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Abstract—Dynamic thermal rating (DTR) is more accurate and 

can better utilize the transmission/distribution capacity of an 
electric power system compared to static thermal rating. It is 
beneficial to integrate DTR into power system planning problems 
where modelling the DTR is vital. This paper presents a new 
modelling method for DTR that consists of three sequential steps: 
a multivariate polynomial regression between the DTR and its 
four affecting factors, an hourly normalization, and an 
autoregressive integrated moving average (ARIMA). Three types 
of polynomial regressions were developed based on the analysis of 
the heat balance model for calculation of the DTR. For the purpose 
of comparison, several other modelling methods for the DTR were 
designed based on a widely used wind speed modelling method. 
The performance of the different modelling methods was verified 
using case studies from Austin, USA and Wawa, Canada. The 
results show that the model of the DTR obtained using the 
proposed method is superior in terms of both probability 
distribution and fitting accuracy. 
 

Index Terms—Autoregressive integrated moving average 
(ARIMA); dynamic thermal rating (DTR); multivariate 
regression; time series modelling. 

I. NOMENCLATURE 

The terminology used in this paper is as follows: 
 Conductor overall diameter (m)  ܦ
 Grashof number (dimensionless)  ݎܩ
 Conductor current (A)  ܫ
 ୧୰  Wind direction factor (dimensionless)ୢܭ

௨ܰ  Nusselt number (dimensionless) 

௨ܰ
୭୰  Nusselt number associated with forced convection

(dimensionless) 

௨ܰ
୬ୟ୲  Nusselt number associated with natural convection

(dimensionless) 
 Prandtl number (dimensionless)  ݎܲ
ܳୱ  Intensity of global solar radiation (W/m2) 
ܴ  Reynolds number (dimensionless) 
ܴ௦  Conductor roughness (dimensionless) 
்ܴ  Electrical resistance of conductor at temperature ܶ

(Ω/m) 
ୟܶ  Ambient temperature (K) 

ୡܶ  Final equilibrium temperature of conductor (K) 

ܶ  Film temperature (K) 

ௗܹ  Wind direction (degree) 

௦ܹ  Wind speed (m/s) 
݀  Diameter of the wires in the outermost layer (m) 
݃  Acceleration due to gravity, 9.807 (m/s2) 
 ୡ  Convection heat loss (W/m)ݍ
 ୰  Heat loss by radiation of the conductor (W/m)ݍ
 ୱ  Solar heat gain by the conductor surface (W/m)ݍ
 Height above sea level (m)  ݕ
୫  Emissivity coefficient with respect to black bodyୣߙ

(dimensionless) 
 ୱ  Solar radiation absorption coefficient (dimensionless)ߙ
 Density of air (kg/m3)  ߛ
 Angle between wind and line direction (degree)  ߜ
  Thermal conductivity of the air film in contact with theߣ

conductor (W⋅m-1⋅K-1) 
  Dynamic viscosity of the air at the film temperatureߤ

(kg⋅m-1⋅s-1) 
 ୱୠ  Stefan-Boltzmann constant (W⋅m-2⋅K-4)ߪ

II. INTRODUCTION 

YNAMIC thermal rating (DTR) calculates the maximum 
conductor capacity based on real-time ambient and 

conductor conditions. Thus, the DTR is a more accurate 
estimation of the capacity compared to the static thermal rating 
that is usually estimated under conservative conditions. The 
DTR is often higher but can also sometimes be lower than the 
static thermal rating [1,2,3,4,5]. This means that the DTR can 
better utilize the capacity of existing electric power systems 
without any overestimation of the capacity under extremely 
adverse conditions. 

Due to the extra capacity provided by the DTR, investment 
in new transmission/distribution capacity can be deferred or 
avoided and network congestion can also be mitigated [1], 
implying a substantial financial benefit. Consequently, the DTR 
has received considerable attention and has become an 
important smart grid technology. 

A DTR system consists of sensing and communication 
devices and the software to determine the DTR for the 
conductors [1]. Due to the development of advanced sensing 
and communication technologies and decreasing costs thereof, 
DTR systems are now suitable for commercial installation [6,7]. 
A number of demonstration programs have been set up to 
investigate the impacts of the DTR on power systems, including 
projects conducted by the U.S. Department of Energy [1] as 
well as in the U.K. [8,9,10].  

To fully recognize the benefits of DTR to power systems and 
to accelerate its application, much recent research has been 
conducted to determine the optimal number and location for 
DTR installations [11], low carbon operation [12], congestion 
management [13], reliability analysis [14,15], benefits to 
distribution network [16,17], fuzzy method for calculating DTR 
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[18], and network planning [19]. Integrating DTR in power 
system planning problems is of great benefit [3,19]. However, 
an appropriate model for DTR is vital for obtaining an accurate 
solution to a planning problem. 

The DTR can be modelled using a Monte Carlo sampling 
method based on its probability density function (PDF) [19] or 
based on the PDF of its four affecting factors and its heat 
balance model [9]. Another modelling method is time series 
modelling, with the autoregressive integrated moving average 
(ARIMA) model being a widely used option [20]. In [15], a 
low-order ARIMA model was used to represent a DTR time 
series for reliability analysis. However, the ARIMA model in 
[15] is not suitable for modelling the DTR for prolonged 
periods of time, e.g., one or several years, which is necessary in 
a planning problem; this is because the DTR varies within a 
large range that is difficult to directly model using a low-order 
ARIMA model. To solve this problem, a new modelling method 
for the DTR using an ARIMA model is proposed in this paper. 

The DTR is affected by four factors: wind speed and 
direction, ambient temperature, and solar radiation [21]. 
Seasonal and diurnal cycles affect the last two factors, but wind 
speed is volatile and significantly affects the DTR. 
Consequently, the DTR has both seasonal and diurnal cycles 
but the diurnal cycle may disappear in times of volatile wind 
speed. To cope with the volatility of the DTR, a multivariate 
regression between the DTR and its four affecting factors is 
proposed to reduce the large-range variation of the DTR before 
ARIMA modelling. To retain the seasonal and diurnal 
distribution of the DTR, an hourly normalization method [22,23] 
is incorporated in the proposed modelling method. 

