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Abstract—Stochastic programming is a cost-effective approach to 
model the transmission expansion planning (TEP) considering the 
uncertainties of wind and load, which is known as stochastic TEP 
(STEP). The uncertainty can be accurately represented by a large 
number of scenarios which need to be reduced to a relatively small 
number in order to shorten the computational time required by 
the STEP. The forward selection algorithm (FSA) is an accurate 
scenario reduction method which, however, is quite time 
consuming. An improved FSA (IFSA) is proposed in order to 
shorten the computational time. The STEP is a large-scale mixed-
integer programming problem and therefore is difficult to be 
solved directly. Benders decomposition algorithm is suitable to 
solve the STEP by decomposing it into master and multiple slave 
problems. The slave problems are nonlinear and thereby are 
difficult and time consuming to be solved. In this regard, a 
linearization method is proposed to solve the slave problems faster 
and to calculate the Lagrangian multipliers needed by the master 
problem. Two medium and a large data sets are used to 
demonstrate the efficiency of the IFSA and a 24-, a 300-, and a 
2383-bus test systems are used to verify the efficiency of the 
linearization method. 
Index Terms—Benders decomposition algorithm; Lagrangian 
multipliers; linearization; scenario reduction method; stochastic 
programming; transmission expansion planning (TEP). 

I. NOMENCLATURE 

The terminologies used in this paper are listed as follows: 
Sets/Indices 
�  Line index 
�  Bus index 
�  Candidate line index 
�  Generation 
�  Load loss 
�  Wind spillage 
�, �, �  Scenario 
�  Iteration in Benders decomposition 
Ω  Set of all existing and candidate lines 
Ω�  Set of all existing lines 
Ω�  Set of � where there is at least one line in operation, 

no matter initially or newly installed, on right-of-way 
� 

Ω��  Original set of scenarios 
Ω��  Reduced set of scenarios 
Ω�  Set of all buses 

 
 
 

Ω�  Original set of scenarios excluding the reduced set of 
scenarios 

Ω�  Set of all candidate lines 
�  Cluster centers obtained by the K-means 
��  All the elements in the �th cluster obtained by the K-

means 
Parameters 
��   Cost of a line added to right-of-way � ($) 
��

�  Electricity load demand at bus � (MW) 
��

�  Total active power flow on right-of-way � (MW) 
��

���,  
��

���  
The maximum power flow of line �  and � , 
respectively (MW) 

��̅  Maximum power output of generator  � (MW) 
ℎ  Number of hours in the study period (hour)  
�  Number of clusters in the K-means and the number of 

initial clusters in the first step of the improved 
forward selection algorithm  

���  Maximum number of new lines can be added to right-
of-way � (set to 3 in this paper) 

��
�  Initial number of lines on right-of-way � 

���  Number of reduced scenarios 
��, �� ,  

 �� 
Probability of scenarios �, �, and �, respectively 
 

��, ��
� A cluster center in the K-means, also as a scenario in 

�, � = 1,2, ⋯ , � 
��   Large value for a disjunctive constraint 
�  Total number of right-of-ways 
��,�  The element in the ith row and the lth column of node-

branch incidence matrix 
���  Total number of elements in the original set Ω�� 
���  Total number of elements in the reduced set Ω�� 
���

�  Maximum wind power that can be generated at bus �
(MW) 

���
�

  Upper bound obtained after solving all the slave 
problems in iteration �  

�����
�

  Lower bound obtained after solving the master 
problem in iteration �  

���   Susceptance of a line on right-of-way � (Siemens) 
��,�

�   Phase angle of from-side node of right-of-way � (rad)

��,�
�   Phase angle of to-side node of right-of-way � (rad) 

�  The superscript represents scenario � associated with 
wind and electricity load demand in different time of 
a year 

��,�
� ,��,�

�� , 

��,�
�  

Lagrangian multipliers associated with equality 
constraints (15b), (19), and (16b), respectively 
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��,�
�   Lagrangian multipliers associated with inequality 

constraints (15c)-(15j), � = 1,2, ⋯ ,8 
�  The superscript represents the iteration in the Benders 

decomposition algorithm 
��   Vector of generation costs of generators ($/MWh) 

��   Penalty cost for electricity load loss ($/MWh) 
��  Penalty cost for wind spillage ($/MWh) 
� �  Objective function of the �th slave problem 

� �,�  Objective function of the � th slave problem in 
iteration � 

Variables 
��

�, ��  Power output of generator at bus � , and the 
corresponding vector (MW) 

��  Number of new lines added to right-of-way � 
��

�, ��  Electricity load loss at bus �, and the corresponding 
vector (MW) 

��   Binary decision variable indicating whether or not to 
add a new line 

��
�, ��  Wind power curtailment at bus �, and the 

corresponding vector (MW) 
�   A decision variable in a master problem 
 

II. INTRODUCTION 

RANSMISSION expansion planning (TEP) problem is to 
ensure sufficient transmission capacity for the future load of 

a power system at a minimum cost. Traditionally, TEP targets 
at satisfying the maximum load of a future year, which has been 
researched for decades. A comprehensive review about TEP in 
both regulated and deregulated environments has been given in 
[1], [2]. 

Recently, a large amount of renewables has been integrated 
into power systems. The wind power is one of the most 
important renewables, which is growing very fast. According to 
Global Wind Energy Council [3], the installed wind power 
could reach 2,000 GW by 2030 (about 1.8 times as much as the 
value in 2015), and supply up to 17-19% of global electricity. 
By 2050, wind power could provide 25-30% of global 
electricity supply. That is, a growing share of electricity will be 
supplied by wind power in the future. Consequently, it is 
necessary to accommodate the wind power in TEP [4]-[6], 
which is important but difficult due to its intermittency and 
unpredictability.  

Recently, several new methods have been proposed to solve 
the TEP problem considering the uncertainties of wind and load, 
e.g., a stochastic programming [4], [5], a robust optimization 
[7], a chance-constrained method [8], a probabilistic branch and 
bound method [9], etc. According to the analysis given in [10], 
the stochastic programming is a more cost-effective way to deal 
with the wind uncertainty in comparison with the robust and the 
interval optimizations. Thus, the stochastic programming is 
adopted in this paper for the TEP considering uncertainty, i.e., 
the TEP becomes a stochastic TEP (STEP) problem. 

The uncertainty can be accurately represented by a large 
number of scenarios. However, using a large number of 
scenarios in stochastic programming is intractable as a very 
long computational time is required. Thus, it is necessary to 
reduce a large number of original scenarios into a relatively 
small number of scenarios [11]-[13]. 

