 2 N... 1  + + + =                                                 (8) 

where ptk is the active power output of the kth generator which 

participates in balancing the uncertain power; Nt is the number 

of this sort of generators; tp k  is the EV (basic power) of ptk; 

and ηk is the participation factor. Thus, based on (7), the CDF of 

ptk denoted by Ftk(·) is calculated as: 

( ) ( )( )t t un t tpk k k k kF p F p = −                       (9) 

Furthermore, the probability of the event that ptk resides within 

the allowable range can be obtained as follows: 
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( ) ( ) ( )mint t maxt t maxt t mintProb p p p pk k k k k k kp F F  = −       (10) 

where pmaxtk and pmintk are the upper and lower limits of ptk, 

respectively.  

In practice, the general rules to select the conventional units 

participating in the accommodation of the uncertain power 

include: i) the basic requirement is that the selected units should 

be dispatchable; ii) the selected units should have adequate 

adjustable capacities; iii) locations of the selected units should 

not be very electrically far away from uncertain sources. Par-

ticularly, use of the third rule just tries to avert the practical 

transmission congestion (unsolvable AC load flow problem) 

because the subsequent section will utilize the DC load flow for 

the PLF analysis so that the transmission congestion cannot be 

reflected and constrained. Even so, the full AC load flow based 

validation is still necessarily performed to justify derived solu-

tions.  

B. CDF of Cost Function 

Following the commonly used quadratic fuel cost function, 

the total generation cost of the system can be calculated as 

follows: 

( ) ( )
gt

t

NN
2 2
t t t t

1 N 1

= a b c a b ck k k k k k k k k k

k k

ct p p p p
= = +

+ + + + +     (11) 

where ak, bk and ck are the cost coefficients with the unit of $/h 

p.u.; and Ng denotes the number of conventional units in the 

system. Specifically, the first summation on the right hand side 

of (11) denotes the sum of the cost of the generators partici-

pating in balancing the uncertain power, while the second 

summation corresponds to the generators which output deter-

ministic and scheduled power during the practical operation.  

By substituting (7) into the first summation on the right hand 

side of (11) and then rearranging it, the following formulation 

can be obtained: 
2

0 1 un 2 unct p p  = + +                         (12) 

where, 

( ) ( )
gt

t

NN
2 2

0 t t t t

1 N 1

a p b p c a b ck k k k k k k k k k

k k

p p
= = +

= + + + + +      (13) 

( )
tN

1 t

1

2a p bk k k k k

k

  
=

= +                                                    (14) 

tN
2

2

1

ak k

k

 
=

=                                                                         (15) 

Physically speaking, the cost coefficient ak in (11) is generally 

much smaller than bk [32]-[34]. Moreover, ηk is positive and 

less than 1.0. Thus, according to (14) and (15), ε2 is often quite 

small with respect to ε1. Furthermore, although pun derived from 

(6) has an infinite variation range because of the loads with 

normal distributions, it actually stays within a limited range 

around zero with a very large probability while rarely appears 

beyond this range. Consequently, no obvious error is caused if 

the second-order term of (12) is neglected while calculating the 

CDF of ct. Indeed, this linearization method for probabilistic 

analysis has been adopted frequently in extant literatures [25], 

[26]. Hence, the cost function (12) can be approximated as: 

0 1 unct p = +                                    (16) 

Accordingly, the EV of ct is approximated by ε0. As the com-

parison, the exact calculation of the EV of ct is provided in [20] 

and [21], as follows: 

( )
tN

2 2 2
0 w L

1

ai j k k

k

   
=

+ +                    (17) 

where σwi is the STD of the ith wind farm’s power output. The 

second additive term of (17) is generally much smaller than ε0 

due to the facts presented previously. In addition, it is noted that 

the uncertainty of ct is introduced entirely by the second term 

on the right hand side of (16) because ε0 and ε1 are deterministic. 

The CDF of ct denoted by Fct(·) can then be obtained by 

shifting and scaling Fun(·), as follows: 

( ) ( )( )ct un 0 1F ct F ct  = −                      (18) 

Moreover, the quantile corresponding to a probability value q 

can be calculated as follows: 

( ) ( )1 1
ct 0 1 unct F q F q − −= = +                     (19) 

Like the numerical Fun(·) used in the previous subsection, 
1

un ( )F −   can also be numerically stored in advance as the series 

of pairs but with uniformly spaced probability values. So, given 

a probability value q, Fun
-1 (q) can be efficiently evaluated by 

utilizing the table look-up and the first-order interpolation 

algorithms, and it will keep fixed during computing the P-OPF. 

III. PROBABILISTIC DC LOAD FLOW WITH PROPOSED 

APPROXIMATION OF PDF OF WPG 

The chance constraints on the transmission line power are 

included in the proposed P-OPF model. Thus, before proceed-

ing to this model, this section will derive the CDFs of trans-

mission line power first by the PLF which are based on the DC 

load flow and proposed approximation of the PDF of WPG. 

