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Abstract—This paper presents a fast state estimator and a 
corresponding bad data (BD) processing architecture aimed at 
improving computational efficiency and maintaining high 
estimation accuracy of existing state estimation (SE) algorithms, 
simultaneously. The conventional and phasor measurements are 
separately processed by a three-stage SE method and a linear 
estimator, respectively. Then, the derived estimates are combined 
using estimation fusion theory. To eliminate computational 
bottlenecks of the conventional BD processing scheme, BD 
identification is moved before the second stage of SCADA-based 
SE, and bad phasor measurements or bad conventional 
measurements in the PMU-observable area are identified and 
processed all at once, which can dramatically reduce the 
implementation time, especially for large-scale networks with 
multiple BD. The proposed estimator is compared to existing 
methods in terms of estimation accuracy and computational effort 
through simulation studies conducted on standard IEEE test 
systems. Promising simulation results show that the proposed 
estimator could be an effective method to obtain system states in a 
fast and accurate manner. 

Index Terms—State estimation, linear weighted least squares, 
phasor measurement unit, bad data processing, estimation fusion. 

I. INTRODUCTION 

INCE its initial introduction by Fred Schweppe in 1970 [1], 
state estimation (SE) has become an essential tool for 

providing accurate system snapshots to several crucial 
applications in energy management systems (EMS). The 
conventional SE [2], traditionally formulated as a nonlinear 
weighted least squares (WLS) problem and solved in an 
iterative manner, processes measurements obtained from the 
supervisory control and data acquisition (SCADA) system. 
With the increasing use of synchronized phasor measurement 
units (PMUs) in recent years, the measurement redundancy and 
estimation accuracy have been significantly improved because 
PMUs can provide synchronized voltage and current phasors 
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with respect to the time reference obtained from the global 
positioning system (GPS) [3]. When a power system is fully 
observable using only PMU measurements, and rectangular 
coordinates are used for phasor measurements and state 
variables, the estimation problem becomes linear and can be 
non-iteratively solved [4]. Despite the undisputed advantages 
of using PMUs in power system SE, due to the financial 
constraints the number of PMUs deployed in real systems 
worldwide is still insufficient to make the system fully 
observable [5]. Moreover, the significant past investment in 
SCADA infrastructure can provide valuable information that 
should not simply be discarded. Thus, SCADA and PMU 
measurements will coexist for several years to come, and the 
power system SE should effectively integrate both of these 
available data sources and provide a unified view [6], [7]. To 
address the SE problem under incomplete PMU observability, 
two basic approaches, characterized structurally by the number 
of estimators used, are addressed: 1) mixing the SCADA and 
PMU measurements using a single estimator [5], [8]-[12]; and 
2) processing each set of measurements separately and using 
two or more estimators [4], [6], [13]-[20]. Although the former 
approach can produce estimates with high accuracy, it faces 
some serious implementation challenges. One such challenge is 
caused by the significant difference between the refresh rates of 
SCADA and PMU measurements, which can be successfully 
circumvented by the latter approach. 

Even though computing power is now orders of magnitude 
greater than four decades ago, when power system SE was 
championed by Schweppe, the need for computationally more 
efficient techniques to integrate data from both the SCADA 
system and PMUs still remains due to expansion of the 
geographical scope of many SEs and the huge number of 
measurement points provided by the ongoing deployment of 
new digital devices [21], [22]. A reduced-order two-stage 
method, proposed in [4] to perform SE using both SCADA and 
PMU measurements, featured lower computational complexity. 
To reduce the required execution time, the authors in [13] 
offered an alternative approach to incorporate PMU data into 
conventional SE through a post-processing step. This scheme 
was modified in [15] by introducing supplementary current 
measurements in the post-processing step to provide slightly 
higher precision. A two-stage state estimator was proposed in 
[16] to reduce computational effort. A distributed SE algorithm 
was presented in [17] and the simulation results demonstrated 
its efficacy in reducing the computational time. A distributed 
two-level state estimator function [19], [20] used a linear SE 
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algorithm at the control center level but moved the bad data 
identification and local topology processing to the substation 
level, making this processing very fast. 

Bad data (BD) analysis is an essential attribute of any power 
system state estimator, and a variety of methods for gross error 
detection and identification are available. Among existing 
methods, the largest normalized residual test [2] and the 
hypothesis testing identification (HTI) method [23] are widely 
used for SCADA-based SE. With the increasing penetration of 
PMUs in power system SE, BD analysis in PMU measurements 
has been a matter of interest for several years. A strategic PMU 
placement algorithm was proposed in [24] to improve the BD 
processing capability of state estimators. The authors in [10] 
applied the largest normalized residual test to address BD 
analysis in the context of hybrid SE. However, for multiple BD, 
updates on the measurements and states continue until all 
normalized residuals drop below a pre-defined detection 
threshold. Thus, the re-estimation step constitutes the main 
computational bottleneck of the BD analysis. To efficiently 
identify multiple gross errors and eliminate a BD smearing 
effect, an enhanced BD processing approach was developed in 
[7]. However, computational burden associated with the 
nonlinear re-estimation step of SCADA-based SE may lower 
its performance when there are multiple bad SCADA 
measurements in PMU-unobservable area. Therefore, there is a 
need to develop a new SE algorithm to improve computational 
efficiency which is crucial not only for the solution but also for 
the BD processing scheme. 