Due to the importance of scenarios reduction, much work has 
focused on this area and it is still an active research area in order 
to reduce a large number of scenarios in an accurate and fast 
manner [14]. Existing scenario reduction methods include 
clustering algorithms such as K-means [15], backward and 
forward selection algorithms [11], [12], and their variation or 
extension [11], [16], heuristic-based methods [14], [17], etc. 
Among them, forward selection algorithm (FSA) [11]-[13] is 
one of the most widely used scenario reduction methods, which 
can generate reduced scenarios that perform well in practice 
[13]. However, the FSA is very time consuming when used to 
reduce a large number of scenarios.  

In order to address this issue, an improved FSA (IFSA) is 
proposed in this paper. In the FSA, in order to select a scenario 
to be added to the reduced set of scenarios, each element in the 
original set of scenarios needs to be traversed, which is quite 
time consuming. The idea of the IFSA is to divide the original 
set of scenarios into a number of clusters and thereafter all the 
cluster centers are traversed to select the best center. Then, each 
element in the single cluster associated with the best center is 
traversed. Besides, a strategy is proposed in the IFSA such that 
the calculation result obtained in the previous iteration can be 
utilized in the current iteration, which can avoid a large amount 
of redundant calculations. Therefore, the computational burden 
of IFSA is significantly less than that of FSA. 

It is worth to discuss a stratified sampling method named 
Latin hypercube sampling (LHS) [18], which provides a simple 
and effective means of generating a limited number of scenarios 
without scenario reduction. In the LHS, the marginal 
cumulative distribution function of each random variable is 
divided into equal strata and then a value is randomly picked 
from each stratum. In the second step, the sampled values for 
each marginal distribution are permutated to create scenarios 
based on the correlation between the random variables. The 
second step of the LHS is crucial as it needs to generate 
correlated random variables which should have the same 
correlation characteristics as the original random variables. In 
reality, the correlation pattern between different random 
variables is usually not a standard copula, which increases the 
difficulty of the second step of the LHS. To address this issue, 
several new technologies [19]-[21] have been proposed recently. 
The advantage of scenario reduction methods such as the FSA 
over the LHS lies in that it does not need to know the correlation 
between different random variables. 

The main mathematical formulations used in TEP, including 
a DC model, a transportation model, a hybrid model, and a 
disjunctive model, have been summarized and compared in [22]. 
The DC model is a mixed-integer and nonlinear model, which 
is difficult to be solved. Usually, the DC model is solved by 
evolutionary algorithms [8], [23], which cannot guarantee 
obtaining the optimal solution and may not be efficient in a 
large system. The optimal solution of the transportation model 
is not necessarily feasible for the DC model and consequently 
may have higher investment cost than the optimal solution of 
the DC model. The hybrid model does not consider the 
Kirchhoff’s voltage law (KVL) constraint for the newly added 
circuits. The transportation model and the hybrid model are 
usually not used as they are inaccurate. The disjunctive model 
is a linear model and keeps the same accuracy as the DC model, 

T
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which has been adopted in [5], [24] to solve a stochastic 
transmission planning model considering the uncertainties of 
wind and load. The disadvantage of the disjunctive model lies 
in the fact that it uses many more variables and inequality 
constraints compared to the DC model [22].  

In this paper, the DC model is adopted for STEP. The STEP 
is decomposed into a master problem and multiple slave 
problems by using the Benders decomposition algorithm, where 
the slave problems are nonlinear. A linearization method is 
proposed to solve the slave problems as linear programming 
models and to calculate the Lagrangian multipliers needed by 
the master problem. The advantage of this linearization method 
is that the DC model is converted to a linear model which can 
be solved significantly faster than the original non-linear DC 
model. Besides, the DC model has fewer variables and 
inequality constraints than the disjunctive model and 
consequently the former can be solved faster than the latter, 
especially in a large system. 

The contribution of this paper is twofold. On the one hand, a 
new scenario reduction method, i.e., the IFSA, has been 
proposed, which consumes a significantly shorter 
computational time than the FSA but is almost as accurate as 
the FSA. On the other hand, a linearization method has been 
proposed to solve the slave problems in the Benders 
decomposition algorithm for the STEP problem, which is 
accurate and much faster than existing methods. 

The rest of the paper is organized as follows. The IFSA is 
described in Section III. In Section IV, the STEP is decomposed 
into a master problem and multiple slave problems and then the 
proposed linearization method for solving the slave problems is 
detailed. Simulation results are given in Section V. Conclusions 
are given in Section VI. At last, a proof and a model are 
provided in Appendix. 

III. SCENARIOS REDUCTION 

Uncertainty can be accurately represented by a large number 
of scenarios, which usually results in a very long computational 
time. To address this issue, scenario reduction is an important 
topic, which is to find a reduced set, Ω��, that has the minimal 
probability distance to the original set, Ω��. The Kantorovich 
distance is the most common probability distance used in 
stochastic programming, which can be expressed as [13]: 

�� (Ω��, Ω��) = Σ
� ∈���\���

�� min
� �∈���

�(�, ��).          (1) 

where �� (Ω��, Ω��) is the Kantorovich distance between Ω�� 
and Ω��; �(�, ��) is the Euclidean distance between scenarios 
� and ��; Ω��\Ω�� represents the set of Ω�� excluding Ω��. 

FSA is a widely used scenario reduction method, which can 
generate reduced sets that perform well in practice [13]. This 
method is an iterative greedy process to select a reduced set 
which has the minimal Kantorovich distance to the original set. 
The main drawback of the FSA is that it is very time consuming 
when the original set has a large number of elements. In the 
following, firstly, it is indicated that the K-means clustering 
method can be used for scenario reduction. Then, the IFSA is 
detailed. 

A. Relationship Between the K-means and the FSA 

In the K-means clustering method, we are given an integer � 
and a set of data points �. We wish to choose a set of � centers, 
� = {��

�, ��
�, ⋯ , ��

�}, so as to minimize the potential function Φ  
[25]: 

Φ = ∑ min
��∈�

 ‖� − ��‖�
�∈� ,                       (2) 

where ‖� − ��‖� is the Euclidean distance between � and ��. 
Let � = �, Ω�� = �, �� = ��, Ω�� = �, and �(�, ��) = ‖� −
��‖�. Then (2) can be written as: 

Φ = ∑ min
� �∈���

�(�, ��)� ∈���
.                  (3) 

In the K-means clustering method, the probability of each 
original scenario is the same, i.e., ��  is the same for all �. Then, 
after multiplying each term in both sides of (3) by �� , we can 
obtain 

�� Φ = ∑ �� min
� �∈���

�(�, ��)� ∈���
.                 (4) 

Note that  
∑ �� min

� �∈���

�(�, ��)� ∈���
= 0.                (5) 

By adding (5) to (1), we can obtain: 

�� (Ω��, Ω��) = ∑ �� min
� �∈���

�(�, ��)� ∈���
.               (6) 

Comparing (6) with (4), it can be known that �� (Ω��, Ω��) =
�� × Φ . That is, when each original scenario has the same 
probability, the objective of the FSA is equal to ��  times the 
objective of the K-means. Then, we can use the K-means to 
solve (2) to obtain � which can be considered as the reduced set 
Ω�� in (1). The difference between � and Ω�� lies in the fact 
that each element in Ω�� belongs to Ω�� while the elements in 
� may not belong to Ω��. For the purpose of comparison, the 
K-means clustering method is also used for scenario reduction 
in this paper. 