 As mentioned earlier, the cumulants based expansions (GC, 

EW and CF) often have low accuracy to represent the PDF of 

WPG because of its discontinuities (two impulses), which can 

be clearly observed in Fig. 1. Therefore, inspired by the GMM, 

a novel approximation of fwi(·) is proposed in this paper, as 

follows: 

( ) ( )

( ) ( )

w w max w max w

min w min w w w w w

c p

      c p c μ ,σ ,

i i i i i

i i i i i i i

f p p

p g p





 =  − 

+  −  + 
      (20) 

with the constraints that the zero, first and second-order mo-

ments of f wi(·) should be identical to those of fwi(·), which can 

be mathematically described as follows: 

max min wc c c 1.0i i i+ + =                                                   (21) 

max max w min min w w wc p c p c μ 0i i i i i i +  + =                          (22) 

( ) ( )2 2

w wi ix f x dx x f x dx
 

− −
=                                    (23) 

Parameters cwi, μwi and σwi of (20) can be readily calculated 

from (21)-(23). It is noted that the proposed approximation 

employs the commonly used moment matching technique to 

determine its parameters [35]. Besides, it also pays special 

attention to discontinuities of the exact PDF by directly pre-

serving the two impulse functions. Since the total probabilities 
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at the two discontinuous points is quite significant (no less than 

0.4, normally), such particular emphasis is able to greatly en-

hance the overall approximation effect. Moreover, compared to 

the impulse strength (probability mass at the discontinuous 

point), the cumulation of the error between cwig(·) and θΔi(·) 

over a local region around the discontinuous point is generally 

very limited. Therefore, the proposed approximation is capable 

of presenting fairly satisfactory approximation effects around 

the tail region of the CDF. Moreover, due to the fact that an 

impulse function can be equivalent to a GF with zero STD in 

the sense of probabilistic computing, the proposed approxima-

tion can be regarded as a customized GMM. Here, it should be 

highlighted that if the customized GMM is compared with the 

general GMM, the latter is undoubtedly a much more universal 

and accurate way to model the most non-Gaussian distributions. 

The primary feature of the customized GMM is its exclusively 

aiming at the PDF of WPG which however is relatively awk-

wardly handled by the general GMM. As mentioned and ex-

ampled in Section II, the general GMM due to its intrinsic 

characteristics usually requires more GFs to approximate the 

PDF of WPG than the customized GMM. Obviously, more GFs 

mean that more computational burden will be introduced in the 

subsequent PLF analysis. Moreover, the procedure to obtain the 

parameters of the general GMM is never as simple as that of the 

customized GMM. 

In the rest of this section, in order to simplify the notations as 

well as to avoid confusion, the Nw+NL RVs associated with the 

WPG and loads are re-denoted by Δp(1), Δp(2),…, w(N )
p , …, 

w L(N N )
p

+
 . Accordingly, f wi(·) and fLj(·) are replaced by f(i)(·) 

and f(j)(·), respectively. So, the PDF of the ith WPG can be 

approximated based on (20), as follows: 

( ) ( )
3

( ) ( ) ( ) ( ) ( ) ( )

1

c μ ,σ ,i i i i i i

k k k

k

f p g p
=

 =              (24) 

where, 
( ) ( ) ( )

1 max 1 max 1

( ) ( ) ( )

2 min 2 min 2

( ) ( ) ( )

3 w 3 w 3 w

c c ,   μ p ,     σ 0;

c c ,   μ p ,      σ 0;

c c ,     μ μ ,            σ σ

i i i

i i

i i i

i i

i i i

i i i

= = − =

= = − =

= = =

              (25) 

Meanwhile, the jth load PDF can be described as: 

( ) ( )( ) ( ) ( ) ( )

L0,σ ,j j j jf p g p =                      (26) 

So far, it can be observed from (24) that the PDF of WPG has 

been actually approximated by a linear combination of triple 

GFs.  

Besides the already quite attractive accuracy, the ultimate 

merit of the proposed approximation lies in its compatibility to 

the analytical PLF analysis. Since DC load flow, which can 

easily establish the linear mappings from node injections to line 

flow, has been widely adopted to study the stochastic charac-

teristics of line flow under the influences of uncertain node 

injections [12], [23], it is continuously employed in this paper. 

Consequently, as EVs of WPG and loads are known, EV of the 

power flow carried by line s-t denoted by 
( - )p s t

 can be directly 

solved from the DC load flow. Moreover, with further consid-

eration of (7), the linear relationship between the power flow 

deviation of the line s-t and the RVs associated with WPG and 

loads can be obtained as follows: 

w L w L(N +N ) (N +N )( - ) (1) (1) (2) (2)s t

st st stp p p p   =  +  + +      (27) 

where w L(N +N )(1) (2), ,...,st st st    are the constant coefficients.  