The rest of the paper is organized as follows. The heat 
balance model to calculate the DTR is introduced in Section III. 
Then, the ARIMA model and its identification method are 
given in Section IV. In Section V, the proposed modelling 
method for the DTR is detailed. Simulation results are given 
and analyzed in Section VI, and conclusions are drawn in 
Section VII. 

III. HEAT BALANCE MODEL FOR DYNAMIC THERMAL 

RATING 

The DTR can be calculated using the heat balance model, 
which has been investigated in both the IEEE standard [24] and 
the CIGRE standard [21]. These two standards were compared 
in [25], which shows that both give similar results with slight 
differences. In this paper, the latest version of the CIGRE 
standard [21] is adopted for calculation of the DTR.  

The heat balance equation can be represented by the balance 
of Joule heating ܫଶ ⋅ ்ܴ  (in which ܫ	  is the conductor current 
and ்ܴ  is the electrical resistance of the conductor at 
temperature ܶ), solar heating ݍୱ , convective cooling ݍୡ , and 
radiative cooling ݍ୰:  

ଶܫ	 ⋅ ்ܴ 	ݍୱ ൌ ୡݍ   ୰,                                                                        (1)ݍ
 

the detailed calculation of which is conducted according to [21], 
where 

ୱݍ				 ൌ ୱߙ		 ⋅ 	ܳୱ ⋅ 	(2)                                                                                  ,	ܦ	
୰ݍ				 ൌ ୫ୣߙ ⋅ ୱୠߪ ⋅ ߨ ⋅ ܦ ⋅ ሺ ୡܶ

ସ െ ୟܶ
ସሻ	,                                               (3)	

ୡݍ			 ൌ ߨ		 ⋅ ߣ ⋅ 	 ሺ ܶ െ ܶሻ ⋅ ௨ܰ,                                                           (4)	

ߣ				 ൌ 		0.02368  7.23 ⋅ 10ିହ ⋅ ܶ െ 	2.763 ⋅ 10ି଼ ⋅ ܶ
ଶ,  (5)	

				 ܶ 	ൌ 	 ሺ ୡܶ  ୟܶሻ/2,                                                                                   (6) 

in which ߙୱ is the solar radiation absorption coefficient (set at 
0.8), ܳୱ  is the intensity of global solar radiation, ܦ  is the 
conductor overall diameter, ୣߙ୫  is an emissivity coefficient 
(set at 0.8), ߪୱୠ  is the Stefan-Boltzmann constant, ୡܶ  is the 
temperature of the conductor, ୟܶ is the ambient temperature, ߣ 
is the thermal conductivity of the air film in contact with the 
conductor, and ܶ is the film temperature. 

There are two types of convection. One is natural convection, 
which occurs when the wind speed is zero. In this type, the 
Nusselt number ௨ܰ in (4) is calculated as ௨ܰ

୬ୟ୲ using  

௨ܰ
୬ୟ୲ ൌ ܽ ⋅ ሺݎܩ ⋅  ,                                                                         (7)	ሻݎܲ
ݎܩ ൌ ଷܦ ⋅ 	 ሺ ୡܶ െ ୟܶሻ ⋅ ݃ ⋅ ܶ

ିଵ ⋅ ଶߛ ⋅ ߤ
ିଶ,                                (8) 

	ݎܲ ൌ 	0.715	– 	2.5 ⋅ 10ିସ ⋅ ܶ,                                                        (9) 

ߛ ൌ
ଵ.ଶଽଷିଵ.ହଶହ⋅ଵషర⋅௬	ା	.ଷଽ⋅	ଵషవ⋅௬మ

ଵା	.ଷ⋅்
	,                         (10) 

ߤ				 ൌ ൫17.239  0.04635 ܶ െ 2.03 ⋅ 10ିହ ܶ
ଶ൯ ⋅ 10ି,    (11) 

where the values of parameters ܽ and ݉ depend on the various 
ranges of ݎܩ ⋅  as given (Prandtl number	⋅	Grashof number) ݎܲ
in Table I, ݃ is the gravitational constant, ߛ is the density of air, 
 ݕ  is the dynamic viscosity of air at the film temperature, andߤ
is height above sea level. 

The other type is forced convection, which depends on 
ambient temperature as well as wind speed and direction. In this 
type, ௨ܰ is calculated as ௨ܰ

୭୰ using (10) and (11) as well as 

௨ܰ
୭୰ ൌ ୧୰ୢܭ ⋅ ܾ ⋅ ܴ

బ	,                                                                            (12) 
୧୰ୢܭ ൌ ୧୰,ଵୢܭ 	 ୧୰,ଶୢܭ	 ⋅ ሺsin	ߜሻౚ౨,య,                                          (13) 
ܴ ൌ ௦ܹ ⋅ ܦ ⋅ ߛ ⋅ ߤ

ିଵ.                                                                        (14) 

At low wind speeds ( ௦ܹ), i.e., below 0.5 m/s, both the forced 
and natural convection may be significant and it is usually 
recommended to use the higher value [21], i.e., ௨ܰ  is the 
maximum value of ௨ܰ

୭୰ and ௨ܰ
୬ୟ୲. Values of parameters ܾ and 

݊ depend on the various ranges of the Reynolds number ܴ 
and conductor roughness ܴ௦, as given in Table II where ܴ௦ ൌ
݀/ሾ2ሺܦ െ ݀ሻሿ, in which ݀ is the diameter of the wires in the 
outermost layer. The values of ୢܭ୧୰,ଵ, ୢܭ୧୰,ଶ, and ୢܭ୧୰,ଷ depend 
on the angle ߜ, as given in Table III. The conductor used for 
DTR calculation is 26/7 ACSR whose parameters such as 
diameter ܦ and resistance ்ܴ are set in the same way as Annex 
E.1 in [21]. The maximum surface temperature ୡܶ, for normal 
operation of a conductor, varies from 50 to 80 °C in Europe and 
up to 100 °C in North America [26], but is set to be 100 °C in 
this paper.  