B. Main Idea of the IFSA 

According to [13], in step i of the FSA, which is the main 
step, a new scenario is added to the reduced scenario set. The 
selection of this scenario is carried out using 

�� = ��� � min
� �∈��

[�� �]
∑ �� min

� ��∈���
[�� �]

∪ {� �}

�(�, ���)
� ∈��

[�� �]
\{� �}

� 

(7) 

where Ω�
[�]

 represents the set consisting of those scenarios 

which have not been selected in the first i steps of the FSA and 

Ω��
[�]

 represents the set consisting of the selected scenarios until 

step i. Note that Ω�
[�]

∪ Ω��
[�]

= Ω�� , Ω��
[�]

= ∅ , Ω�
[�]

= Ω�
[�� �]

\

{��}, and Ω��
[�]

= Ω��
[�� �]

∪ {��}. 
In the FSA, in order to obtain ��  in (7), each element in 

Ω�
[�� �]

 is traversed. When the number of elements in  Ω�
[�� �]

 is 

large, step i is very time consuming. The idea of the IFSA is to 
divide the original set Ω��  into a number of clusters, then 
traverse the center of each cluster to find the best center, and 
thereafter traverse all the elements in the cluster associated with 
the best center. That is, in the IFSA, all the cluster centers and 
all the elements in the single cluster associated with the best 
center are traversed, which requires significantly less 
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computational effort compared to traversing all the elements in 
all the clusters in the FSA. 

In the IFSA, through traversing all the cluster centers of the 
original set of scenarios, the best center is selected as 

��,� = ��� �min
� �∈�

∑ �� min
� ��∈���

[�� �]
∪ {� �}

�(�, ���)
� ∈��

[�� �]
\{� �}

� (8) 

where ��,� represents the �th element in �, i.e., the best center.  

Then, all the elements in the �th cluster of the original set of 
scenarios are traversed: 

�� = ��� � min
� �∈�∪ ��

∑ �� min
� ��∈���

[�� �]
∪ {� �}

�(�, ���)
� ∈��

[�� �]
\{� �}

� 

(9) 
where �� represents all the elements in the �th cluster.  

C. Strategy to Avoid Redundant Calculations in the IFSA 

In the following, an equivalent expression of (8) and (9) is 
deduced, which can avoid a large amount of redundant 
calculations and thereby can significantly reduce the 
computational burden required by (8) and (9).  

Note that �� min
� ��∈���

[�� �]
∪{� �}

�(�, ���)  is equivalent to 

min��� min
� ��∈���

[�� �]
�(�, ���), �� min

� ��∈{� �}
�(�, ���)� . Then, (8) 

and (9) can be respectively rewritten as 

��,� = ��� �min
� �∈�

∑   min��� min
� ��∈���

[�� �]
�(�, ���),

� ∈��
[�� �]

\{� �}

�� min
� ��∈{� �}

�(�, ���)��,       (10) 

�� = ��� � min
� �∈�∪ ��

∑   min��� min
� ��∈���

[�� �]
�(�, ���),

� ∈��
[�� �]

\{� �}

�� min
� ��∈{� �}

�(�, ���)��.      (11) 

Note that � ∈ Ω�
[�� �]

\{��} in (10) and (11) can be replaced 

by � ∈ Ω�
[�]

= Ω��  and that �� min
� ��∈���

[�� �]
�(�, ���) is a value 

obtained in the (� − 1)th iteration, which can be stored and used 
in the � th iteration. Therefore, in the � th iteration, only 
�� min

� ��∈{� �}
�(�, ���) needs to be calculated. The difference 

between (10)-(11) and (8)-(9) is whether �� min
� ��∈���

[�� �]
�(�, ���) 

is calculated in the �th iteration or not.  
The ratio of the computational burden in the � th iteration 

associated with (8)-(9) to that associated with (10)-(11) is 

�Ω��
[�� �]

∪ {��}�/‖{��}‖ which is equal to �Ω��
[�� �]

� + 1. Then, 

the ratio of the total computational burden associated with (8)-
(9) to that associated with (10)-(11) is (1 + 2 + ⋯ + ���)/��� 
which is equal to (1 + ���)/2 . That is, by using (10)-(11) 
instead of (8)-(9), the computational burden is reduced by (1 +
���)/2 times.  

D. Procedure of the IFSA 

The procedure of the IFSA is as follows: 
Step 1: Divide the original set of scenarios into � clusters. The 
cluster centers are denoted as � = {��

�, ��
�, ⋯ , ��

�}, where � is 
called the number of initial clusters for the convenience of 

expression. In this step, a widely used clustering method, the K-
means clustering method, is employed. Note that other 
clustering methods can also be used in this step. 
Step 2: Select the starting scenario �� by [13]: 

�� = ��� � min
� �∈���

∑ �� �(�, ��)� ∈���
�           (12) 

which is the same as the first step of the FSA. 
Step 3: Select an element from the original set of scenarios to 
add to the reduced set of scenarios by using (11), where � is 
determined in (10).  
Step 4: Repeat step 3 until enough elements are added to the 
reduced set of scenarios. The obtained reduced set is denoted as 
Ω��

∗ . 
Step 5: Calculate the probability of each element in the reduced 
set via 

��∗
← ∑   ��

�∈�(�∗) ,   ∀�∗ ∈ Ω��
∗ ,              (13) 

where �(�∗) = �� ∈ Ω����∗ ∈ arg min
���∈���

∗
 �(���, �)�. This step 

is similar to the last step of the FSA. 
Step 3 of the IFSA has the highest share in the computational 

time of the IFSA, which is improved from step i of the FSA. Let 
us consider two special cases of IFSA. If we divide the set of 
original scenarios, Ω��, into 1 cluster, i.e., the number of initial 
clusters is one, then �� = Ω�� . If we divide Ω��  into ‖Ω��‖ 

clusters, i.e., each cluster has only one element, then �=Ω��. In 
other words, in these two special cases, the FSA is the same as 
the IFSA, i.e., the FSA is a special case of the IFSA. The setting 
of the number of initial clusters will be further discussed in 
Section V-B. 