The focus of this paper is on developing a new SE method to 
improve computational efficiency and maintain high estimation 
accuracy simultaneously, especially for large-scale networks 
with multiple BD. First, a three-stage SE method, composed of 
two WLS linear problems and a nonlinear transformation, is 
used to process the SCADA data. Then, the PMU observable 
states are calculated by a linear estimator, whereas pseudo state 
values with large variances are assigned to PMU unobservable 
states. A fusion stage is used to combine the results obtained 
from the above two estimators. Bad SCADA measurements in 
PMU-observable area or bad PMU measurements are identified 
and processed all at once, which can dramatically reduce the 
implementation time. In addition, the linear re-estimation step, 
caused by bad SCADA measurements in PMU-unobservable 
area, can further improve computational efficiency. 

The rest of this paper is organized as follows. Section II 
presents the proposed state estimator and bad data processing 
scheme. In Section III, the solution accuracy and computational 
effort of the proposed algorithm are compared to existing 
methods using the IEEE 14-, 30-, 57-, 118-, and 300-bus test 
systems. Finally, Section IV provides conclusions. 

II. PROPOSED STATE ESTIMATION 

This section describes a fast state estimator for integrating 
SCADA and PMU measurements. Consider a power system 
with n buses, l branches, and measured by ms SCADA 
measurements and mp PMU measurements.  

A. First Stage of SCADA-Based SE 

In the first stage, an auxiliary vector, y, is introduced in such 
a way that a linear measurement model is represented by [21] 

  scada 1z Ay e                                       (1)�

where zscada is the SCADA measurement vector with dimension 
(ms×1); A is a constant Jacobian matrix; and e1 is the 
measurement error vector that features a normal distribution 
with zero mean and covariance matrix RSCADA. 

Specifically, for each bus i, the voltage magnitude Vi is 
squared to get the new variable Ui: 

2
i iU V .                                        (2)�

Moreover, for each branch connecting buses i and j, the 
following two variables are constructed: 

cosij i j ijK V V                                     (3)�

sinij i j ijL V V                                      (4)�

where θi and θj denote the voltage phase angles of buses i and j, 
respectively, and θij = θi - θj. 

Then, the intermediate state vector, composed of n+2l 
variables, is given in block partitioned form: 

       i ij ijy U K L .                              (5)�

Any SCADA measurement can be linearly expressed in 
terms of the intermediate state vector as follows [21]. 
 Power flow measurements 

For a branch connecting buses i and j, active and reactive 
power flow measurements taken at terminal bus i are 

,( )ij sh i ij i ij ij ij ij PP g g U g K b L                       (6)�

 ,( )ij sh i ij i ij ij ij ij QQ b b U b K g L                       (7)�

where gij and bij are the conductance and susceptance of the 
series branch connecting buses i and j, respectively, and gsh,i 
and bsh,i are the values of the shunt branch connected at bus i. 
 Power injection measurements at bus i 

i ij P
j i

P P 


                                          (8)�

i ij Q
j i

Q Q 


  .                                      (9)�

 Voltage magnitude measurement 
Here, the voltage magnitude measurements should be 

squared to retain linearity in this stage: 
2

i i UV U   .                                  (10) 

The standard deviation of the error associated with 2
iV  is 

calculated using the original measurement Vi and its standard 
deviation, as follows: 

   2 2i i iV V V  .                            (11)�

The components of constant Jacobian matrix A in (1) are 
given in [21] and [22]. The WLS solution to the linear problem 
(1), (scada)ŷ , and its error covariance matrix, (scada)

yR , can be 

directly obtained, respectively, as: 
(scada) 1 T 1

a SCADA scadaŷ G A R z                         (12) 

  (scada) 1
ayR G                                    (13)�

where T 1
a SCADAG A R A  is a gain matrix and the notation (ꞏ)T 

denotes transpose. 
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B. PMU-Based SE 

PMUs offer fast acquisition of voltage and current phasors in 
a synchronized manner. When rectangular coordinates are used 
for the phasor measurements and state variables, the SE 
problem becomes linear and states can be obtained by a 
non-iterative algorithm. However, the phasor measurements 
derived from PMUs are generally stored and uploaded in polar 
form. The relationship between incremental representation in 
polar and rectangular coordinates is 

T

(1) re (2) re (1) im (2) im

T

PMU 1 2 1 2

z z z z

T z z 

   

     

 

 
          (14) 

where 

1 1 1

2 2 2

PMU

1 1 1

2 2 2

sin 0 cos 0

0 sin 0 cos

cos 0 sin 0

0 cos 0 sin

z

z

T
z

z

 
 

 
 

 
  
 

  
 
 
 
  

 
 

     
 
 

     

 

(1) rez  and (1)imz  represent the rectangular form of PMU 

measurements, and |z1| and θ1 denote their polar form. The error 
covariance matrix of the measurements in polar coordinates, 

p
PMUR , is thereby transformed by a rotation matrix TPMU to 

obtain the error covariance matrix of measurements in 
rectangular coordinates, r

PMUR : 

 Tr p
PMU PMU PMU PMUR T R T .                      (15) 