The four ambient conditions—wind speed, wind direction, 
ambient temperature, and solar radiation—are used as data 
inputs for the heat balance model (1)-(14) to calculate the 
maximum current allowed ܫ, which represents the DTR in this 
paper. 

TABLE I 
VALUES OF ܽ AND ݉ IN (7). 

Range of ݎܩ ⋅  ݉ ܽ ݎܲ
(10-1, 102] 1.02 0.148 
(102, 104] 0.85 0.188 
(104, 107] 0.48 0.25 
(107, 1012] 0.125 0.333 
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TABLE II 
VALUES OF ܾ AND ݊ IN (12). 

Range of ܴ Range of ܴ௦  ܾ ݊ 
(100, 2650] (0, 1) 0.641 0.471 

(2650, 50000] (0, 0.05] 0.178 0.633 
(2650, 50000] (0.05, 1) 0.048 0.800 

TABLE III 
VALUES OF ୢܭ୧୰,ଵ, ୢܭ୧୰,ଶ, AND ୢܭ୧୰,ଷ IN (13). 

Range of ୢܭ  ߜ୧୰,ଵ ୢܭ୧୰,ଶ ୢܭ୧୰,ଷ 
[24, 90] 0.42 0.58 0.9 
(0, 24) 0.42 0.68 1.08 

IV. ARIMA MODEL AND ITS IDENTIFICATION 

A. Autoregressive Integrated Moving Average Model 

An ARIMA model [20] can be expressed as  

߶ሺܤሻௗݔ௧ ൌ  ௧,                                   (15)ߝሻܤሺ	ߠ
where  

߶ሺܤሻ ൌ 1 െ ߶ଵܤ	 െ	߶ଶܤଶ െ	⋯െ ߶ܤ,          (16) 
ሻܤሺߠ ൌ 1 െ 	ܤଵߠ െ	ߠଶܤଶ െ	⋯െ	ߠܤ,           (17) 

in which ݔ௧  represents the random variable to be modelled, 
௧ߝ  is the white noise, and ߶	ሺ݅ ൌ 1,2,⋯ , ሻ and ሺ݆	ߠ ൌ
1,2, ,⋯ , ሻݍ  represent the autoregressive (AR) and moving 
average (MA) parameters, respectively. ܤ  represents a 
backward shift operator such that ݔܤ௧ ൌ ௧ߝܤ ௧ିଵ andݔ ൌ  .௧ିଵߝ
௧ݔ represents a backward difference operator such that  ൌ
௧ݔ െ ௧ିଵݔ ൌ ሺ1 െ ௧ݔሻܤ ௗ .  represents a ݀ -order difference 
such that ௗൌ ሺ1 െ ሻௗܤ . Model (15) can be denoted as 
ARIMA ሺ, ݀,  .ሻݍ

B. ARIMA Model Identification 

To determine the values of ሺ, ݀, ሻݍ , a method using the 
autocorrelation function (ACF) [20], the partial autocorrelation 
function (PACF) [20], and an F-criterion method [23] is 
proposed, and consists of two steps. Note that the ACF of a ݍ-
order MA process has a cutoff after lag ݍ and the PACF of a -
order AR process has a cutoff after lag	, and these are useful 
tools to determine the order of an ARIMA model. 

Step 1: Determine the initial values of ሺ, ݀,  ሻ based on theݍ
ACF and the PACF of time series ݔ௧ and its 1st-order difference 
 ௧, i.e., the lag at which the ACF (PACF) cut off indicates theݔ
number of MA (AR) terms.  

Step 2: Increase both  and ݍ by 1 and check the F-criterion 
as follows:  

ܨ ൌ
൫ோௌௌሺ,ሻିோௌௌሺାଵ,ାଵሻ൯ൈሺேିሻ

ଶோௌௌሺାଵ,ାଵሻ 	,             (18) 

where ܰ is the total number of observations and ݎ ൌ   ݍ  2. 
If 	ܨ  ܰ,ఛሺ2ܨ െ ሻݎ , where 	ܨఛሺ2,ܰ െ ሻݎ  denotes the F-
distribution with 2 and ሺܰ െ ሻݎ  degrees of freedom at 
probability level ߬, then the improvement in the residual sum of 
squares (RSS) from ARIMA ሺ, ݀, ሻݍ  to ARIMA ሺ 
1, ݀, ݍ  1ሻ is significant at the ሺ1 െ ߬ሻ ൈ 100% significance 
level, and repeat Step 2. If 	ܨ  ܰ,ఛሺ2ܨ െ  ሻ, then ARIMAݎ
ሺ, ݀,   .ሻ is adequate enough and the iteration stopsݍ

When a time series is stationary, differencing introduces a 
unit root into the MA part of the model [27]. To avoid over-
differencing, it is necessary to check the root of the MA part of 
the model. If there is a unit root in the MA part of the model, 

i.e., ߠ	ሺܤሻ ൌ 0 has a solution ܤ ൌ 1, the number of MA terms 
should be reduced by 1 and the order of differencing should also 
be reduced by 1. To avoid under-differencing, similarly reduce 
the number of AR terms by 1 and increase the order of 
differencing by 1 if there is a unit root in the AR part of the 
model. 

V. DTR MODELLING 

A. Seasonal and Diurnal Cycles of DTR and its Volatility 

The time series of DTR and its four affecting factors in 10 
days and in 5 years are shown in Figs. 1 and 2, respectively. Fig. 
1a shows that the DTR does not always have a diurnal cycle, 
e.g., there is a diurnal cycle on days 3-5 but this is less clear on 
the other days. Among the four affecting factors, the diurnal 
cycles of temperature and solar radiation are more obvious than 
those of wind speed and direction. Comparing Figs. 1a and 1b, 
it could be known that the DTR and wind speed have obvious 
positive correlation, which indicates that the DTR is 
significantly affected by wind speed. 

 
Fig. 1. Time series in 10 days where the dashed lines are used to divide different days: a) 
DTR, b) wind speed, c) temperature, d) solar radiation, and e) wind direction. 

Figs. 2a, 2c and 2d show that the DTR, temperature, and solar 
radiation have seasonal cycles. Figs. 2b and 2e show that wind 
speed and direction do not have obvious seasonal cycles. Thus, 
the seasonal cycle of the DTR is caused by temperature and 
solar radiation. 