E. Computational Complexity of Different Methods 

The computational complexity of a method can be expressed 
by giving the total number of floating-point operations or flops 
required by the method [26]. The flops required by FSA is [12]: 

����
(���) = 2���

� /3 − ���
� (2��� + 1)+ ���(2���

� + 2��� +

1/3),  (14) 
where ��� (���) represents the number of original scenarios 

(reduced scenarios). Equation (14) can be written as � (���
� ���) 

using the big �  notation if ��� is much larger than ���.  
The computational complexity of the K-means can be 

expressed as � (�������� ��), where ��  is the dimension of a 
data in a scenario and ��  is the total number of iterations. 

The computational complexity of the IFSA can be 

represented as � (���(� + ���/�)), where � is the number of 
initial clusters. Then, it can be known that the computational 
load of the FSA is about ������/(� + ���/�) times as much as 
that of the IFSA. That is, when the number of original and 
reduced scenarios is large, the IFSA requires significantly less 
computational burden than the FSA. 

IV. STOCHASTIC TRANSMISSION EXPANSION PLANNING 

A. Stochastic Programming Model for TEP 

The stochastic programming model for the TEP problem is 
given in (15a)-(15k), which is a nonlinear DC model as 
mentioned in [22]. The objective function consists of the 
generation cost, the wind spillage penalty cost, the load loss 
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penalty cost, and the investment cost for constructing the new 
lines as given in (15a). Constraint (15b) represents the power 
balance at each bus. Constraints (15c) and (15d) represent the 
capacity limits of each line. Constraints (15e), (15g), and (15i) 
represent the upper limits of the load loss, generation, and wind 
power curtailment, respectively. Constraints (15f), (15h), and 
(15j) represent that the load loss, generation, and wind power 
curtailment are nonnegative, respectively. Constraint (15k) 
represents the upper and lower limits of the new lines. Note that 
in the rest of the paper, � is used to represent a scenario in the 
reduced set, Ω��, obtained by a scenario reduction method. 

Minimize:∑ ℎ�����
� �� + ��

��� + ��
� ����∈� + ∑ �����∈�  (15a) 

s.t.  ∑ ���,� ���(��
� + ��)���,�

� − ��,�
� ���

�� � + ��
� + ���

�           

− ��
� + ��

� − ��
� = 0 ∶ ��,�

� ,   ∀� ∈ Ω�, ∀� ∈ Ω��    (15b) 

 ��,�
� − ��,�

� − ��
���/��� ≤ 0 ∶ ��,�

� ,   ∀� ∈ Ω�, ∀� ∈ Ω��    (15c) 

− ���,�
� − ��,�

� � − ��
���/��� ≤ 0 ∶��,�

� , ∀� ∈ Ω�, ∀� ∈ Ω��(15d) 

��
� − ��

� ≤ 0 ∶ ��,�
� ,   ∀� ∈ Ω�, ∀� ∈ Ω��   (15e) 

− ��
� ≤ 0 ∶ ��,�

� ,   ∀� ∈ Ω�, ∀� ∈ Ω��    (15f) 

��
� − ��̅ ≤ 0 ∶ ��,�

� ,   ∀� ∈ Ω�, ∀� ∈ Ω��   (15g) 

− ��
� ≤ 0 ∶ ��,�

� ,   ∀� ∈ Ω�, ∀� ∈ Ω��   (15h) 

��
� − ���

� ≤ 0 ∶ ��,�
� ,   ∀� ∈ Ω�, ∀� ∈ Ω��    (15i) 

− ��
� ≤ 0 ∶ ��,�

� ,   ∀� ∈ Ω�, ∀� ∈ Ω��    (15j) 

0 ≤ �� ≤ ��� , ∀� ∈ Ω.                     (15k) 
where superscript � represents the transpose of a vector and 
subscript � represents the index of both existing and candidate 

lines. Note that ���(��
� + ��)���,�

� − ��,�
� � in (15b) represents the 

power flow of line � and that (���
� − ��

�) in (15b) represents the 
scheduled wind power generation at bus �. 

B. Benders Decomposition Algorithm  

The STEP problem is solved by the Benders decomposition 
algorithm [27]. In the Benders decomposition algorithm for the 
STEP problem, the �th slave problem can be defined as 

Minimize: � � = ℎ��(��
� �� + ��

� �� + ��
� ��)             (16a) 

s.t. (15b)-(15j)                                                                

�� − ��
�

= 0 ∶ ��,�
� ,   ∀� ∈ Ω,                              (16b) 

and the master problem can be defined as  

Minimize: ∑ ���� + ��∈�                                                 (17a) 
s.t. 0 ≤ �� ≤ ���, ∀� ∈ Ω                                     (17b) 

∑ � �,�
�∈� + ∑ ∑ ℎ����,�

�,�
��� − ��

�
��∈��∈� ≤ �, ∀�.  (17c) 

In each iteration �, the solution ��  of the master problem is 

used as ��
�

 in (16b) of the slave problem; and the Lagrange 

multiplier  ��,�
�  associated to (16b) and the objective value � � 

of the slave problem are respectively used as  ��,�
�,�

 and � �,� in 

(17c). 
In each iteration, after solving the master problem, the lower 

bound is calculated using  

�����
�

= ∑ ����
�

+ ��
�∈� ,                            (18a) 

and also after solving all the � slave problems, the upper 
bound is calculated using 

���
�

= ∑ ����
�

+ ∑ � �,�
�∈��∈� .                 (18b) 

The iterative process stops when the gap between the 
upper bound and the lower bound is below a predetermined 

value which is here set to 0.01 × min(���
�

, �����
�

) according 

to [5]. 

C. Linearization Method for the Slave Problems  

For the convenience of expression, minimizing (16a) 
constrained by (15b)-(15j) and (16b) are denoted as SNLP 
which represents a non-linear slave problem: 

(SNLP)               Minimize: (16a)                                               
s.t.  (15b) - (15j), and (16b) 

Note that since ��  and ���,�
� − ��,�

� �  in constraint (15b) are 

variables, SNLP is a non-linear programming problem. By 
substituting (16b) into (15b), SNLP becomes a linear 
programming model: 

(SLP)               Minimize: (16a)                                                    

s.t.  ∑ ���,� ������
� + ��

�
����,�

� − ��,�
� ���

�� � + ��
� + ���

�     

− ��
� + ��

� − ��
� = 0 ∶ ��,�

�� ,   ∀� ∈ Ω�, ∀� ∈ Ω��     (19) 

(15c) - (15j).                                
For the convenience of expression, minimizing (16a) 

constrained by (19) and (15c)-(15j), are denoted as SLP which 
represents a linear slave problem. Note that the SLP is 
equivalent to the SNLP. Let �∗ = {��∗, ��∗, ��∗, ��∗} be the 

optimal solution of the SLP. Then, {�∗, ��}, where ��={��
�
, ��

�
, 

⋯ , ��
�
}, is the optimal solution of the SNLP, which is proved in 

the second paragraph following (27c) in Appendix-A. 
It has been proved that the SLP and the SNLP have the same 

solution. Therefore, we can solve the SLP to obtain the optimal 
solution of the SNLP instead of directly solving the SNLP. This 
is quite beneficial as the SLP is a linear problem and thereby is 
easier to be solved compared to the non-linear problem, SNLP. 
However, the SLP does not provide the Lagrangian multiplier 
associated with an important equality constraint in the SNLP as 
the SLP does not have that constraint. Note that this Lagrangian 
multiplier is required by the Benders decomposition algorithm. 
In this regard, a method to calculate the Lagrangian multiplier 
based on the solution obtained from solving the SLP is 
proposed. 