Before proceeding to PLF analysis based on (24)-(27), it is 

necessary to introduce three properties of probabilistic compu-

ting [35]: x1 and x2 are two independent RVs and their PDFs are 

f(x1)(·) and f(x2)(·), respectively. x3 is a linear function of them 

and its PDF is f(x3)(·). Therefore,  

— if x3=h1x1 where h1 is a constant, then f(x3)(x3)= f(x1)(x3/h1)/h1; 

— if x3=x1+x2, then f(x3)(x3)=f(x1)(x3)○× f(x2)(x3) where ○×  is the 

convolution operator; 

— if x1 and x2 are normally distributed and x3=x1+x2, then x3 is 

still normally distributed with the EV equal to the sum of 

EVs of x1 and x2, and the variance (squared STD) equal to 

the sum of variances of x1 and x2. 

Hence, according to the properties shown above, PDF of the 

line power p(s-t) can be analytically derived based on (24)-(27), 

as follows: 

( ) ( ) ( )
3 3 3

- ( - ) ( - ) ( - ) ( - ) ( - )

1 1 1

c μ ,σ ,
s t s t s t s t s t s t

k m n

f p g p
= = =

=        (28) 

where c(s-t), μ̅(s-t) and σ(s-t) are the symbolic replacements of the 

following expressions: 
( ) w- (N )(1) (2)c c c c
s t

k m n=                                                              (29) 

( ) w w- (N ) (N )- (1) (1) (2) (2)μ p μ μ ... μ
s t s t

st k st m st n  = + + + +                      (30) 

( )( ) ( ) ( ) ( )

( ) ( )

w w

w w w L w L

2 22 2- (N ) (N )(1) (1) (2) (2)

2 2
(N 1) (N 1) (N N ) (N N )

L L

σ σ σ σ

σ ... σ

s t

st k st m st n

st st

  

 + + + +

= + + +

+ + +

         (31) 

The corresponding CDF of p(s-t) is deduced as follows: 

( ) ( ) ( )

( )

( )

( - )

( - )

( - ) ( - )

( - )

- ( - ) ( - )

3 3 3
( - ) ( - ) ( - )

1 1 1

μ3 3 3
( - ) σ

1 1 1

( - ) ( - )3 3 3
( - )

( - )
1 1 1

    c μ ,σ ,

    c 0,1,

μ
    c

σ

s t

s t

s t s t

s t

ps t s t s t

p
s t s t s t

k m n

p

s t

k m n

s t s t
s t

s t
k m n

F p f x dx

g x dx

g x dx

p
G

−

−
= = =

−

−
= = =

= = =

=

=

=

 −
=  

 



  

  

 

                   (32) 

where G(·) denotes the CDF of the standard GF. The accuracy 

of (32) can be examined via comparison with the CDF derived 

from the MC simulation. More specifically, the MC simulation 

first uses the simple random sampling technique to generate 

WPG samplings (i.e., each sampling denotes the concurrent 

power outputs of the wind farms) based on the exact PDFs of 

WPG (Fig. 1). Then, the full AC load flow (without any line-

arization) is calculated with each WPG sampling and the exact 

value of p(s-t) is obtained. Finally, cumulating all these values 

after the AC load flow calculations synthesizes the CDF of p(s-t). 

As the MC simulation normally employs a fairly large number 

of samplings to adequately capture the stochastic nature of the 

RVs (in this study the number of the samplings is set to be 

20000) and no approximation is used during the load flow 

computation, the above derived CDF shall be highly accurate 
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so that it can be used as the benchmark for the validation of (32). 

Thus, the examples of comparing (32) and the CDF obtained by 

the MC simulation will be presented in Section V. 

The probability that p(s-t) will not exceed the carried power 

limit ( - )
maxp s t  of line s-t can be computed as follows: 

( ) ( ) ( )( - ) ( - ) ( - ) ( - ) ( - ) ( - )
max max maxProb p p ps t s t s t s t s t s tp F F = − −      (33) 

IV. PROPOSED P-OPF MODEL  

A. Formulation 

On the basis of preliminary knowledge presented in Section 

II and III, the proposed P-OPF model is formulated as follows: 

( ) ( )
p

1 1
ct 0 1 unmin  ct = q qF F − −= +

x
                              (34) 

s.t.      mint t maxtp pk k kp             t t gN 1,..., N Nk = + +    (35) 

( )( - ) ( - ) ( - )
maxProb p qs t s t s tp      all  - branchess t    (36) 

( ) t
mint t maxtProb p p q k

k k kp       t1,2,..., Nk =     (37) 

where q, q(s-t) and qtk are the given probability values; ct is the 

quantile corresponding to q; and xp is the tunable vector of 

parameters consisting of EVs (p̅tk) and participation factors (ηk) 

associated with the conventional units taking part in balancing 

the power uncertainties, and the power outputs (ptk) of the rest 

of conventional units. So, (35) is the boundary constraints on 

the deterministic power outputs of those units. 