After the above transformation, a set of positive sequence 
voltage and current phasors in rectangular coordinates, zpmu, is 
obtained. PMU observable states are uniquely defined by the 
PMU placements and the type of PMU measurements [4]. We 
assume there are nob PMU observable states and nun PMU 
unobservable states, which are denoted by xob and xun 
respectively. A permutation matrix П is easily defined to 
reorder the state vector x such that the PMU observable states 
are stacked over the unobservable states, i.e., 

TT T
ob unx x x     . Because T I   , the PMU measurement 

model can be expressed as follows: 

  obT
pmu 2 2 1 2 2

un

x
z Bx e B x e C C e

x

 
        

 
    (16)�

where B is the PMU measurement Jacobian, with dimension 
( p 2m n ), and  T

1 2B C C  . The dimensions of C1 and C2 

are mp × nob and mp × nun, respectively. Because all entries in C2 
are zero, (16) can be rewritten as 

pmu 1 ob 2z C x e  .                                (17)�

Then, the estimate for the PMU observable state vector and its 
error covariance are given, respectively, by: 

   
11 1T T

ob 1 PMU 1 1 PMU pmuˆ r rx C R C C R z
     

          (18)�

 
11T

ob 1 PMU 1
rR C R C

    
.                       (19)�

In preparation for bad data processing and the fusion stage, 
standard “expected” values for bus complex voltages (real part 

= 1, imaginary part = 0) are assigned to the PMU-unobservable 
state vector unx̂ . Because these PMU-unobservable state values 

are inaccurate, their variances are usually some orders of 
magnitude larger than the tele-measurement variances. Let Run 
(nun×nun diagonal matrix) be the error covariance matrix of unx̂ . 

Then, the estimate for the state vector (pmu)x̂  and its error 
covariance matrix (pmu)

xR  are calculated using 

ob(pmu) T

un

ˆ
ˆ

ˆ

x
x

x

 
   

 
                               (20)�

(pmu) T T
1 ob 1 2 un 2xR R R                          (21)�

where 
TT T

1 2      , and the dimensions of 1  and 2  

are nob×2n and nun×2n, respectively. 

C. Bad Data Processing Scheme 

The previous two subsections process SCADA and PMU 
measurements independently and individually. When “scada” 
and “pmu” are used as superscripts, they denote in which 
estimator a vector/matrix is computed, whereas subscripts 
“scada” and “pmu” represent the type of measurements to 
which a vector/matrix is associated [7]. 

The state estimate (pmu)x̂  is obtained together with its error 

covariance matrix (pmu)
xR  from processing PMU measurements 

only. Then, using (pmu)x̂ , the estimated intermediate state 

vector (pmu)ŷ  is calculated as follows: 

 (pmu ) (pmu) (pmu) (pmu)ˆ ˆ ˆˆ i ij ijy U K L                  (22) 

where 

   2 2(pmu) (pmu) (pmu)
( ) re ( ) im

ˆ ˆ ˆi i iU x x                      (23) 

(pmu) (pmu) (pmu) (pmu) (pmu)
( ) re ( ) re ( )im ( )im

ˆ ˆ ˆ ˆ ˆij i j i jK x x x x                   (24) 

(pmu) (pmu) (pmu) (pmu) (pmu)
( )im ( ) re ( ) re ( )im

ˆ ˆ ˆ ˆ ˆij i j i jL x x x x                    (25) 

where (pmu)
( ) reˆ ix  and (pmu)

( ) imˆ ix  are the real and imaginary parts of the 

estimated voltage phasor for bus I, respectively, which are 
obtained from (20). From the above relationships (23)-(25), the 
( 2 ) 2n l n   Jacobian yF y x    is evaluated at (pmu)ˆx x , 

and its components are provided in Table I. 

 
Therefore, the error covariance matrix of (pmu)ŷ  is calculated as 

(pmu) (pmu) T
y y x yR F R F .                              (26)�

Using (pmu)ŷ , the estimated SCADA measurement vector 
(pmu)
scadaẑ  and its error covariance matrix (pmu)

scadaM  are given by 
(pmu) (pmu)
scada ˆẑ Ay                                    (27)�

(pmu) (pmu) T
scada yM AR A .                               (28)�

TABLE I 
JACOBIAN COMPONENTS IN THE BD PROCESSING SCHEME 

 ( ) reix x  ( )imix x  ( ) rejx x  ( )imjx x  

i
U x   ( ) re2 ix  ( ) im2 ix  0 0 

ij
K x   ( ) rejx  ( )imjx  ( ) reix  ( )imix  

ij
L x   ( ) imjx  ( ) rejx  ( )imix  ( ) reix  
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Thus, considering the SCADA measurement vector scadaz , 

the following difference vector and its covariance matrix are 
computed, respectively, as [7] 

(pmu) (pmu)
scada scada scadaˆr z z                                (29)�

(pmu) (pmu)
scada SCADA scadaJ R M  .                          (30)�

The components of (pmu)
scadar  are normalized as follows: 

(pmu)
(pmu) scada
scada (pmu)

scada

( )
( )

( , )
N

r i
r i

J i i
 .                        (31) 

A flag vector α with the same dimension as zscada is defined as�
(pmu)
scada
(pmu)
scada

0, ( ) threshold
( )

1, ( ) threshold
N

N

r i
i

r i


  