To be more specific, the Lagrangian multiplier, ��,�
� , 

associated with (16b) in SNLP, can not be directly obtained by 
solving SLP, while it is needed by (17c) in the master problem. 

In the following, a method to calculate ��,�
�  using the 

information obtained from solving the SLP is proposed. 
The Lagrangian function of SNLP is: 

ℒ� =  ℎ��(��
� �� + ��

� �� + ��
� ��)                               

+ ∑ ��,�
� ���,�

� − ��,�
� − ��

���/�����∈��
                         

+ ∑ ��,�
� �− ��,�

� + ��,�
� − ��

���/�����∈��
                      

+ ∑ ��,�
� (��

� − ��
�)�

�� �  + ∑ ��,�
� (− ��

�)�
�� �                   

+ ∑ ��,�
� (��

� − ��̅)�
�� �   + ∑ ��,�

� (− ��
�)�

�� �                  

+ ∑ ��,�
� (��

� − ���
�)�

�� � + ∑ ��,�
� (− ��

�)�
�� �                  
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+ ∑ ��,�
� [∑ ���,� ���(��

� + ��)���,�
� − ��,�

� ���
�� �

�
�� �       

+ ��
� + ���

�  − ��
�  + ��

� − ��
�]               

+ ∑ ��,�
� ��� − ��

�
��

�� � , ∀� ∈ Ω��.                        (20) 

According to the Karush–Kuhn–Tucker (KKT) conditions 
[27], the Lagrangian function with respective to ��  is equal to 0: 

�ℒ�

���
= ������,�

� − ��,�
� � ∑ ���,�

� ��,���
�� � + ��,�

� = 0 ,   ∀� ∈ Ω,

∀� ∈ Ω��.          (21) 
Equation (21) can be rewritten as:  

��,�
� = − ������,�

�∗ − ��,�
�∗� ∑ ���,�

� ��,��
�
�� � , ∀� ∈ Ω, ∀� ∈ Ω��. (22) 

As mentioned above, in the optimal solutions of both SNLP 

and SLP, ��∗ is the same. Besides, ��,�
��  is equal to ��,�

� , which is 

proved in the Appendix. Thus, ��,�
� , which is associated with 

(16b) in SNLP, can be calculated using the optimal solution and 
the Lagrangian multipliers obtained from solving SLP: 

��,�
� = − ������,�

�∗ − ��,�
�∗� ∑ ���,�

�� ��,��
�
�� � , ∀� ∈ Ω, ∀� ∈ Ω��(23) 

In this paper, the stochastic programming, where the 
uncertainty is represented by scenarios, is used to model the 
TEP problem and thereafter solved by a decomposition method. 
Although only the economy criterion is considered in the TEP, 
this framework can be extended to address other criteria such 
as stability [28], reliability [29], etc., by either adding these 
criteria as a constraint [30] or as another objective [31], which 
is an important topic [32] and will be our future work. 

V. SIMULATION 

A. Three Test Systems 

To verify the effectiveness of the proposed method, the STEP 
problem is solved for three different test systems. The first one 
is an IEEE 24-bus system with 41 right-of-ways [8]. Using the 
same way as [8], the original generation capacity and load are 
multiplied by three to cause congestion in the system. Besides, 
two wind farms are connected to buses 1 and 15.  

The second test system is an IEEE 300-bus system with 409 
right-of-ways [33]. The original generation capacity and load 
are multiplied by 1.4 in order to cause congestion in the system. 
Three wind farms are connected to buses 1, 166, and 191. The 
third test system is a 2383-bus system with 2886 right-of-ways 
[33]. Three wind farms are connected to buses 4, 1116, and 
1810. For each system, a maximum of three lines can be added 
to each right-of-way. The capacity of each wind farm is set to 
1,500 MW. 

In each of the modified test systems, the load and wind power 
capacity are determined, i.e., there is only one scenario with the 
probability of 1 and this is called the base case. For the 
convenience of expression, these determined load and wind 
power capacity are called as the base load and the base wind 
capacity, respectively. To obtain multiple scenarios, a load 
scenario factor, ���,� , and a wind capacity scenario factor, 

���
�,�, at scenario � are defined as follows: 

���,� = ��/����, � ∈ Ω��,                           (24) 

���
�,� = ���

�/���� , � ∈ Ω��, � = 1,2,3,     (25) 

where �� (���
�) is the value of load (wind capacity) in scenario 

� which is obtained by a scenario reduction method, e.g., K-
means or IFSA; ����  (����) is the maximum value of �� (���

�) 
for all � ∈ Ω��. The � in (25) is explained in the next paragraph. 

The load data from 2000 to 2014 of Ontario, Canada [34] is 
used as the input data of scenario reduction to obtain ��. The 
wind speed data from three cities (Toronto, Wawa, and 
Peawanuck) in Ontario, in the same period from Environment 
Canada [35] is converted into wind power in the same way as 
[29]. The wind power is then used as the input data of scenario 
reduction to obtain ���

�, where Toronto, Wawa, and Peawanuck 
are associated with � = 1, 2, and 3, respectively. For the 24-bus 
system, � = 1, 2, and for the other two systems, � = 1, 2, and 3. 

Then, the load at each bus (the wind capacity of the �th wind 
farm) of each system in scenario � is set as the base load (base 

wind capacity) multiplied by ���,� (���
�,�).  

The STEP is solved using Matlab [36] on a PC with Intel 
Core i7-2770 3.40 GHz CPU and 16 GB RAM. 

B. Comparison Between Different Scenario Reduction 
Methods 

FSA is implemented in the General Algebraic Modeling 
System (GAMS) [37] as it has a built-in function for FSA. The 
time consumed by FSA, K-means, and IFSA to reduce 13,104, 
40,000, and 131,040 scenarios to 100 and 500 scenarios is 
tabulated in Table I. Note that when the number of original 
scenarios is 131,040, FSA is too time consuming to obtain a 
solution but K-means and IFSA can still obtain the solutions 
within 600 seconds. From Table I, it can be known that FSA 
(K-means) consumes the longest (shortest) time and that IFSA 
consumes a significantly shorter time than FSA and is capable 
of reducing a very large set of scenarios in a short time. 