B. Chance Constraints 

Individual chance constraints (36) and (37) are imposed on 

the power carried by transmission lines and the power output by 

the conventional units which accommodate the system power 

imbalance, respectively. However, it should be emphasized that 

from a more critical perspective, constraining the power of 

these devices ought to employ the joint probability as follows: 

 

( - ) ( - )
max mint t maxt

t

p ,      p p ,
Prob

all - branches  and  1,2,..., N

s t s t
k k kp p

s t k

   
 
  = 

    (38) 

Here, (38) denotes the probability of these devices’ power 

simultaneously lying within their physical limits. For instance, 

the probability of simultaneous contingencies is restricted in 

[36] for the wind integrated unit commitment problem. The 

scenario approach is employed to make the problem analyti-

cally solvable though the computational complexity is re-

markable when the number of simultaneous contingencies is 

large. In fact, exact evaluation of (38) is quite numerically 

cumbersome as the joint distribution of the RVs involved is 

required [37]. Particularly, by assuming linear relationship and 

normal distribution, literature [38] equivalently replaces the 

joint chance constraints by a set of individual chance con-

straints when dealing with the long-term voltage control prob-

lem. Normally, for the sake of computational simplicity, the 

joint chance constraint can be approximated by the individual 

chance constraints although the derived results based on the 

latter tend to be optimistic [18], [37]. A comprehensive com-

parisons of these two chance constraint problems are presented 

in [39] by taking the reservoir management issue as the exam-

ple. 

The parameters q(s-t) and qtk could be selected to be close to 

1.0 so as to lower the distinction between the joint chance 

constraint and the individual chance constraints. This actually 

permits the occurrence possibility of some rare events in which 

the constraints may be violated; the overall operational econ-

omy would be remarkably deteriorated if the constraints in 

these events are strictly satisfied. Moreover, mathematically 

speaking, these two parameters cannot reach 1.0 since the RVs 

derived by the probabilistic calculations with GFs in the pre-

vious section extend to both positive and negative infinity.  

C. Impacts of Probability q on Optimization Solutions 

It is already known that the CDF of ct can be approximately 

obtained by shifting (ε0) and scaling (ε1) the CDF of pun which 

is fixed. Hence, the CDF of ct can be only altered (optimized) 

on its position (by shifting) and profile (by scaling). Specifi-

cally, the EV of ct (17) is commonly employed by [20] and [21] 

as the objective to be optimized. This is almost equivalent to 

minimizing the rightward movement (ε0) of the CDF of ct be-

cause ε0 is always much larger than the second additive term of 

(17). However, in doing so the CDF’s profile is not the concern 

of the optimization. Therefore, this paper proposes to minimize 

a more flexible objective function (34) which is the weighted 

sum of ε0 and ε1 (𝐹un
−1(q) plays the role of the weight). In other 

words, the CDF of ct is optimized simultaneously on the 

shifting and scaling of the CDF of pun. Obviously, the proba-

bility q controls the final optimization effects through the 

weight Fun
-1 (q): e.g., if q is chosen to be far away from a specific 

value q0 which leads to 𝐹un
−1(q0)=0, the distribution of the 

uncertain part of the generation cost will also be remarkably 

optimized. So, compared to the exclusive minimization of ε0, 

additionally including the uncertainty of the cost in the opti-

mization could be at the expense of increasing the expected 

cost.  

Indeed, selecting q can be profoundly interpreted in terms of 

the risk management because (34) is a typical VaR minimiza-

tion problem. Actually, the methodologies associated with VaR 

and/or conditional VaR have been intensively studied by power 

system academia. In particular, the power market researches 

give considerable attentions to the VaR, conditional VaR and 

their optimization [40]-[42]. Moreover, the applications are 

also involved in many other aspects of power engineering such 

as economic operation and dispatch [43], [44], reliability as-

sessment [45], security assessment [46]-[47] and so on. In [44], 

the conditional VaR is used to construct a regularizer for the 

convex programming to obtain an intelligent risk-aware dis-

patch which mitigates the high risk of inadequate wind power 

in a wind-integrated power system. Literature [45] develops a 

systematic procedure to implement the VaR based reliability 

assessment for distribution systems. Specifically, investigating 

cyber security of smart grids in [46] estimates the defender’s 

loss by a conditional VaR index which is equivalently derived 

as the load shed in the scenario simulations; a stochastic secu-

rity game model is solved to find the protective countermeasure 

which optimizes the VaR index. Moreover, the VaR and con-

ditional VaR based blackout risk indexes have been proposed in 
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[47] to indicate critical characteristics of blackouts and evaluate 

security level of power systems. Here, in the proposed O-OPF 

model the VaR based objective function also presents obvious 

significance regarding the probabilistic cost management 

which will be addressed in detail in the following. 

Expression (16) indicates that the total generation cost (ct) is 

(approximately) equal to the expected cost (ε0) plus the uncer-

tainty of extra expense/saving (ε1pun) which is produced by the 

overestimation (pun>0)/underestimation (pun<0) of WPG. 

Firstly, if q>q0, the extra expense will fall within the interval [0, 

ε1Fun
-1 (q)] with the confidence level of q-q0; the proposed op-

timization obviously makes sense to compress this interval by 

reducing ε1 . Furthermore, according to the previous shifting 

and scaling explanation, a smaller ε1 leads to a smaller cumu-

lative probability of the total cost from a specific large value to 

the positive infinity (briefly, the occurrence probability of the 

high cost is reduced). In contrast, the optimization will expand 

the interval [ε1Fun
-1 (q), 0] where the extra saving locates with the 

confidence level of q0-q by increasing ε1 when q<q0; the cu-

mulative probability of the total cost from the negative infinity 

to a specific small value becomes larger as ε1 is larger (briefly, 

the occurrence probability of the low cost will be magnified). 