.                 (32)�

Similarly, (scada)ŷ  is used to calculate the estimated SCADA 

measurement vector (scada)
scadaẑ  and its error covariance matrix 

(scada)
scadaM , respectively, using 

(scada) (scada)
scada ˆẑ Ay                                    (33)�

(scada) (scada ) T
scada yM AR A .                              (34)�

Then, the estimation residual vector and its covariance matrix 
are given by 

(scada) (scada)
scada scada scadaˆr z z                               (35)�

(scada) (scada)
scada SCADA scadaJ R M  .                         (36)�

The components of (scada)
scadar  are normalized as 

(scada)
(scada) scada
scada (scada)

scada

( )
( )

( , )
N

r i
r i

J i i
                          (37) 

and a flag vector β with the same size of zscada is defined as  
(scada)
scada
(scada)
scada

0, ( ) threshold
( )

1, ( ) threshold
N

N

r i
i

r i


  


.                (38)�

It is worth mentioning that the flag vector β is valid in the 
case of non-critical single or uncorrelated multiple BD. 

Since only SCADA measurements are used in (33)-(38), the 
flag vector β just identifies the suspicious bad SCADA 
measurements. The diagnosis of BD should integrate the 
information from both flag vectors α and β as shown in Table II. 

 
We assume that BD in SCADA and PMU measurements do 

not occur simultaneously. Scenario 1: If flag vectors α and β 
are zero vectors, i.e., no threshold violations in either (pmu)

scadaNr  or 
(scada)
scadaNr , then there are no BD in the SCADA and PMU 

measurements. Scenario 2: In the case of threshold violations 
in (scada)

scadaNr  indicated by the non-zero value of the sum of all 

components in flag vector β and no threshold violations in 
(pmu)
scadaNr , bad SCADA measurements occur in the 

PMU-unobservable area. Then, the conventional BD 
processing method, i.e., repeated application of BD detection, 
identification, correction, and re-estimation, is performed to 
eliminate the BD one-by-one. As shown in (11), if a bad voltage 
magnitude measurement exists in the PMU-unobservable area, 
the variance of its squared version is corrupted and cannot be 
used in the correction step. Thus, the bad voltage magnitude 
measurements in this scenario should be deleted, whereas other 
bad SCADA measurements, such as active/reactive power 
flows and power injections, are corrected as follows:  

new bad (scada)SCADA
scada scada scada(scada)

scada

( , )
( ) ( ) ( )

( , )

R i i
z i z i r i

J i i
  .          (39) 

Scenario 3: Non-zero vectors α and β indicate the presence of 
gross errors in zscada, and some or all of these BD occur within 
the network area observed by PMU measurements. First, the 
suspect SCADA measurements flagged by α can easily be 
replaced all at once by their corresponding estimates obtained 
from (27), weighted according to the diagonal elements of 
matrix (pmu)

scadaM defined in (28). The intermediate state vector y is 

then re-estimated using the updated SCADA measurements. 
Lastly, the normalized estimation residual vector is 
re-calculated to check whether there are still bad SCADA 
measurements in the PMU-unobservable area. If elements in 

(scada)
scadaNr  exceed the predefined threshold, the bad SCADA 

measurements can only be eliminated one-by-one using a 
conventional BD processing scheme, as in Scenario 2. 
Scenario 4: If zero vector β validates SCADA measurements 
but elements of (pmu)

scadaNr  exceed the detection threshold, one can 

conclude that the estimated measurement (pmu)
scadaẑ  obtained in (27) 

is contaminated by the presence of BD in PMU measurements. 
In this situation, (scada)ŷ  obtained in (12) is valid and can be 

used to obtain state vector (scada)x̂  (in rectangular form) and its 

error covariance matrix (scada)
xR  as per Section II-D. Then, the 

estimated PMU measurements (scada)
pmuẑ  and the error covariance 

matrix (scada)
pmuM  are given by 

(scada) (scada )
pmu ˆẑ Bx                                    (40)�

(scada) (scada ) T
pmu xM BR B .                               (41)�

Similarly, the following differences can be computed, 
normalized, and flagged: 

(scada) (scada)
pmu pmu pmuˆr z z                               (42)�

(scada) r (scada)
pmu PMU pmuJ R M                             (43)�

(scada)
pmu(scada)

pmu (scada)
pmu

( )
( )

( , )
N

r i
r i

J i i
                          (44) 

(scada)
pmu
(scada)
pmu

0, ( ) threshold
( )

1, ( ) threshold
N

N

r i
i

r i


   
.                (45)�

Compared to tele-measurement, the estimated PMU 
measurements (scada)

pmuẑ  are not sufficiently accurate. 

Furthermore, as shown in (14) and (15), the covariance matrix 

TABLE II 
DIAGNOSIS OF BAD DATA 

 Bad Data Indication Diagnosis 

1 sum( ) 0 & sum( ) 0    No BD 

2 sum( ) 0 & sum( ) 0    BD in 
scada

z  (all of these BD are in 

the PMU-unobservable area) 

3 sum( ) 0 & sum( ) 0    BD in 
scada

z  (some/all of these BD 

are in the PMU-observable area) 

4 sum( ) 0 & sum( ) 0    BD in PMU measurements 
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r
PMUR  is contaminated if there are BD in PMU measurements 

and therefore cannot be used to correct the BD in the hybrid 
estimator [10] and the alternative estimator [13] mentioned in 
the next section. Thus, instead of replacing the BD by their 
estimates obtained in (40), the spurious PMU measurements 
flagged by the vector γ are deleted all at once. The block 
diagram depicted in Fig. 1 represents the proposed SE and BD 
processing scheme. The PMU-based SE and the first stage of 
SCADA-based SE are processed in parallel. 