To illustrate its volatility, DTR values for Austin, USA on the 
same day in years 3-5, respectively, are shown in Fig. 3a. The 
DTR in a given year varies significantly from hour to hour, and 
DTRs for the same hour but different years also span a large 
range. For example, the DTR increases by 1141 A from hour 3 
to hour 4 in year 4 and the difference between the DTRs in the 
15th hour of years 4 and 5 is 1565 A. 

B. Polynomial Regression for DTR 

The reason for the large variation in DTR values is the 
significant effect of the wind speed, which may vary greatly 
from hour to hour. Fig. 4 isolates the effect of each of the four 
factors on the DTR. The effect of wind speed is shown in the 
left panel; the DTR increases by 2633 A as the wind speed 
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increases from 0 to 20 m/s. The effects of wind direction, 
ambient temperature, and solar radiation on the DTR are shown 
in the remaining panels of Fig. 4. 

 
Fig. 2. Time series in 5 years where the dashed lines are used to divide different years: a) 
DTR, b) wind speed, c) temperature, d) solar radiation, and e) wind direction. 

 
Fig. 3. Values of the DTR for Austin for the same day in three consecutive years: a) original 
DTR, b) DTR after subtracting the regression in (22). 

 
Fig. 4. DTR as a function of each of its four affecting variables: wind speed, wind direction, 
ambient temperature, and solar radiation. 

The variation in DTR can be reduced by subtracting a 
regression function expressing the DTR in terms of its four 
affecting variables, which is the main idea of the work 
presented in the rest of this section. As shown in Fig. 4, the 
relationship between the DTR and each variable is simple and 

smooth. Thus, a polynomial function can be used to build a 
multivariate regression:  

ܴܶܦ ൌ ଵ݂ሺ ௦ܹ, ݊ଵሻ 	 ଶ݂ሺ ௗܹ, ݊ଶሻ 	 ଷ݂ሺܳ௦, ݊ଷሻ					 
	 ସ݂ሺ ܶ, ݊ସሻ  ܿ   (19)    ,1ܵܧܴ	

where ଵ݂ , ଶ݂ , ଷ݂ , and ସ݂  are associated with the four factors, 
respectively; ܿ is a constant; ܴ1ܵܧ represents the residual of 
the DTR after subtracting the regression; ݊	ሺ݅ ൌ 1,2,3,4ሻ is an 
integer; and ݂ሺݔ, ݊ሻ	ሺ݅ ൌ 1,2,3,4ሻ is an ݊-order polynomial 
function of variables ݔ as given in  

݂ሺݔ, ݊ሻ ൌ ܿ,ଵ ∙ ∗ݔ	  ܿ,ଶ ∙ ∗ݔ
ଶ  ⋯ ܿ, ∙ ∗ݔ

,         (20) 

where ܿ,	ሺ݆ ൌ 1,2,⋯ , ݊ሻ is the coefficient of the polynomial 
function and ݔ∗ is obtained by applying the following linear 
transformation to ݔ: 

∗ݔ ൌ ሺݔ െ ݔ
୫୧୬ሻ/ሺݔ

୫ୟ୶ െ ݔ
୫୧୬ሻ,                      (21) 

where ݔ
୫ୟ୶ and ݔ

୫୧୬ are the maximum and minimum values 
of ݔ, respectively. The range of ݔ∗ is 0 to 1.  

Note that ݔ
 may be a very large number (e.g., when ݔସ ൌ

293	K , then ݔସସ ൌ 7.4 ൈ 10ଽ ), which may significantly 
decrease the accuracy of the regression. However, the range of 
∗ݔ
 is 0 to 1, which prevents encountering large numbers in the 

regression. This is the reason to use the linear transformation 
(21). 

As explained in Section III, the forced and natural convection 
are calculated via two sets of equations, respectively, that are 
quite different from one other. By using two different 
regression functions to represent the relationship between DTR 
and its four affecting variables under the conditions of forced 
and natural convection, the fitting ability of the regression 
should be no worse than for using just one regression function, 
as given in (19). This is the motivation of another regression 
described below.  

As is usually recommended [21], the higher of the natural and 
forced convection values is used as the convective heat loss ݍୡ. 
When the wind speed is zero, natural convection dominates. 
When the wind speed is higher than 0.5 m/s, forced convection 
dominates. 

But which type of convection dominates when the wind speed 
is between 0 and 0.5 m/s? As recommended by [21], the angle 
between the wind direction and the conductor can be assumed 
to be 45° because there is no preferred wind direction when the 
wind speed is below 0.5 m/s. Then, from (7)-(14) the forced and 
natural convection depend only on the ambient temperature and 
the wind speed. To visualize the relationship between the two 
convection values, the difference between ௨ܰ

୭୰  and ௨ܰ
୬ୟ୲ 

versus the ambient temperature and wind speed is shown in Fig. 
5. The intersection of the two planes in Fig. 5 can be assumed 
to be a straight line represented by ௦ܹ ൌ െ0.001756 ൈ
ሺ ܶ െ 273ሻ  0.2729. Note that the units of Ta are in Kelvin 
(K). Thus, for wind speeds higher than െ0.001756 ൈ ሺ ܶ െ
273ሻ  0.2729 , the forced convection value is higher; 
otherwise, the natural convection value is higher.  