Therefore, it is readily seen that the extra expense/saving sides 

of the cost uncertainty’s CDF cannot be simultaneously opti-

mized because they pose opposite requirements on the scaling 

factor ε1. In other words, given any q, the (hedged) solution can 

only benefit one (either the expense or saving) side but deteri-

orate another side, e.g. favorably decrease the high cost’s oc-

currence probability but unfavorably decrease the low cost’s 

occurrence probability. Specifically, if |q-q0| gets larger (q is 

farther away from q0), it becomes more confident that the extra 

expense (saving) is within the corresponding interval while the 

optimization also gives more priority to compress (expand) the 

interval with respect to decreasing ε0. However, on the contrary, 

the extra saving (expense) side of the cost uncertainty’s CDF 

will be more adversely altered as well. Indeed, this contradic-

tive phenomenon is due to the employed proportional balancing 

strategy of the uncertain power (it is definitely possible to op-

timize the overall distribution of the cost uncertainty if a more 

complex balancing strategy is utilized).  

Like the traditional OPF model, the proposed P-OPF model 

can be handled as a typical constrained nonlinear programming 

problem where the objective function and the constraints are 

smooth and differentiable with respect to the tunable parame-

ters. Thus, the efficient sequential quadratic programming 

(SQP) method developed for this sort of optimizations is 

adopted in this paper to solve (34)-(37) [48]. The embedded 

function fmincon in the MATLAB Toolbox is utilized to im-

plement this algorithm. Furthermore, this study uses different 

feasible initial solutions (means all constraints are satisfied) to 

run the SQP, respectively, so as to enhance the solution’s 

quality; the best final solution which results in the minimum 

objective function among these runs is adopted.  

V. EXAMPLE STUDIES 

A. IEEE Reliability Test System 

The proposed P-OPF model is first implemented in a modi-

fied 24-bus IEEE reliability test system where three wind farms 

are connected to Bus 4, 16 and 17 (the conventional unit orig-

inally connected to Bus 16 is discarded), respectively. The 

diagram and data this system can be found in [49]. The three 

PDFs of the WPG are assumed to be identical and are derived 

based on PDF of wind speed and the power curve of wind 

turbine given in Appendix (Data A). Particularly, the active 

power loads of Bus 4, 16 and 17 are additionally increased by 

the EVs of the three wind farms’ WPG, respectively. The ratio 

σLj/μ̅Lj is uniformly set to be 7% for the stochastic loads. In 

addition, active power loads with EVs larger than 180MW are 

stochastically modeled while the remaining loads use the de-

terministic models. Thus, there are 3 RVs for the WPG and 10 

RVs for the loads in the P-OPF model. Specifically, the pene-

tration level of WPG is about 23% when the EVs of these RVs 

are employed for the calculation. Table I shows the used cost 

coefficients and power limits of the conventional units. Thus, 

except G15 and G21 which have rather limited adjustable ranges 

of the active power outputs, it is supposed that G1, G2, G7, G13, 

G18, G22 and G23 are employed to balance the uncertain power. 

In this study, all q(s-t) and qtk are uniformly set to be 97%. 
 

TABLE I 

DATA OF CONVENTIONAL UNITS  

 Pmintk Pmaxtk ak bk ck 

G1 0.80 5.60 55.0 1476.0 267.0 

G2 0.90 8.30 40.3   915.0 383.0 

G7 1.00 7.80 42.5   966.3 328.3 

G18 1.30 8.60 38.0   900.0 270.0 

G22 0.60 7.50 30.7   895.0 220.0 

G13 1.50 7.50 8.40   528.5 128.0 

G15 1.50 4.20 6.00   550.0 162.0 

G21 1.00 4.80 5.50   570.0 143.0 

G23 1.20 7.20 7.50   513.7 111.0 

 
TABLE II 

OPTIMAL SOLUTION (q=0.5194) 

 ηk Σηk p̅
tk

 Σp̅
tk

 

G1 0.0081 

0.5292 

0.8692 

9.2720 

G2 0.0963 1.7294 

G7 0.1475 2.2803 

G18 0.0778 2.0644 

G22 0.1995 2.3287 

G13 0.2218 

0.4708 

5.4038 

19.2280 
G15 - 4.1842 

G21 - 4.8056 

G23 0.2490 4.8344 

 

In order to minimize the EV of the cost, q is set to be 0.5194 

so that Fun
-1 (q)=0. Then, four search runs by the SQP with dif-

ferent feasible initial solutions are conducted, and the evolu-

tions of the objective function during the search are depicted in 

Fig. 2. It is seen that these search runs finally converge to the 

same optimal point (presented in Table II) and are terminated 

due to the first-order optimality measure less than the specified 

value. In addition, the search runs averagely take about 8 iter-

ations (cost the computational time of about 3.73s on a PC with 

Intel Core i5-2320 CPU@3.00GHz and 4G RAM) to converge. 
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For the subsequent comparisons, Table III and IV also list the 

optimal solutions obtained by the SQP when q is set to be 0.99 

and 0.23, respectively. 
 