 

D. Second and Third Stages of SCADA-Based SE  

So far, we can confirm no BD in the SCADA measurements. 
The state vector is computed through the second and third 
stages of SCADA-based SE as follows. 

To obtain a new vector u that is, in turn, linearly related to the 
conventional state vector, an explicit nonlinear transformation, 
shown in (46), is applied to the estimate y provided by the first 
stage of SCADA-based SE [21]: 

( )uu f y .                                     (46)�

The components of vector u, 

 i ij iju    ,                               (47)�

can be explicitly related to those of vector y as follows: 
lni iU                                         (48)�

 2 2lnij ij ijK L                                 (49)�

 arctanij ij ijL K  .                           (50)�

From the above nonlinear relationships (48)-(50), the 
( 2 ) ( 2 )n l n l    Jacobian uF u y    is evaluated at 

(scada)ˆy y , and its components are given as follows: 

1i i iU U                                    (51)�

2 2

2 21ij ij ij ij ij ij

ij ij ij ij ij ijij ij

K L K L

K L L KK L

 
 
      

          
.     (52)�

Then, the error covariance matrix of u is calculated as follows: 
(scada) T

u u y uR F R F .                              (53)�

In the final stage, the state vector s is slightly modified in 
such a way that u is a linear function thereof. For this purpose, u 
and s in blocked form are expressed as 

T T T T T T T[ ] ; [ ]b bu s       

where the subscript “b” denotes the set of branch variables, and 
logarithmic version ζ is chosen as the state rather than the 
ordinary voltage magnitude. Then, the linear measurement 
model in blocked form is given by 

T

T

0

0

0

u b u

b

I

u Ds e S e

N









                        

      (54)�

where S is the branch-to-node incidence matrix and N is a 
reduced matrix obtained by omitting the reference phase angle 
in S. The WLS estimate ŝ and its error covariance matrix can be 
computed as follows: 

1 T 1
dˆ ˆus G D R u                                    (55) 

1
dsR G                                         (56)�

where T 1
d uG D R D  is the gain matrix and û  is obtained 

from (47)-(50). Once ζ in ŝ  is available, voltage magnitude 
0.5 exp( )V   can be readily obtained. Thus, the relationship 

between incremental representation of the state vector in polar 
form T T T

p [ ]x V   and the state vector in (54) is given by 

p

0.5exp( )
x

V
x F s

I

 
 

      
               

           (57) 

where Jacobian 
xF x s    is evaluated at ˆs s . The error 

covariance matrix of px , p
SCADAR , is then 

p T
SCADA x s xR F R F .                              (58) 

To formulate the fusion step, px̂  should be transformed to 

achieve the state vector in rectangular coordinates (scada)x̂ . 
Meanwhile, the error covariance matrix of (scada)x̂  is given by 

 T(scada) p
SCADA SCADA SCADAxR T R T                       (59) 

where rotation matrix SCADAT  is similar to that in (15) but 

different in detail and size. 

E. Fusion of SCADA- and PMU-Based Estimates 

The final state estimate, (final)x , can be computed as [6] 
(final) (scada) (pmu)

1 2ˆ ˆ ˆx W x W x                        (60) 

where the weights in the above equation are given by 

  1(pmu) (scada) (pmu)
1 x x xW R R R


                      (61) 

  1(scada) (scada) (pmu)
2 x x xW R R R


  .                  (62) 

As mentioned in Section II-B, large variances are assigned to 
the PMU-unobservable states, so the estimates provided for 
those states in PMU-based SE receive very small weights. The 
corresponding SCADA-based estimates eventually prevail at 
the fusion step and the final estimates will not be contaminated 
by inaccurate PMU-unobservable states. 

    
Fig. 1.  Architecture of proposed SE and BD processing scheme. 
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III. SIMULATION RESULTS 

In this section, the simulation results corresponding to the 
IEEE 14-, 30-, 57-, 118-, and 300-bus test systems [25] are 
presented and discussed. Four distinct estimators are employed 
as references to evaluate the proposed fast SE method (FSE) in 
terms of solution accuracy and computational effort: a hybrid 
estimator (HSE) [10], a conventional SCADA-based estimator 
(SSE) [2], a bilinear SCADA-based estimator (BSE) [21], and 
an alternative estimator (ASE) developed in [13]. SSE and BSE 
only use the SCADA measurements, while the other three 
estimators integrate data from both the SCADA system and 
PMUs. Specifically, instead of performing the well-known 
Gauss-Newton iterative scheme in SSE [2], BSE is composed 
of two WLS linear models and a nonlinear explicit 
transformation in between [21]. Moreover, in the HSE 
formulation, PMU and SCADA measurements are 
simultaneously processed in a single non-linear WLS estimator 
[10], but ASE uses the PMU measurements through a linear 
post-processing step after obtaining the results of SSE [13]. So 
far, HSE is recognized as the best state estimator that 
incorporates both SCADA and PMU measurements in terms of 
accuracy [6], [7]. For SCADA measurements, unless otherwise 
noted, it is assumed that voltage measurements and power 
injections are taken at all buses, and power flows are taken 
across all branches (“from” terminal only). A PMU placed at a 
bus is assumed to measure the voltage phasor at that bus as well 
as the current phasors on all lines incident to that bus. The PMU 
placement configurations adopted in this study are documented 
in [4]. Table III gives the measurement types and the 
corresponding standard deviations used in this study. The 
variance of pseudo states used in Section II-B is 1×108. 