Now, a multivariate polynomial regression to deal with the 
natural and forced convection separately is  

ܴܶܦ ൌ ଵ݂ሺ ௦ܹ
ி, ݊ଵሻ  ଶ݂ሺ ௗܹ

ி, ݊ଶሻ  ଷ݂ሺܳ௦ி, ݊ଷሻ  ସ݂ሺ ܶ
ி, ݊ସሻ 

 ହ݂ሺ ௦ܹ
ே, ݊ହሻ  ݂	ሺܳ௦ே, ݊ሻ  ݂ሺ ܶ

ே, ݊ሻ  ܿ   (22) ,2ܵܧܴ
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where ݂ሺݔ, ݊ሻ, ሺ݅ ൌ 1,⋯ ,7ሻ  is an ݊ -order polynomial 
function of variables ݔ as given in (20). ܴ2ܵܧ is the residual 
of the DTR after subtracting the regression. ݊	ሺ݅ ൌ 1,2,⋯ ,7ሻ 
is an integer. All of the ݊  are set to 4 because the accuracy 
increases as the ݊ increases from 1 to 4 but the improvement 
of the accuracy is small as ݊  further increases. The detailed 
explanation of this issue is presented in Section VI-A. The 
superscripts F and N in (22) are associated with the forced and 
natural convection, respectively. ଵ݂ , ଶ݂ , ଷ݂ , and ସ݂  are 
associated with the four affecting factors, respectively. Note 
that only three items instead of four in (22) are associated with 
the natural convection, i.e., ହ݂, ݂, and ݂; this is because wind 
direction does not affect natural convection. 

 
Fig. 5. ܰ ௨

୭୰ െ ௨ܰ
୬ୟ୲ (Z axis) versus ambient temperature (X axis) and wind speed (Y axis), 

where the flat plane represents Z = 0. 

There are inter-dependencies between the four different 
affecting factors. However, the four factors are independently 
considered in (22). In order to consider the inter-dependencies, 
a new term is added to (22) as explained in the next paragraph. 

According to (3) and (4), ݍୱ  is affected by ܳୱ  and ݍ୰  is 
affected by	 ܶ, i.e., each of ݍୱ and ݍ୰ is affected by only one 
factor. As mentioned above, ௨ܰ is the maximum value of ௨ܰ

୬ୟ୲ 
and ௨ܰ

୭୰. If ௨ܰ is represented by ௨ܰ
୬ୟ୲, ݍୡ is only related to one 

factor, ܶ, according to (7)-(11). If ௨ܰ is represented by ௨ܰ
୭୰, 

௨ܰ is related to three factors, ܶ, ௗܹ, and ௦ܹ, according to (11)-
(14). Thus, one more term, ܶ ⋅ ௗܹ ⋅ ௦ܹ , which is associated 
with the forced convection is added to (22) as given in  

ܴܶܦ ൌ ଵ݂ሺ ௦ܹ
ி, ݊ଵሻ  ଶ݂ሺ ௗܹ

ி, ݊ଶሻ  ଷ݂ሺܳ௦ி, ݊ଷሻ  ସ݂ሺ ܶ
ி, ݊ସሻ 

 ହ݂ሺ ௦ܹ
ே, ݊ହሻ  ݂	ሺܳ௦ே, ݊ሻ  ݂ሺ ܶ

ே, ݊ሻ 
଼݂ ሺ ܶ

ி ⋅ ௗܹ
ி ⋅ ௦ܹ

ி, ଼݊ሻ  ܿ   (23)               ,3ܵܧܴ

where ݂ሺݔ, ݊ሻ, ሺ݅ ൌ 1,⋯ ,8ሻ  is an ݊ -order polynomial 
function of variables ݔ as given in (20). ܴ3ܵܧ is the residual 
of the DTR after subtracting the regression. ݊	ሺ݅ ൌ 1,2,⋯ ,8ሻ 
is an integer. Similar to (22), all of the ݊ are set to 4. 

In (19), a data set ሼܴܶܦ, ௦ܹ, ௗܹ , ܳ௦, ܶሽ  is needed to 
determine the coefficients of the regression. For (22), the data 
set could be modified to be ሼܴܶܦ, ௦ܹ, ௗܹ, ܳ௦, ܶ, 0,0,0ሽ  or 
ሼܴܶܦ, 0,0,0,0, ௦ܹ, ܳ௦, ܶሽ  depending on whether the wind 
speed is higher than െ0.001756 ൈ ሺ ܶ െ 273ሻ  0.2729  or 
not. Then, the modified data set could be used to determine the 

coefficients of the regression in (22) using the same procedure 
as described above for (19). The procedure for determining the 
coefficients of the regression in (23) is the same as that for (22). 

To see the effect of the regression given in (22) on reducing 
the variation in the DTR, the ܴ2ܵܧ for Austin for the same day 
in years 3-5 is shown in Fig. 3b. The variation in ܴ2ܵܧ is much 
smaller than the variation in DTR (Fig. 3a; note scale is 3-4 
times as large as Fig. 3b), both considering hours in the same 
year and the same hour across different years. The effectiveness 
of (22) and the modelling procedure for the DTR are further 
discussed in Section VI-A.  

A histogram of the DTR for Austin features two peaks (Fig. 
6a). The cause for the two peaks is evident when the histogram 
is split into times when the forced convection is higher (Fig. 6b) 
or lower (Fig. 6c) than the natural convection. This allows the 
first and second peaks in Fig. 6a to be attributed to higher 
natural convection and higher forced convection, respectively. 

 
Fig. 6. Histogram of the DTR for Austin: a) All DTR values, b) DTR values for which the 
forced convection value is higher than natural convection value, c) DTR values for which 
the natural convection value is higher than forced convection value. 

C. Hourly Normalization 

To retain the seasonal and diurnal cycles of the DTR, an 
hourly normalization method used for modelling hourly wind 
speed [22, 23] is used. The main idea of the method is to obtain 
the mean and standard deviation of the original hourly data over 
a long period of historical time. These are then used to 
normalize the original hourly data using 

௧ݔ ൌ ሺݔ௧
 െ  ௧,                            (24)ߪ/௧ሻߤ

where ݔ௧  is the original hourly data, ݔ௧  is the normalized 
hourly data, and ߤ௧ and ߪ௧ are the mean and standard deviation 
of the data in the tth hour of different years, respectively. The 
implementation of the hourly normalization is quite simple, i.e., 
calculation of ߤ௧ and ߪ௧ and then (24). 

The ܴ1ܵܧ 2ܵܧܴ ,  and ܴ3ܵܧ  in (19), (22) and (23), 
respectively, are used as the ݔ௧ in (24). The normalized data, ݔ௧, 
are then used to establish an ARIMA model. This method can 
reproduce the high-order auto-correlation, the seasonal and 
diurnal distribution of the time series, over one or a few years 
[23].  