TABLE III 

OPTIMAL SOLUTION (q=0.99) 

 ηk Σηk p̅
tk

 Σp̅
tk

 

G1 0.0001 

0.3517 

0.9162 

11.2047 

G2 0.0193 2.4982 

G7 0.0048 3.1111 

G18 0.1296 2.3913 

G22 0.1980 2.2878 

G13 0.3240 

0.6483 

4.4084 

17.2953 
G15 - 4.0465 

G21 - 4.7340 

G23 0.3243 4.1064 

 

TABLE IV 

OPTIMAL SOLUTION (q=0.23) 

 ηk Σηk p̅
tk

 Σp̅
tk

 

G1 0.0121 

0.8090 

0.9045 

11.6443 

G2 0.1504 2.2846 

G7 0.0985 1.8622 

G18 0.2742 3.6547 

G22 0.2737 2.9383 

G13 0.1910 

0.1910 

4.6804 

17.8557 
G15 - 3.3345 

G21 - 4.4964 

G23 0.0000 5.3443 

 

Naturally, the obtained result can be deemed authentic only 

when the approximation techniques used in the proposed model 

can have satisfactory accuracy. Therefore, the proposed cus-

tomized GMM, GC, EW and CF expansions are compared in 

terms of CDF of the WPG in Fig. 3. Specifically, the first 10 

terms are used in the GC expansion, and the first 5 cumulants 

are contained in expansions of EW in power of n-3/2 and CF (if 

more terms are included in the three expansions, their accura-

cies are not obviously improved but the computational com-

plexities are greatly increased). It is observed that the proposed 

method presents fairly acceptable overall approximation effect 

and also remarkably outperforms the other three methods (es-

pecially around the step-change points). As mentioned in the 

beginning of Section III, such phenomenon is attributed to the 

fact that the discontinuities in the PDF of WPG are successfully 

handled by the proposed method. Subsequently, as the solution 

in Table II is employed, the CDFs of transmission lines’ power 

are derived by the DC load flow based PLF with the approxi-

mated PDF of WPG; they are compared with the CDFs derived 

by the MC simulation introduced in Section III. It is found that 

the approximated CDFs of all the transmission lines which are 

obtained by (32) can accurately capture the stochastic proper-

ties of the line flows. As an example, Fig. 4 illustrates the CDF 

of the active power flow carried by the line #2-6. This indeed 

further validates the effectiveness of the proposed customized 

GMM to approximate the PDF of WPG and its applications in 

the PLF analysis. Finally, the linear approximation of the cost is 

examined (with the solution in Table II) by directly comparing 

the function curves of (12) and (16) (left plot of Fig. 5). Fur-

thermore, numerical CDFs of the cost computed based on (12) 

and (16) respectively are also compared in the right plot of Fig. 

5. Thus, it is easily noted that the linear approximation has quite 

satisfactory accuracy over a large range of pun ([-20, 20]). Be-

cause pun has little probability to stands far beyond this range, 

the CDF derived based on the linear approximation can accu-

rately tracks the exact CDF (the solid and dash lines in the right 

plot of Fig. 5 are almost overlapped). 

 

 
Fig. 2.  Four search runs by the SQP with different feasible initial solutions. 
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Fig. 3.  CDFs of WPG (1-exact; 2-proposed; 3-GC; 4-EW; 5-CF). 

 

Based on the solutions presented in Table II, III and IV, the 

CDFs of ct are calculated and shown in Fig. 6. Moreover, the 

CDFs are also demonstrated in a decomposed manner by the 

EV (ε0) and the CDF of the cost uncertainty (Fig. 7). From these 

figures, it is easily seen that among the three cases, the CDF of 

ct derived based on the solution in the case of q=0.99 has the 

most favorable high cost section (larger than 2.6×104) while its 

low cost section (lower than 2.1×104) is the worst. Interestingly, 

the situation is entirely reverse in the case of q=0.23. Indeed, 

such hedging phenomenon of the solutions is further observed 

by the statistical data given in Table V. Obviously, the opera-

tions of compression and expansion on the CDF of the cost 

uncertainty in the case of q=0.5194 which are clearly depicted 

in Fig. 7 graphically account for this phenomenon. Besides, the 

data provided in Table II, III and IV can also help to uncover 
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the essence of the employed affine generation control which 

tends to obtain a hedged solution, in the following paragraph. 

 

 
Fig. 4.  CDF of active power flow carried by transmission line #2-6 (solid 

line-proposed method; dash line-MC simulation). 