 

A. Assessment of Estimation Accuracy 

Figs. 2, 3, 4, and 5 illustrate the absolute estimation errors 
(averaged over 100 statistical trials) of five estimators 
associated with the estimates of the voltage phase angle and 
magnitude at each bus for the IEEE 14-bus, 30-bus, 57-bus, and 
118-bus test systems, respectively (results for the 300-bus 
system are omitted due to space limitations). The FSE plot 
clearly shows that the limited PMU measurements can greatly 
enhance the results of the bilinear SCADA-based estimator, 
labeled as BSE, through a fusion stage. Moreover, FSE 
estimation errors are almost coincident with those of HSE, 
which demonstrates that the pseudo states with large variances 
used in PMU-based SE are filtered out in the fusion procedure 
and do not affect the final estimation results. 

 

 

 
To assess the effect of measurement redundancy level on 

estimation accuracy, two measurement sets are considered: 1) a 
low redundancy case (L): voltage and power injection 
measurements at 90 percent of all buses, power flows across all 
branches (“from” terminal only), and the same PMU placement 
configurations as in [4]; and 2) a high redundancy level (H): 
power flows at both terminal nodes of all branches, voltage 
magnitudes and power injections at all buses, and one more 
PMU added at a randomly selected bus. In the low redundancy 
case, the voltage and power injection measurements are 
distributed evenly across the system. Table IV depicts the mean 
errors of voltage phase angle and magnitude calculated for all 

TABLE III 
STANDARD DEVIATIONS FOR SCADA AND PMU MEASUREMENTS 

SCADA measurement PMU measurements 

|V| 
Power 
flows 

Power 
injections 

|V| |I| Phase angle 

1% 2% 2% 0.1% 0.1% 0.0017 rad 
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                        (a)                                                          (b) 
Fig. 2.  Absolute estimation errors for the IEEE 14-bus system without BD: (a)
voltage phase angle error and (b) voltage magnitude error. 
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(b) 
Fig. 3.  Absolute estimation errors for the IEEE 30-bus system without BD: (a)
voltage phase angle error and (b) voltage magnitude error. 
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(b) 
Fig. 4.  Absolute estimation errors for the IEEE 57-bus system without BD: (a)
voltage phase angle error and (b) voltage magnitude error. 
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estimators at two measurement redundancy levels. As expected, 
the estimation errors are lower for the higher redundancy level. 
Moreover, the SSE and BSE only use the inaccurate SCADA 
measurements, so their mean estimation errors are larger than 
those of the other three estimators. Compared to SSE, accuracy 
of the BSE strategy may deteriorate with a decrease in SCADA 
measurement redundancy level. However, the numerical 
indices computed for the five networks demonstrate the same 
accuracy performance as the FSE and HSE strategies at two 
measurements redundancy levels. In addition, as described in 
[13], the ASE can provide estimates with the same accuracy as 
those obtained by the HSE strategy. 

 
 
The absolute estimation errors of the five estimators when 

four bad SCADA measurements in the PMU-observable area 
are introduced in the IEEE 30-bus test system are shown in Fig. 
6. Compared to the voltage phase angle and magnitude errors of 
SSE without BD, the accuracy performance of the SSE and 
BSE deteriorate at different levels due to the bad SCADA 

measurements. However, because these BD are located in the 
PMU-observable area, the results achieved by the HSE, FSE, 
and ASE strategies are barely distinguishable from the best one, 
i.e., HSE without BD. 

 
Furthermore, the voltage phase angle and magnitude errors 

derived from five estimators when four bad SCADA 
measurements (voltage magnitudes V1 and V5, active power 
flow P3-4, and active power injection P13) in the 
PMU-unobservable area are introduced in the IEEE 30-bus 
system are depicted in Fig. 7. Similar to what was observed in 
Fig. 6, the SSE and BSE strategies cannot eliminate the 
detrimental effect of BD. As shown in Fig. 7(a), the phase angle 
estimate of bus 13 computed from HSE, FSE, and ASE cannot 
achieve the same accuracy level when no BD occurs because of 
the bad active power injection measurement P13 located in 
PMU-unobservable area. 