In order to see the effect of the hourly normalization, the 
 before and after the hourly normalization has been shown 3ܵܧܴ
in Fig. 7. In Fig. 7, 9 years’ data of Wawa is used and different 
years’ data is divided by the dashed lines. It can be seen from 
Fig. 7 that there is seasonal cycle before the hourly 
normalization; that the seasonal cycle disappears after the 
hourly normalization; and that the range decreases from about 
[-500, 500] to about [-2.5, 2.5] after the hourly normalization. 
This makes the time series easier to be modelled by the ARIMA. 
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Fig. 7. The ܴ  .before and after the hourly normalization: a) before, b) after 3ܵܧ

VI. SIMULATION 

Wind speed, wind direction, ambient temperature, and solar 
radiation data for case 1 are from Austin for 1999 to 2005 and 
were obtained from [28]. Data for case 2 are from Wawa, 
Canada for 1994 to 2005 and were obtained from [29,30]. The 
time series modelling of the DTR is performed in R [31]. How 
to calculate the weather conditions around the conductors based 
on the weather conditions obtained from the weather stations is 
not the focus of this paper and it has been investigated in some 
other existing papers (e.g., [9]). 

The DTR may have different characteristics, e.g., shape of 
distribution or auto-correlation, in different years. The 
estimated PDF of several years’ worth of DTR data obtained by 
the ‘ksdensity’ function in MATLAB [32] is provided in Fig. 8, 
which shows the different shapes of the PDF of the DTR in 
different years in both cases. To cover different kinds of 
characteristics, several years’ data are chosen to establish an 
ARIMA model for the DTR. For the DTR of Austin, years 3 
and 6 are chosen. For the DTR of Wawa, more years are chosen 
to be modelled (years 4, 7, 8, and 9) as there are 12 years’ worth 
of data to choose from.  

A. Results of Different Methods for DTR Modelling 

To verify the effectiveness of the proposed method for 
modelling the DTR, six methods are applied and compared.  
 Method 1: The DTR is normalized using (24) and then 
modelled using (15).  
 Method 2: Each of the four affecting factors of the DTR is 
normalized using (24) and then modelled using (15). Then, the 
four models are used to generate data for the heat balance 
model to calculate the DTR.  
 Method 3: A regression for the DTR is performed using 
(19), then the RES1 in (19) is normalized using (24), and then 
the normalized RES1 is modelled using (15).  
 Method 4: A regression for the DTR is performed using 
(23) and then the RES3 in (23) is modelled using (15). 
 Method 5: A regression for the DTR is performed using 
(22), then the RES2 in (22) is normalized using (24), and then 
the normalized RES2 is modelled using (15). 

 Method 6: A regression for the DTR is performed using 
(23), then the RES3 in (23) is normalized using (24), and then 
the normalized RES3 is modelled using (15). 

 
Fig. 8. The estimated probability density function of the DTR in different years for a) Austin 
and b) Wawa. 

In Method 1, the same modelling procedure as the ARIMA 
modelling method for the wind speed given in [22, 23] is used 
to model the DTR directly. In Method 2, the same procedure as 
Method 1 is used to model the four affecting factors of the DTR, 
and the four corresponding ARIMA models obtained are used 
to generate the data to calculate the DTR via the heat balance 
model given in Section III. In the first two methods, there is no 
regression between the DTR and its four affecting factors. In 
Methods 3, 5 and 6, the three kinds of regression given in 
Section V-B are used, respectively. Note that the only 
difference between Methods 4 and 6 is whether the hourly 
normalization is used or not, which is used to demonstrate the 
effectiveness of the hourly normalization. 

To compare the performance of the six methods, the 
estimated PDFs of the calculated DTR and the fitted DTR 
obtained by the six methods in the two cases are shown in Figs. 
9 and 10, respectively. Note that the results shown in Figs. 9 
and 10 are the PDFs of all years’ data used for modelling the 
two cases, respectively. Figs. 9 and 10 show that the shapes of 
the PDFs of the DTR obtained by Methods 5 and 6 are almost 
the same as each other, that they are the closest to that of the 
calculated DTR, and that Methods 5 and 6 are a little better than 
Method 4 and much better than Methods 1-3 in retaining the 
two-peak shape of the DTR distribution. 
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Fig. 9. The estimated probability density functions of the calculated DTR and the fitted DTR 
obtained by the six methods for data from Austin.  

 
Fig. 10. The estimated probability density functions of the calculated DTR and the fitted 
DTR obtained by the six methods for data from Wawa.  

The calculated DTR and fitted DTR obtained by the six 
methods in the 140th-141st days of year 3 for Austin are shown 
in Fig. 11, where the results of Methods 1 and 2 are provided in 
Fig. 11a and those of Methods 3-6 in Fig. 11b to facilitate 
comparison. Fig. 11 shows that Methods 5 and 6 are better than 
Methods 1-4 and that Methods 5 and 6 are better than Method 
3 especially when the DTR is lower than 1200 A. From Fig. 6, 
most of the DTR below 1200 A is associated with times when 
natural convection dominates. Methods 5 and 6 appear to better 
fit the DTR compared to Method 3 when natural convection 
dominates. This indicates the effectiveness of (22) and (23), i.e., 
it is more effective to deal with the natural and forced 
convection separately in the multivariate polynomial regression. 
To compare the modelling accuracy of the six methods, the 

mean absolute percentage error (MAPE) [27] between the 
calculated DTR and the fitted DTR obtained by each method in 
each case is tabulated in Table IV. Note that the smaller the 
MAPE, the higher the accuracy. Table IV shows that Methods 
5 and 6 are more accurate than Methods 1-4 and that Method 6 
is a little more accurate than Method 5, which indicates that the 
term that deals with the inter-dependencies of different 

affecting factors works but the improvement brought by this 
term is small. Table IV also shows that Method 6 is more 
accurate than Method 4, which indicates the effectiveness of the 
hourly normalization. 

 
Fig. 11. The calculated DTR and fitted DTR obtained by different methods in year 3 for data 
from Austin: a) calculated DTR and fitted DTR obtained by Methods 1 and 2, b) calculated 
DTR and fitted DTR obtained by Methods 3-6.  