 

Depending on the cost coefficients of the conventional units 

presented in Table I, they can be simply and roughly classified 

into two groups: expensive units (G1, G2, G7, G18 and G22) and 

cheap units (G13, G15, G21 and G23). In the case of q=0.5194 

where the cost uncertainty is not considered, the cheap units 

generally tend to output the basic power (p̅
tk

) as much as pos-

sible while the expensive units supply the rest basic (expected) 

loads so that the EV (ε0) of ct could be minimal. Therefore, the 

cheap units provide the contribution to balance the power un-

certainty as less as possible due to their upper bounds on the 

power outputs, and the remainder is just accommodated by the 

expensive units. Then, if overestimation of the WPG really 

happens (pun>0), the expensive units will take the most duty to 

balance the uncertain power, leading to the high extra expense. 

In contrast, this high extra expense risk is considered in the case 

of q=0.99 and the cheap units less their basic power outputs and 

reserve more capacities so as to take more duty to balance the 

power uncertainty (these can be checked from Table II and III 

by comparing the total basic power outputs Σp̅
tk

 of the cheap 

and the expensive units, and the sum Σηk of their participation 

factors, respectively) so that the extra expense is obviously 

decreased. Then, the actual cost equal to the EV plus the extra 

expense will be effectively reduced although the EV is some-

what increased by the more power outputs of the expensive 

units. On the contrary, compared to the solution in Table II, the 

solution in Table III would be rather unfavorable if the under-

estimation of WPG (pun<0) occurs since the increased EV to-

gether with less extra saving (here, extra saving is denoted by 

its absolute value for the sake of expression simplicity though it 

is essentially negative) results in a larger cost value. So, the 

optimization with q=0.23 considers the low extra saving risk 

and enforces the expensive units to play more significant roles 

in balancing the power uncertainty so that the extra saving is 

increased (see Σηk in Table II and IV). Furthermore, in order to 

enlarge the participation factors of the expensive units, their 

basic power outputs should be increased so that the necessary 

downward adjustable capacities are available (see Σp̅
tk

 in Table 

II and IV). However, although outputting more basic power by 

the expensive units will increase the EV, the cost is still com-

paratively reduced due to the increased extra saving. So far, it is 

not difficult to understand that the solution in Table IV will be 

much less exhilarated if the overestimation of WPG happens. 

 

 
Fig. 5.  Function curve and CDF of cost (solid line-exact; dash 

line-approximate) 

 

 
Fig. 6.  Optimized CDFs of cost by selecting different values of q. 
 

 
Fig. 7.  ε0 and CDF of cost uncertainty. 
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always sacrificed with respect to the result in the case of 

q=0.5194. It is already known that as q is selected to be farther 

away from q0, this sacrifice will possibly become more serious, 
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will be entirely overridden by the adverse impact of increasing 

the EV.  

Although the above simulations are conducted at the same 

load level, it is seen that the contributions of the units to the 

uncertain power balance vary remarkably according to the 

probabilistic cost regulation purposes. For example, G23 is a 

primary unit to accommodate the power uncertainty in the case 

of q=0.99 while it is totally free from this task and only outputs 

the basic power in the case of q=0.23. Moreover, no chance 

constraint on the transmission line power is activated and the 

constraints on the conventional units’ power outputs have the 

most impact on the final solutions in the three cases. For ex-

ample, the solution in Table IV activates the lower bounds of 

the chance constraints on the power outputs of G18 and G22. 

Indeed, the transmission line power constraints can also con-

siderably influence ηk and p̅
tk

 of the conventional units. So, a 

new simulation case with the EVs of the loads at Bus 3, 5, 9, 

and 10 increased by 20% is conducted. As q=0.99 is employed 

again, the solution of the optimization is given in Table VI. It is 

found that the solution activates the upper bounds of the chance 

constraints on the power of transmission lines #15-24, #20-12 

and #13-11 which are the important corridors to deliver power 

from G15-G23 to the load center. Therefore, compared to the 

situation in Table III, G1, G2 and G7 output more basic power 

and take more duty to balance the power uncertainty. Moreover, 

it is also seen that the power output of G1 is almost determin-

istic (ηk is fairly small) in the low load level case (Table III) but 

it is recruited to share the balancing duty with other units as the 

load level is increased (Table VI).  
 

TABLE V 

OCCURRENCE PROBABILITIES OF LOW COST AND HIGH COST 

 q=0.23 q=0.5194 q=0.99 

Prob(ct<1.5×104) 0.0875 0.0074 0 

Prob(ct>3.0×104) 0.1107 0.0463 0 

 
TABLE VI 

OPTIMAL SOLUTION WITH INCREASED LOAD LEVEL (q=0.99) 

 ηk Σηk p̅
tk

 Σp̅
tk

 

G1 0.1223 

0.4895 

2.0402 

14.1508 

G2 0.0993 3.5321 

G7 0.1348 4.1235 

G18 0.0636 2.1020 

G22 0.0695 2.3530 

G13 0.2270 

0.5105 

5.2082 

19.5067 
G15 - 4.9435 

G21 - 5.1120 

G23 0.2835 4.2430 

 