 
The absolute estimation errors of three estimators when four 

PMU measurements (both the phase angles and magnitudes of 

TABLE IV 
ACCURACY PERFORMANCE OF FIVE ESTIMATORS 

Test system 
Error 
mean 

HSE FSE ASE SSE BSE 

IEEE 
14-bus 

L 
|V| 0.238 0.238 0.238 0.793 0.794 
θ 0.203 0.203 0.203 0.743 0.743 

H 
|V| 0.141 0.141 0.141 0.663 0.663 
θ 0.150 0.150 0.150 0.608 0.608 

IEEE 
30-bus 

L 
|V| 0.245 0.245 0.245 0.747 0.748 
θ 0.262 0.262 0.262 0.971 0.971 

H 
|V| 0.183 0.183 0.183 0.652 0.652 
θ 0.186 0.186 0.186 0.718 0.718 

IEEE 
57-bus 

L 
|V| 0.175 0.175 0.175 0.685 0.686 
θ 0.201 0.201 0.201 0.839 0.839 

H 
|V| 0.154 0.154 0.154 0.576 0.576 
θ 0.166 0.166 0.166 0.647 0.647 

IEEE 
118-bus 

L 
|V| 0.164 0.164 0.164 0.401 0.401 
θ 0.188 0.188 0.188 0.615 0.615 

H 
|V| 0.141 0.141 0.141 0.339 0.338 
θ 0.164 0.164 0.164 0.426 0.426 

IEEE 
300-bus 

L 
|V| 0.262 0.262 0.262 0.516 0.516 
θ 0.482 0.482 0.482 1.147 1.147 

H 
|V| 0.204 0.204 0.204 0.414 0.414 
θ 0.403 0.403 0.403 0.844 0.844 

All results are ×10-3. 
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(b) 

Fig. 6.  Absolute estimation errors for the IEEE 30-bus system with four bad
SCADA measurements in the PMU-observable area: (a) voltage phase angle
error and (b) voltage magnitude error. 
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(b) 

Fig. 7.  Absolute estimation errors for the IEEE 30-bus system with four bad
SCADA measurements in the PMU-unobservable area: (a) voltage phase angle
error and (b) voltage magnitude error. 
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(b) 
Fig. 5.  Absolute estimation errors for the IEEE 118-bus system without BD: (a)
voltage phase angle error and (b) voltage magnitude error. 
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voltage phasor 6V


 and current phasor 6 8I 


) are introduced in 

the 30-bus system are shown in Fig. 8. As shown in Fig. 1, the 
bad PMU measurements are deleted rather than corrected after 
being identified. Thus, the originally PMU observable states, 
i.e., the voltage phase angle and magnitude of bus 8, become 
unobservable after deleting 6V


 and 6 8I 


. For this reason, the 

voltage phase angle and magnitude errors of bus 8 derived from 
the HSE, ASE, and FSE strategies are much larger than those 
obtained with no bad PMU measurements. 

 
In summary, the results presented so far demonstrate that the 

proposed FSE strategy has almost the same estimation accuracy 
as HSE and ASE strategies for different BD scenarios. 

B. Assessment of Computational Effort 

All five estimators mentioned in Section III-A were coded in 
a MATLAB R2013a environment, and carried out on a 
3.3-GHz desktop with 4 GB memory. Except for sparse matrix 
methods, no special effort was made to optimize the program 
codes. For each test system, the proposed FSE was assessed by 
comparing it with the other estimators in terms of computing 
time under five cases: 
 Case 1: No BD;  
 Case 2: Five BD in SCADA measurements (all of these 

BD are in the PMU-observable area);  
 Case 3: Five BD in SCADA measurements (three BD are 

in the PMU-observable area and two BD are in the 
PMU-unobservable area); 

 Case 4: Five BD in SCADA measurements (all of these 
BD are in the PMU-unobservable area); and 

 Case 5: Four BD, i.e., two bad voltage/current phasor 
measurements (both their phase angle and magnitude) in 
PMU measurements. 

In each case, 100 Monte Carlo simulations were executed 
with different Gaussian errors, and BD values were assigned to 
different measurements in each simulation run. The BD 
detection threshold adopted in this study for normalized 
residual tests is 3, i.e., 99.7% confidence level. Because the 
PMU-based estimator and the first stage of the SCADA-based 

estimator constitute separate modules and process distinct 
measurement sets, it is reasonable to consider a parallelization 
of these two processes (Fig. 1). Accordingly, if tPMU, tfusion, t1, t2, 
and t3 denote the execution time of PMU-based SE, fusion stage, 
and the first, second, and third stages of SCADA-based SE, 
respectively, then the computing time for the FSE strategy, tFSE, 
can be derived as follows: 

FSE 1 PMU 2 3 fusionmax( , )t t t t t t                     (63)�

Table V provides the computing time for each individual 
stage of the FSE strategy as well as the total execution time for 
Case 1. For the IEEE 14-bus and 30-bus systems, although the 
PMU-based SE and the first stage of SCADA-based SE are 
both linear, and a larger number of measurements are processed 
in the latter, tPMU > t1 due to the additional calculation of the 
PMU measurement vector in rectangular coordinates as well as 
its error covariance matrix. With growing network size, t1 
increases considerably and even takes up a much larger 
proportion in tFSE; this is expected due to the sharp rise in the 
number of SCADA measurements. 