TABLE I 
TIME CONSUMED BY FSA, K-MEANS, AND IFSA FOR REDUCING DIFFERENT 

NUMBERS OF ORIGINAL SCENARIOS TO 100 AND 500 SCENARIOS. 

Method No. of reduced scenarios 
No. of original scenarios 

13,104 40,000 131,040 
FSA 

100 
310 s 6,163 s --- 

K-means 1.2 s 3.1 s 12.4 s 
IFSA 3.7 s 21.4 s 164.7 s 
FSA 

500 
1,411 s 24,493 s --- 

K-means 13.8 s 45.6 s 109.3 s 
IFSA 17.1 s 99.3 s 571.5 s 

The number of initial clusters is an important parameter for 
the IFSA. The time consumption of the IFSA when using 
different numbers of initial clusters to reduce 13,104 and 40,000 
scenarios to 100 scenarios is plotted in sub-figure a) of Figs. 1 
and 2, respectively. Figs. 1 and 2 show that when the number of 
initial clusters is small, e.g., less than 10, the time consumption 
of IFSA is large and that the time consumed by the IFSA slowly 
increases when the number of initial clusters increases from 200 
to 1000. This can be explained via the expression of the 
computational burden given in Section III-E, which indicates 
that the IFSA has the minimal computational burden when the 
number of initial clusters is equal to the square root of the 
number of original scenarios, which is equal to 114 and 200 in 
Figs. 1 and 2, respectively. 

To compare the accuracy of the FSA, K-means, and IFSA, 
the space distance (the details can be found in [14]) between the 
original set and the reduced set obtained by the FSA, K-means, 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
 

7

and IFSA are shown in sub-figure b) of Figs. 1 and 2. Note that 
the lines associated with the K-means and FSA are straight. The 
reason is that the number of initial clusters is a parameter of the 
IFSA but not a parameter of the K-means and FSA. 

 
Fig. 1. a) Time consumed by IFSA in reducing 13,104 scenarios to 100 
scenarios. b) Space distance between the original set of scenarios and the 
reduced set of scenarios obtained by K-means, IFSA, and FSA, respectively. 

 
Fig. 2. a) Time consumed by IFSA in reducing 40,000 scenarios to 100 
scenarios. b) Space distance between the original set of scenarios and the 
reduced set of scenarios obtained by K-means, IFSA, and FSA, respectively. 

Sub-figure b) in both figures show that the space distance 
associated with the K-means (FSA) is the largest (smallest). In 
these two figures, the space distance associated with the K-
means is 3.14% and 2.46% higher than that associated with the 
FSA, respectively. When the number of initial clusters is larger 
than a certain number, the space distance associated with the 
IFSA is quite close to that associated with the FSA (the relative 
error between them is 0.4% to 0.5%). The impacts of the 
scenario reduction accuracy associated with the K-means and 
the IFSA on the total cost of the STEP will be further 
investigated in Section V-E. As mentioned at the end of Section 
III-D, the IFSA has the same accuracy as the FSA when the 

number of initial clusters is set to 1, which is verified in sub-
figure b) in both Figs. 1 and 2. That is, the first point of the 
curve associated with the IFSA has the same space distance as 
that associated with the FSA. 

It can be seen from sub-figure b) in both Figs. 1 and 2 that 
there is a knee point in the line associated with IFSA, so that the 
space distance decreases steeply (slightly) as the number of 
initial clusters increases on the left (right) side of the knee point. 
It is suggested that the number of initial clusters can be set at 
the knee point. For example, the number of initial clusters can 
be set to 200 and 300 in sub-figure b) of Figs. 1 and 2, 
respectively. 

Now, we can come to the conclusion that the IFSA consumes 
a significantly shorter time than the FSA while the former is 
almost as accurate as the latter when the number of initial 
clusters is properly set. 

C. Deterministic Transmisssion Expansion Planning 

For the purpose of demonstration and verification, the 
proposed linearization method is used to solve a deterministic 
TEP on the IEEE 24-bus system where the parameters are set 
to be the same as [23]. The total cost of the solution obtained is 
$152,000,000 and the investment plan is ��� �� = 1, ��� � =
2, ���� �� = 1, and ���� �� = 1, where the subscripts represent 
the bus numbers in the two ends of a right-of-way. These results 
are the same as those presented in [23]. 

D. Time Consumption of Different Methods in Solving the 
STEP Using Different Test Systems 

To verify the effectiveness of the linearization method 
proposed for the DC model used in the slave problems, three 
methods are implemented and compared with each other.  
 Method 1: The slave problems in the Benders 
decomposition algorithm are directly solved as non-linear 
programming problems (i.e., solving SNLP). 
 Method 2: The slave problems in the Benders 
decomposition algorithm are solved as mixed binary linear 
problems (i.e., solving SBLP given in Appendix-B). SBLP is 
a disjunctive model as mentioned in [22]. 
 Method 3: The slave problems in the Benders 
decomposition algorithm are solved as linear programming 
problems. That is, solving SLP and then using (23) to 
calculate the Lagrangian multiplier associated with (16b), 
which is the procedure of the proposed linearization method. 

The number of variables and constraints in SBLP is more 
than those in SLP, especially in large-scale systems. The 
numbers of variables, inequality constraints, and equality 
constraints in terms of �, |Ω�|, |Ω�| and |Ω�| for SBLP and 
SLP are given in Table II, where |Ω�| ≤ �, |Ω�| ≤ ����, and 
|Ω�| ≤ �. Note that (15e)-(15j) in SLP are handled as upper and 
lower bounds and that (34b) is substituted into (34a) and (34c) 
in SBLP. The numbers of variables and inequality constraints 
for SBLP and SLP for the three test systems are plotted in Fig. 
3, where ‘��E+��’ represents ‘�� × 10��’. Table II and Fig. 3 
show that SBLP has many more variables and inequality 
constraints than SLP, especially when |Ω�| is large. 

The SNLP model is nonlinear while the SBLP and SLP 
models are linear. The time consumption for solving each of 
these three models in each of the three test systems is tabulated 
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in Table III, where ‘s’ represents seconds. Table III shows that 
solving SNLP consumes much more time than solving SBLP or 
SLP and that solving SBLP consumes more time than solving 
SLP (about 2.2 to 5.5 times). 

TABLE II 
NUMBER OF VARIABLES, INEQUALITY CONSTRAINTS, AND EQUALITY 

CONSTRAINTS IN SBLP AND SLP. 
 SBLP SLP 

No. of variables 4� + |Ω�| 4� 
No. of inequality constraints 2|Ω�| + 4|Ω�| 2|Ω�| 
No. of equality constraints � � 

                     

 
Fig. 3. The numbers of variables and inequality constraints in SLP and SBLP 
for each of the three test systems, respectively. 