TABLE IV  
MAPE BETWEEN THE CALCULATED DTR AND THE FITTED DTR OBTAINED 

BY THE SIX METHODS FOR DATA FROM AUSTIN AND WAWA. 
 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 

Austin 10.47% 9.05% 4.20% 3.85% 3.44% 3.40% 
Wawa 9.49% 8.24% 3.96% 3.47% 3.18% 3.17% 

To investigate the impacts of ݊  on the accuracy of the 
proposed method, Method 6, the MAPE between the calculated 
DTR and the fitted DTR obtained by Method 6 with different 
values of ݊ for both cases is tabulated in Table V. The table 
indicates that the accuracy of the results increases as ݊ 
increases from 1 to 4 but the improvement of the accuracy is 
small as ݊  increases from 4 to 7. Thus, ݊ is set to 4 in this 
paper. 

TABLE V 
MAPE BETWEEN THE CALCULATED DTR AND THE FITTED DTR OBTAINED 

BY METHOD 6 WITH DIFFERENT VALUES OF ݊. 
݊ 1 2 3 4 5 6 7 

Austin 5.56% 5.43% 4.51% 3.40% 3.39% 3.38% 3.38% 
Wawa 5.24% 4.89% 3.95% 3.17% 3.12% 3.10% 3.09% 

The results obtained by Method 6 for both cases are given as follows. 
The coefficients of the polynomial regression in (23) in both cases are 
given in Table VI. The ARIMA model of the normalized ܴ3ܵܧ in 
(23) for data from Austin is ݔ௧ െ ௧ିଵݔ0.7696 ൌ ௧ߝ െ
௧ିଵߝ0.4528 െ ௧ିଶߝ0.0306 െ ,௧ିଷߝ0.0117  of which more 
details is given in Section VI-C. The ARIMA model of the 
normalized ܴ3ܵܧ  in (23) for data from Wawa is ݔ௧ െ
௧ିଵݔ0.7963 ൌ ௧ߝ െ ௧ିଵߝ0.4584 െ  .௧ିଶߝ0.0393

TABLE VI 
COEFFICIENTS OF THE POLYNOMIAL REGRESSION IN (23) OBTAINED BY 

METHOD 6 FOR DATA FROM AUSTIN AND WAWA, RESPECTIVELY. 
 ܿଵ,ସ ܿଵ,ଷ ܿଵ,ଶ ܿଵ,ଵ ܿଶ,ସ ܿଶ,ଷ 

Austin -743.6 4.7ൈ 10ଷ -6.9ൈ 10ଷ 5.3ൈ 10ଷ -3.4ൈ 10ସ 7.0ൈ 10ସ 
Wawa 7.6ൈ 10ଷ -8.3ൈ 10ଷ -387.0 4.1ൈ 10ଷ -2.8ൈ 10ସ 5.5ൈ 10ସ 

 ܿଶ,ଶ ܿଶ,ଵ ܿଷ,ସ ܿଷ,ଷ ܿଷ,ଶ ܿଷ,ଵ 
Austin -4.7ൈ 10ସ 1.1ൈ 10ସ -8.3ൈ 10ହ 3.1ൈ 10 -4.3ൈ 10 2.6ൈ 10 
Wawa -3.6ൈ 10ସ 8.1ൈ 10ଷ -2.6ൈ 10ହ 9.5ൈ 10ହ -1.3ൈ 10 7.7ൈ 10ହ 

 ܿସ,ସ ܿସ,ଷ ܿସ,ଶ ܿସ,ଵ ܿହ,ସ ܿହ,ଷ 
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Austin 235.4 -528.1 398.3 -192.0 7.7ൈ 10ହ 0 
Wawa 224.0 -268.4 92.3 -76.0 1.6ൈ 10ହ 0 

 ܿହ,ଶ ܿହ,ଵ ܿ,ସ ܿ,ଷ ܿ,ଶ ܿ,ଵ 
Austin 0 0 2.3ൈ 10ହ -8.5ൈ 10ହ 1.2ൈ 10 -7.1ൈ 10ହ 
Wawa 0 0 -1.9ൈ 10ସ 6.4ൈ 10ସ -8.2ൈ 10ସ 4.6ൈ 10ସ 

 ܿ,ସ ܿ,ଷ ܿ,ଶ ܿ,ଵ ଼ܿ,ସ ଼ܿ,ଷ 
Austin 29.0 -63.8 31.7 -117.2 -5.3ൈ 10ଷ 2.1ൈ 10ଷ 
Wawa 15.8 -23.5 -7.3 -101.4 -8.1ൈ 10ସ 6.4ൈ 10ସ 

 ଼ܿ,ଶ ଼ܿ,ଵ ܿ    
Austin 3.0ൈ 10ଷ -2.1ൈ 10ଷ -6.1ൈ 10ହ    
Wawa -1.8ൈ 10ସ 2.0ൈ 10ଷ -1.7ൈ 10ହ    

The time consumed by each kind of polynomial regression 
and the hourly normalization is less than 0.1 seconds and the 
time consumed by the ARIMA modelling is less than 10 
seconds. 

B. Remarks on the Applicability of the Proposed Method  

The proposed method consists of three sequential steps, i.e., 
polynomial regression, hourly normalization, and ARIMA 
modelling. In the first step, the polynomial regression is 
designed based on the analysis of the characteristics of the 
CIGRE heat balance model, which is to reduce the large 
variation of DTR. In other words, the polynomial regression is 
designed based on the CIGRE model instead of some specific 
cases. Thus, the first step of the proposed method should be 
applicable to different weather conditions. 

The second step is the hourly normalization, which is a 
widely used method [22] to reproduce the high-order auto-
correlation, the seasonal and diurnal distribution of a time series, 
over one or a few years [23]. The third steps is the well-known 
ARIMA modelling which has been applied to many areas for a 
long time. Thus, from the viewpoint of design, the proposed 
method should be applicable to different weather conditions. 

To verify the applicability of the proposed method, two cases 
(from weather stations in Wawa and in Austin and their 
latitudes are 48.0° N and 30.3° N, respectively) whose weather 
conditions are quite different from each other have been chosen 
for simulation analysis. The simulation results show that the 
proposed method has good modelling performances in these 
two quite-different cases. Thus, we can conclude that the 
proposed method should be applicable to different weather 
conditions. 