B. IEEE 118-Bus System 

In this subsection, robustness of the proposed model with 

respect to a different system is tested. Thus, the modified IEEE 

118-bus system where five wind farms are used to replace the 

conventional generators at Bus 15, 42, 90, 99 and 116 is em-

ployed. The five CDFs of the WPG are also assumed to be 

identical, and the data (Data B) in Appendix is used to compute 

them. Moreover, there are a total of 11 RVs relevant to the 

active power loads with EVs larger than 75MW, and σLj/μ̅Lj is 

uniformly set to be 5%. Thus, the penetration level of WPG is 

about 19%. Furthermore, the conventional units at Bus 12, 19, 

31, 34, 46, 54, 61, 74, 77 and 111 which have adequate ad-

justable capacities and are electrically adjacent to the wind 

farms are employed to balance the uncertain power. All q(s-t) 

and qtk are set to be 97%. The other details and data of this 

system can be found in [50]. Due to the increased number of 

decision variables (totally 59) and wind farms, the computa-

tional scale of the P-OPF for this system is much larger than 

that for the previous simulated system. However, the P-OPF 

herein is still efficiently solved by the SQP; it takes about 

15.40s on average to converge (with the same computational 

platform used in the previous subsection) as q is selected to be 

different values.  

Definitely, the solution of the P-OPF makes sense only when 

the employed approximations are acceptably accurate. Thus, 

based on the solution in the case of q=0.99, the left plot of Fig. 8 

shows the CDF of the linearly approximate cost which satis-

factorily tracks the exact CDF. Moreover, it is also found that 

all the transmission lines have the approximate CDFs of the 

power which are with acceptable accuracy, and an example is 

provided in the right plot of Fig. 8. All these simulation results 

are the strong evidence to again support the feasibility of the 

proposed linearization of the cost function to obtain CDF and 

the effectiveness of approximating the PDF of WPG by a cus-

tomized GMM. 

 

 
Fig. 8.  CDFs of cost and active power flow carried by line #69-47 (solid 
line-exact; dash line-approximate). 

 

 
Fig. 9.  Optimized CDFs of cost by selecting different values of q. 
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tained when q is selected to be 0.11, 0.83 and 0.99, respectively; 

they are compared in terms of the CDF of ct (Fig. 9). The in-

tention in the case of q=0.11 is to enhance the occurrence 

probability of the low cost. Obviously, such probabilistic cost 

management purpose is achieved because the cost CDF in this 

case is with the most favorable low cost section in comparison 

to those in the other two cases. Undoubtedly, its high cost sec-

tion will be the worst due to the hedging effect of the solution 

caused by the used affine generation control. Furthermore, an 

interesting phenomenon is that the CDF in the case of q=0.99 

almost gets no superiority associated with the high cost section 

when compared with the CDF in the case of q=0.83. Simply, 

this is because the decrease of the extra expense induced by the 

overestimation of WPG is fully overwhelmed by the increase of 

the cost’s EV.  

VI. CONCLUSION 

In real power systems, the conventional units generally take 

the burden to balance the uncertainties of WPG and load. 

Firstly, an affine generation control which drives conventional 

units to proportionally balance the total power uncertainty 

(with respect to its EV). So, the quantile of the cost function can 

be readily obtained with acceptable accuracy by the proposed 

linearization of the cost. Then, a novel P-OPF model with a 

quantile corresponding to a probability value has been con-

structed. Proper selection of the probability value can approach 

distinct probabilistic cost management purposes. Moreover, the 

hedging effect of the solution due to the used affine control is 

also comprehensively discussed and unveiled, e.g. the solution 

cannot simultaneously benefit the low cost and high cost sec-

tions of the cost’s CDF. It is also found that the improvements 

of the extra expense/saving are generally at the expense of the 

expected cost. Besides, a customized GMM is proposed to 

approximate the PDF of WPG so that the impacts of its dis-

continuities are completely extinguished and very satisfactory 

overall approximation effect is achieved has been proposed. 

Thus, owing to an analytical PLF method developed based on 

such proposed approximation, the chance constraints are in-

troduced in the P-OPF model and readily calculated. Example 

studies of two modified benchmark systems with multiple wind 

farms have shown accuracy of the developed PLF method and 

the effectiveness of the proposed P-OPF model to be satisfac-

tory. 

APPENDIX 

Data A: Distribution of wind speed is modeled as Weibull with 

scale parameter of 15m/s and shape parameter of 1.6; The 

rating of wind turbine is 2MW, and there are 200 wind turbines 

of the same specifications in each wind farm; The cut-in, 

cut-off and rated wind speeds of the wind turbine are 4m/s, 

22m/s and 12m/s, respectively; and the power curve between 

cut-in and rated wind speeds is linearly modeled [21]. 

 

Data B: Wind speed is normally distributed with expectation of 

13m/s and standard deviation of 6m/s; The rating of wind tur-

bine is 2MW and there are 200 wind turbines of the same 

specifications in each wind farm; The cut-in, cut-off and rated 

wind speeds of the wind turbine are 4m/s, 27m/s and 15m/s, 

respectively; and the quadratic model is used to depict the 

power curve between cut-in and rated wind speeds [25]. 
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