TABLE III 
TIME CONSUMPTION FOR SOLVING MODELS SNLP, SBLP AND SLP IN EACH 

OF THE THREE TEST SYSTEMS. 
Test problem SNLP SBLP SLP 

24-bus 3 s 0.0026 s 0.0012 s 
300-bus 33.4 s 0.0904 s 0.0164 s 
2383-bus -- 5.7 s 1.4 s 

 
Methods 1-3 are different in solving the slave problems but 

are the same in solving the master problem. Thus, only the time 
consumed by the three methods to solve the slave problems is 
compared here. The time consumed by the three methods to 
solve all the slave problems in each of the three test systems is 
given in Table IV, where ‘s’ represents seconds and ‘d’ 
represents days. It can be seen from the table that Method 1 is 
too time consuming to be used for solving the STEP problem. 
Besides, Method 2 consumes 343 seconds, 4810 seconds, and 
3.5 days more than Method 3 for the three test systems, 
respectively. That is, the advantage of Method 3 over Method 2 
becomes more obvious as the system gets larger. 

TABLE IV 
TOTAL TIME CONSUMED BY THE THREE METHODS TO SOLVE ALL THE SLAVE 

PROBLEMS IN EACH OF THE THREE TEST SYSTEMS, RESPECTIVELY. 
Test problem Method 1 Method 2 Method 3 

24-bus 735,000 s (8.5 d) 637 s 294 s 
300-bus 2,171,000 s (25.1 d) 5,876 s 1,066 s 

2383-bus -- 399,000 s (4.6 d) 98,000 s (1.1 d) 

 

E. Number of Reduced Scenarios 

The number of reduced scenarios is an important parameter 
for the STEP problem. Obviously, as the number of reduced 
scenarios increases, the reduced scenarios can better represent 
the original scenarios and consequently a more accurate 
solution can be obtained for the STEP. Various numbers of 
reduced scenarios, obtained by both the K-means clustering 
method and the IFSA, are used for solving the STEP problem 
and the associated total costs for the 24-bus system as a function 
of the number of reduced scenarios are plotted in Fig. 4.  

Fig. 4 shows that the total cost varies significantly with the 
increase of the number of reduced scenarios in the first 5 points 
while the variation of the total cost is small in the last 4 points. 
The reason is that the reduced scenarios cannot (can) accurately 
represent the original scenarios when the number of reduced 
scenarios is smaller (larger) than a certain number. Thereby, the 
total costs of the STEP should converge to the optimal result 
when the number of reduced scenarios is larger than this certain 
number (equal to 10,000 in Fig. 4), which is supported in Fig. 
4. This certain number is suggested to be the proper setting of 
the number of reduced scenarios. 

That is, the number of reduced scenarios needs to be 
relatively large in order to obtain an accurate result. However, 
this requires a long computational time for both the scenario 
reduction methods and the solution methods to solve the STEP, 
which makes the IFSA and the linearization method proposed 
in Sections III and IV, respectively, more valuable. 

It can be seen from Fig. 4 that the total cost associated with 
the K-means is larger than that associated with the IFSA. 
Actually, when the number of reduced scenarios is equal to 
15,000, the total costs associated with the K-means and the 
IFSA are 1.49 × 10� $ and 1.37× 10� $, respectively, and the 
former is 8.76% (120 M$) larger than the latter. This indicates 
the importance of the accuracy of scenario reduction methods 
for the STEP problem. 

 
Fig. 4. Total cost of the STEP using various numbers of reduced scenarios. 

F. Cost of Load Loss 
Another important parameter is the cost of load loss �� . 

Various values of �� are used in the STEP and the results are 
tabulated in Table V, where the weighted sum of load loss is 

calculated by ∑ ���∑ ��
�

�∈��
��∈� . It can be seen from Table V 

that when the cost of load loss is low (i.e., �� is from 10 to 100), 
only a few new lines are added. This is because the cost of load 
loss is lower than adding new lines and thereby there is much 
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load shedding. Table V also shows that as the cost of load loss 
increases, the weighted sum of load loss decreases.  

The total cost and the weighted sum of load loss as a function 
of the cost of load loss are plotted in Fig. 5, where ‘1E+n’ 
represents ‘1× 10�’. Logarithmic scale is used to represent the 
total cost and the cost of load loss. It can be seen from the figure 
that the solid line, representing the total cost, increases steadily 
while the dashed line, representing the weighted sum of load 
loss, has an obvious knee point when the cost of load loss is 
equal to 1× 10�. This indicates that the cost of load loss can be 
set to 1× 10� to maintain a tradeoff between the total cost and 
the weighted sum of load loss. 

TABLE V 
THE RESULTS OF THE STEP IN THE 24-BUS SYSTEM WHERE VARIOUS VALUES 

OF THE COST OF LOAD LOSS ARE USED. 

��  10 100 1× 10� 
Total cost ($) 6.95 × 10� 9.75 × 10� 1.36 × 10� 
No. of new lines 3 9 15 
Weighted sum of load loss (MW) 42.1749 1.1546 0.2532 

��  1× 10� 1× 10� 1× 10� 
Total cost ($) 2.77 × 10� 1.49 × 10�� 1.34 × 10�� 
No. of new lines 19 27 37 
Weighted sum of load loss (MW) 0.1613 0.1512 0.1505 

 
Fig. 5. Total cost and weighted sum of load loss as a function of the cost of 
load loss. 

VI. CONCLUSION 

In this paper, a new scenario reduction method, the IFSA, has 
been proposed. The reduced scenarios are then used in the 
stochastic programming model for the TEP. The STEP is 
decomposed into a master problem and multiple slave problems 
by using the Benders decomposition algorithm. A linearization 
method has been proposed to convert the slave problems to 
linear programming models and calculate the Lagrangian 
multipliers needed in the master problem. 

For the purpose of comparison, the K-means clustering 
method, the FSA, and the IFSA are used for scenario reduction 
of two medium and one large sets of scenarios. The simulation 
results have shown that the K-means consumes the shortest time 
but its accuracy is about 2.5% to 3% lower than the FSA and 
the IFSA, that the FSA is the most accurate but quite time 
consuming, and that the IFSA is almost as accurate as the FSA 
but consumes a significantly shorter time than the FSA. The 
simulation results have also shown that the FSA is too time 
consuming to reduce a large number of scenarios while the K-
means and the IFSA can reduce a large number of scenarios in 

a short time. Besides, the total cost of the STEP using the 
reduced scenarios obtained by the K-means is much higher than 
that associated with the IFSA, which indicates the necessity of 
using the IFSA instead of the K-means. 

The STEP problem has been solved in the modified 24-, 300-, 
and 2383-bus test systems. The simulation results have shown 
that the linearization method proposed for the DC models of the 
slave problems can remarkably reduce their complexity and 
solution time and that it can cause the slave problems to be 
solved much faster (especially for large-scale problems) than an 
existing method that uses disjunctive models of the slave 
problems. 