Considering that the proposed method is applicable to these 
two quite-different cases, we can infer that the proposed method 
should be applicable if the real data measured around the 
conductor is used to replace the data obtained from the nearby 
weather station in each case. The reason is that the difference 
between the weather conditions around the conductor and in the 
nearby weather station should be much smaller than the 
difference between the weather conditions of the two cases. 
This is because the conductor and the nearby weather station 
are quite near to each other compared to the distance between 
the two weather stations in the two cases. 

C. ARIMA Model Identification  

As an illustration, the whole procedure to establish an 
ARIMA model for the ܴ3ܵܧ in (23) of the DTR for data from 
Austin is provided in this section. First, let ݔ௧ be the normalized 
 ௧ and its 1st-orderݔ and plot the ACF and the PACF of 3ܵܧܴ
difference ݔ௧, respectively, as given in Fig. 12. Note that each 

ACF plot in this paper starts from lag 1 instead of lag 0. Fig. 
12a shows that ݔ௧ is not a stationary series and consequently a 
differencing is necessary. Figs. 12c and d show that a 1st-order 
difference is sufficient to eliminate the nonstationary aspect and 
that the ACF cuts off at the 3rd lag and the PACF tails off. Thus, 
ARIMA (0,1,3) could be assumed for ݔ௧. 

 
Fig. 12. The ACF and PACF of ݔ௧ and ݔ௧: a) ACF of ݔ௧, b) PACF of ݔ௧, c) 
ACF of ݔ௧, d) PACF of ݔ௧. 

In the second step, both  and ݍ increase by 1 and the model 
becomes ARIMA (1,1,4). The coefficients of ARIMA (1,1,4) 
can be obtained using the R software [31]. Then check the over-
differencing of ARIMA (1,1,4), i.e., solve the equation 
ሻܤሺߠ ൌ 1 െ ܤ1.4192  ଶܤ0.4036  ଷܤ0.0124 
ସܤ0.0048 ൌ 0 . This equation has a solution ܤ ൌ 1 , which 
indicates the existence of over-differencing. Thus, both ݀ and	ݍ 
are reduced by 1 and the model becomes ARIMA (1,0,3). The 
values of ሺ, ݀,  ሻ, RSS, the Akaike information criterion (AIC)ݍ
ܨ ,[27] , and ܨఛ  in each iteration are tabulated in Table VII, 
where ߬ is set to be 0.95, i.e., the significant level is 0.05. The 
AIC is used to compare the performance of different models; 
the smaller the AIC, the better the model fits [27]. As shown in 
Table VII, the improvement from iter 1 to iter 3 (the result in 
iter 2 is not used for F-criterion check as it is over-differencing) 
is significant as ܨ   ఛ, while the improvement from iter 3 toܨ
iter 4 is not significant. The values of the AIC also indicate that 
the model in iter 3 is the best, excluding the over-differencing 
model in iter 2. Thus, the model in iter 3 is adopted. That is, the 
best model for the normalized ܴ3ܵܧ in (23) of the DTR of 
Austin is ARIMA (1,0,3), which could be expanded to ݔ௧ െ
௧ିଵݔ0.7696 ൌ ௧ߝ െ ௧ିଵߝ0.4528 െ ௧ିଶߝ0.0306 െ
 .௧ିଷߝ0.0117

TABLE VII 
ITERATIVE RESULTS FOR ARIMA MODEL IDENTIFICATION. 

iter ሺ, ݀,  ఛܨ ܨ ሻ RSS AICݍ
1 (0,1,3) 14834.18 46730.30 – – 
2 (1,1,4) 14521.10 46363.32 – – 
3 (1,0,3) 14525.69 46366.87 185.5 3.0 
4 (2,0,4) 14525.40 46370.51 0.18 3.0 

To check whether there is autocorrelation in the residual of 
the obtained ARIMA model, the ACF of the residual of ARIMA 
(1,0,3) is shown in Fig. 13 where the dashed lines indicate 
bounds for statistical significance. Fig. 13 shows that the 
autocorrelations at most lags are within the significance lines. 
Furthermore, the residual can pass the Box-Ljung test [27], 
which is used for checking the autocorrelation in residuals. 
Thus, there is no autocorrelation in the residual. The histogram 
of the residual is shown in Fig. 14, where the dashed curve is 
the PDF of a standard normal distribution, which indicates that 
the residual is very close to a normal distribution. Thus, the 
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residual is very close to Gaussian white noise, which justifies 
the suitability of the obtained ARIMA model as well as the 
rationality of the model identification method given in Section 
IV-C. 

Now we can come to the conclusion that a proper model, in 
terms of both the probability distribution and the fitting 
accuracy, can be obtained by Method 6, which justifies the 
rationality of the whole procedure of the proposed modelling 
method.  

 
Fig. 13. ACF of the residual of the ARIMA model for the DTR for data from Austin. 

 
Fig. 14. Histogram of the residual of the ARIMA model for the DTR for data from Austin, 
where the dashed line is the PDF of a standard normal distribution. 

VII. CONCLUSION 

This paper proposes a new time-series modelling method for 
the DTR. The DTR is characterized by a seasonal cycle, diurnal 
cycle, and volatility that is caused by its four affecting factors 
(wind speed and direction, ambient temperature, and solar 
radiation). First, a multivariate regression between the DTR and 
its four affecting factors is proposed to reduce the large 
variation in the DTR. Then, an hourly normalization is used to 
retain the seasonal and diurnal distribution. The normalized 
time series is then modelled using an ARIMA model.  

The performance of the proposed modelling method was 
verified using data from Austin and Wawa. The results show 
that the proposed method can result in a better model for the 
DTR in terms of both probability distribution and fitting 
accuracy compared to five other methods considered. This 
supports the rationality of the whole modelling procedure 
including the multivariate regression, the hourly normalization, 
and the ARIMA model identification. The proposed DTR 
model could be used in power system planning problems and 
also in the reliability analysis.  
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