 
Table VI presents the computing time of five estimators 

under five cases for each test system, in which tHSE, tFSE, tASE, 
tSSE, and tBSE represent the execution times of the HSE, FSE, 
ASE, SSE, and BSE strategies, respectively. The SSE and BSE 
use only SCADA measurements. When there are no BD (Case 
1), the speedup achieved by BSE, defined as tSSE/tBSE, ranges 
from 2.7 to 3.8, with higher values obtained for larger networks. 
The speedup values, ranging from 3.6 to 5.4, are obtained when 
five BD occur in the SCADA measurements (Cases 2-4). This 
can be explained as follows: although BD in these two 
estimators are identified and corrected one-by-one, the 
re-estimation step in BSE is linear and can significantly reduce 
the required computing time. The other three estimators, i.e., 
HSE, FSE, and ASE, deal with both SCADA and PMU 
measurements. The proposed FSE methodology has superior 
computational performance, resulting in up to 3.4~4.7 and 
1.8~2.8 orders of implementation time reduction compared to 
HSE and ASE, respectively, for the five test systems under 
Case 1. For the cases with bad measurements, the resulting 
speedups, defined as tHSE/tFSE and tASE/tFSE, are remarkably high 
(from 4.9 to 14.2 and 2.0 to 6.5, respectively). In Case 4, all five 
bad SCADA measurements are in the PMU-unobservable area, 
so these BD are identified and eliminated one-by-one in the 
FSE. On the contrary, the same amount of BD in Case 2 can be 
dealt with all at once, and is why the computing time of the FSE 
for Case 2 is much less than for Case 4. Before BD processing, 
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Fig. 8.  Absolute estimation errors for IEEE 30-bus system with four bad PMU
measurements: (a) voltage phase angle error and (b) voltage magnitude error. 

TABLE V 
COMPUTING TIME (MS) FOR FSE STRATEGY WITHOUT BD 

Test 
System 

t1 tPMU t2 t3 tfusion tFSE 

IEEE 
14-bus 

0.3 0.6 0.26 0.26 0.4 1.52 

IEEE 
30-bus 

0.7 1.1 0.5 0.5 0.8 2.9 

IEEE 
57-bus 

3.0 2.9 0.5 0.8 2.1 6.4 

IEEE 
118-bus 

16.2 3.9 0.7 1.7 8.2 26.8 

IEEE 
300-bus 

51.8 26.2 1.2 9.6 91.3 153.9 
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the estimates derived from the HSE for Case 2 are more 
accurate than for Case 4 because the detrimental effect of bad 
SCADA measurements in the PMU-observable area is 
weakened by the accurate PMU measurements. Moreover, a 
hot-start execution is implemented in the re-estimation step of 
BD processing for the HSE solution. Thus, compared to Case 4, 
the average number of iterations in the re-estimation step in 
Case 2 can be significantly reduced, and its execution time 
decreases accordingly. However, for each test system, the ASE 
solution in Cases 2-4 takes almost the same execution time. In 
addition to dealing with a smaller BD set, HSE and FSE in Case 
5 omit the BD correction step, which gives rise to a shorter 
implementation time than for Cases 2-4. It is worth mentioning 
that the execution time of ASE in Case 5 is about 2.5-fold less 
compared to Cases 2-4 for the five test systems because the 
re-estimation step in the former case is non-iterative. 

 
To further demonstrate the superiority of computational 

performance of the proposed FSE, the average number of 
megaflops (floating-point operations × 106) of five estimators 
under five cases for IEEE 30- and 118-bus systems are 
calculated using a FLOPs counter [26] and depicted in Table 
VII. Compared to SSE, the linear re-estimation step in BSE 
leads to a significant reduction in the number of megaflops. 
Moreover, the number of megaflops required by ASE increases 
rapidly in the presence of five bad SCADA measurements. In 
addition, comparing megaflops in Cases 1 and 5 shows that the 
bad PMU measurements have a far greater impact on the 
computational effort for HSE than for FSE, with a 3- to 4-fold 
megaflops increase for HSE and only a very small increase for 
FSE. This is because the bad PMU measurements with large 
weights can seriously affect the accuracy of the estimates 
obtained from HSE before BD processing and the required 
iteration number in the following re-estimation step will be 

sharply increased, while bad PMU measurements in FSE can be 
eliminated all at once. It is worth mentioning that, as shown in 
Table VI, the computing time of FSE in Case 2 for IEEE 30- or 
118-bus systems is almost equal to or less than that of ASE and 
SSE in Case 1, but the corresponding megaflops illustrated in 
Table VII almost triple. This demonstrates the parallelism 
degree of the proposed FSE strategy is higher than that of ASE 
and SSE. Thus, FSE can take more advantage of the high 
performance parallel processors (e.g., field-programmable gate 
arrays [27] and graphics processing units [28]) that have 
experienced rapid development in the past few years. 

 

IV. CONCLUSIONS 

In this paper, we present a fast algorithm for combining 
SCADA and insufficient PMU measurements in state 
estimation. Five test systems, i.e., IEEE 14-bus, 30-bus, 57-bus, 
118-bus and 300-bus systems, are employed to assess the 
proposed estimator under various BD scenarios. Simulation 
results show that the proposed estimator takes much less 
computing time compared to existing approaches, especially 
for large-scale networks with multiple bad SCADA 
measurements in the PMU-observable area, and can provide 
almost the same estimation accuracy as the HSE estimator. 
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TABLE VI 
COMPUTATIONAL EFFORT OF FIVE ESTIMATORS UNDER FIVE CASES 
Test 

System 
Case 

Computing Time (ms) 
tHSE tFSE tASE tSSE tBSE 

IEEE 
14-bus 

1 5.20 1.52 2.81 2.20 0.82 
2 19.3 3.1 13.4 12.7 3.4 
3 22.9 3.6 13.3 12.5 3.5 
4 25.5 4.0 13.4 12.6 3.5 
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TABLE VII 
NUMBER OF MEGAFLOPS OF FIVE ESTIMATORS UNDER FIVE CASES 
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System 
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Number of Megaflops 

HSE FSE ASE SSE BSE 

IEEE 
30-bus 
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5 20464 1008 2661 - - 
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