The number of reduced scenarios has been investigated and 
the simulation results show that a relatively large number of the 
reduced scenarios are necessary in order to obtain an accurate 
solution for the STEP. The optimal value for the cost of load 
loss has also been investigated in order to maintain a tradeoff 
between the total cost and the load loss. 

APPENDIX 

A. Proof of SNLP and SLP Having the Same Lagrangian 
Multipliers 

SNLP can be represented as: 

(NLP)                  Minimize
��, ��

:  �(��)                                   (26a) 

s.t.    �(��) ≤ 0 ∶ ��                  (26b) 

�(��
���) = 0 ∶ ��                  (26c) 

�� − �� = 0 ∶ ��,                 (26d) 

where � and � are linear functions of ��; � is a linear function 

of ��
���; �� is a vector of parameters; and ��, ��, and �� are 

Lagrangian multipliers associated with (26b)-(26d), 
respectively. Note that (26b) represents (15c)-(15j); (26c) 
represents (15b); and (26d) represents (16b). For the 
convenience of expression, (26a)-(26d) are denoted as NLP, 
which is a non-linear programming problem. 

SLP can be represented as:  

(LP)                      Minimize
��

: �(��)                                   (27a) 

s.t.   �(��) ≤ 0 ∶ ��
�                  (27b) 

�(��
���)= 0 ∶ ��

� ,                (27c) 

where �  is a linear function of ��
��� ; and ��

�  and ��
�  are 

Lagrangian multipliers associated with (27b)-(27c), 
respectively. Note that (27b) represents (15c)-(15j) and (27c) 
represents (19). For the convenience of expression, (27a)-(27c) 
are denoted as LP, which is a linear programming problem. 

Denote the optimal solution of LP as ��
∗. Then, the optimal 

solution of NLP is (��
∗, ��

∗) where ��
∗ = �� which is proved as 

follows. Suppose (��
∗, ��

∗) is not the optimal solution of NLP. 

Then, there exist another feasible solution (��
�, ��

∗) such that 
�(��

�) < �(��
∗), which contradicts with the assumption that ��

∗ 
is the optimal solution of LP. Thus, it has been proved that (��

∗, 
��

∗) is the optimal solution of NLP. Similarly, it can be proved 
that if the optimal solution of NLP is denoted as (��

∗, ��
∗), then 

��
∗ is the optimal solution of LP. 
Now we want to prove that �� = ��

�  and �� = ��
� . 
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According to [27], the dual problem of LP is: 

Maximize
��

� ,��
� ; ��

� ��
: ��(��

� , ��
� )                          (28) 

where 

��(��
� , ��

� ) = Infimum
��

 {�(��)+ ��
� �(��)+ ��

� �(��
���)}(29) 

Denote the optimal value of (28) as �∗ = ��(��
�∗, ��

�∗) where 
(��

�∗, ��
�∗) are the optimal solution of (28). Denote the optimal 

value of LP as �∗ = �(��
∗) where ��

∗ is the optimal solution of 
LP. According to [26], strong duality holds for any linear 
programming provided the primal problem is feasible, i.e., 
�∗ = �∗, which can be writen as: 

�∗ = ��(��
�∗, ��

�∗) = max
��

� ,��
� ; ��

� ��
��(��

� , ��
� )                              

= max
��

� ,��
� ; ��

� ��
[�(��

∗)+ ��
� �(��

∗)+ ��
� �(��

∗���)].   (30) 

According to [27], the dual problem of NLP is: 

Maximize
��,��,��; ����

:  ��(��, ��, ��)                    (31) 

where 
��(��, ��, ��) = Infimum

��, ��

 {�(��)+ ���(��)+

���(��
���)+ ��(�� − ��)}      (32) 

As mentioned above, (��
∗, ��

∗) where ��
∗ = �� is the optimal 

solution of NLP and its optimal value is �∗. Substituting (��
∗, 

��
∗) into (32), (31) becomes: 

Maximize
��,��,��; ����

: ��(��, ��, ��) = max
��,��,��; ����

[ �(��
∗)+ ���(��

∗)  

+ ���(��
∗���)+ ��(�� − ��)]       (33) 

Denote the optimal solution of (33) as (��
∗, ��

∗, ��
∗). Note that 

the right hand side of (33) is equivalent to the second line of (30) 
as the last term in the right hand side of (33) is 0. Thus, the first 
two elements of the optimal solution of (33) are equal to the 
optimal solution of (30), i.e., ��

∗ = ��
�∗ and ��

∗ = ��
�∗. Besides, 

the optimal value of (33) is equal to the optimal value of (30): 
��(��

∗, ��
∗, ��)= ��(��

�∗, ��
�∗) = �∗ = �∗ . That is, when 

substituting (��
∗, ��

∗) into (32), the value of the dual problem (31) 
is �∗ which is equal to the optimal value of primal problem NLP. 
This indicates that the strong duality holds and that the optimal 
solution of (33) is the same as the optimal solution of (31). Note 
that the optimal solution of (30) is the same as the optimal 
solution of (28). Thus, the first two elements, (��

∗, ��
∗), of the 

optimal solution of (31) are equal to the optimal solution of (28), 
(��

�∗, ��
�∗). Note that the Langrangian multipliers of the primal 

problems SNLP and SLP are equal to the values of the optimal 
solutions of the dual problems (31) and (28), respectively. Thus, 
it has been proved that the Lagrangian multipliers of (26b)-(26c) 
are equal to those of (27b)-(27c), respectively, i.e., �� = ��

�  and 

�� = ��
� . 

B. Mixed Binary Linear Programming Model for Slave 
Problems 

(SBLP)               Minimize: (16a)                                               
   

s.t. ∑ ��,�  ��
�

�∈��
+ ∑ ��,� ��

�
�∈��

+ ��
� + ���

� − ��
�         

+ ��
� − ��

� = 0 ∶ ��,�
� ,    ∀� ∈ Ω�, ∀� ∈ �   (34a) 

��
� − �����

����,�
� − ��,�

� � = 0,    ∀� ∈ Ω�, ∀� ∈ �   (34b) 

|��
�| ≤ ��

���
���,    ∀� ∈ Ω�, ∀� ∈ �   (34c) 

− ��(1 − ��) ≤ ��
� − ������,�

� − ��,�
� � ≤ ��(1 − ��),  

∀� ∈ Ω�, ∀� ∈ �   (34d) 
− ����

��� ≤ ��
� ≤ ����

���,   ∀� ∈ Ω�, ∀� ∈ �   (34e) 
�� ∈ {0,1},   ∀� ∈ Ω� (34f) 

This is a mixed binary linear programming model for slave 
problems. For the convenience of expression, this optimization 
model is denoted as SBLP which represents a linear slave 
problem with binary variables.  
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