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Abstract--This paper proposes the application of information gap 

decision theory (IGDT) to the design of robust wide-area power 

system stabilizers (WPSSs) with consideration of wind farm (WF) 

power outputs variations and transmission line outages. Ac-

cording to IGDT, an optimization problem is constructed to tune 

WPSS parameters. Then, the derived optimal WPSSs can 

achieve explicit and favorable robustness to ensure the required 

damping control effects on the inter-area oscillations over a 

maximum variation range of WF steady-state power outputs in 

normal and emergent operating conditions. Moreover, with the 

intent of using the excellent global searching capability of parti-

cle swarm optimization (PSO), a customized PSO algorithm is 

proposed to efficiently solve the resulting highly nonlinear pro-

gramming problem. Finally, simulations are carried out on a 

modified New England (10-Machine 39-Bus) system to validate 

the efficiency of the IGDT-based design method. The derived 

WPSSs exhibit expected robustness with respect to the wind 

power variations and transmission line outages. 

Index Terms--Information gap decision theory, wide-area 

power system stabilizers, wind power, particle swarm algorithm. 

I. INTRODUCTION 

OWER system operation and control are faced with in-

creasing challenges owing to the high penetration of wind 

power. In particular, wind power integration apparently com-

plicates the small-signal stability in power systems. For ex-

ample, when doubly-fed induction generators (DFIGs) with 

primary power control strategies are employed to harness wind 

resources, their impacts on power system electromechanical 

oscillations are debatable and depend on several factors, in-

cluding the location of the wind turbines (WTs), the level of 

wind power penetration, and so on [1]-[5]. But, recent studies 

show that DFIG-based WTs can be supplementarily controlled 

to provide additional damping to power system electrome-

chanical dynamics [6]-[10]. For example, conventional power 

system stabilizers (PSSs) are installed in DFIGs in [6] and 

tuned by the phase compensation technique to damp low fre-

quency power oscillations. Moreover, [7] studies the effec-

tiveness of active and reactive power modulations for con-

trolling the modes of electromechanical oscillations. A fairly 
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big focus in this research area has also been placed on the 

robustness of power system damping control with integration 

of variable wind power. 

Due to the variability nature of wind power, the operating 

point of a power system can vary within quite a large range. 

Thus, damping controllers designed for nominal operating 

points may be unable to suppress inter-area oscillations oc-

curring at other points over this range. Reference [11] attempts 

to consolidate damping controller robustness by considering 

different penetration levels of wind power. Analogously, the 

nominal operating points employed for damping control de-

sign are generated in [12] by increasing or decreasing all wind 

farm (WF) power outputs simultaneously, with the same in-

crements or decrements. Nevertheless, these studies do not 

explicitly address how to guarantee robust control effects far 

beyond the nominal operating points. The methodology pro-

posed in [13] could be theoretically regarded as having con-

sidered all operating points, i.e., the damping controllers are 

tuned to optimize the probability distributions of critical ei-

genvalues. Furthermore, [14] proposes an improved proba-

bilistic method that can more accurately compute the proba-

bilistic eigenvalues for subsequent control design. Although 

probabilistically robust damping controllers can be synthe-

sized by the above methods, one common premise is that the 

probability density functions (PDF) of all WF power outputs 

must be available in advance. 

Information gap decision theory (IGDT), developed in the 

1980s, is a non-probabilistic and robustness-oriented deci-

sion-making theory in uncertain environments [15]. As IGDT 

can reach the most robust decision with quite low requirements 

for prior knowledge of the uncertainties, it has received in-

creasing attention in recent years from electric power engi-

neers whose aim is the economical operation of power systems 

with uncertain renewable energy generations and loads, e.g., 

optimizing power flow issues of wind-integrated power sys-

tems [16], optimizing combinations of supply sources from 

power markets with uncertain electricity price [17], maxim-

izing generation company profits considering random failures 

of generators [18], and so on. However, few studies have 

considered the application of IGDT to power system dynamics 

control. 

This paper is a first attempt to apply IGDT to small signal 

stability control of power systems. Specifically, wide-area 

power system stabilizers (WPSSs) are employed to damp the 

inter-area oscillations of power systems which are impacted by 

wide operating point drifting due to integration of wind power 
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and risk of losing transmission lines. According to the intro-

duction of IGDT, the design of the WPSSs is based on the 

solution to a formulated optimization problem with consider-

ation of normal as well as emergent operating conditions (i.e. 

transmission line outages). Specifically, in each condition, the 

WPSSs with optimized parameters will maximize the variation 

region of operating points in which the inter-area oscillations 

can be satisfactorily suppressed. Thus, compared to H∞/H2 

norms-based robustness concepts [19], the WPSS robustness 

in this paper is direct and explicitly understandable, and also 

enhanced to the highest level by the optimized parameters. 

Moreover, deriving the robust WPSSs requires little infor-

mation about the wind power’s probability distribution. In 

particular, a customized particle swarm optimization (PSO) 

algorithm that preserves the global searching capability of the 

standard PSO is proposed to solve the above optimization 

problem in a computationally efficient manner.  

The remainder of the paper is organized as follows. Section 

II introduces IGDT in detail. Section III presents the optimi-

zation problem to tune the WPSSs based on IGDT. The cus-

tomized PSO is depicted in Section IV. Simulations are pro-

vided in Section V, and Section VI concludes the paper. 

II. INFORMATION GAP DECISION THEORY 

IGDT is not a technological theory but a methodology with 

a domain of relevance, because it focuses on the disparity 

between what is known and what could be known [15]. One 

pivotal difference between IGDT and other decision theories is 

that IGDT models uncertainties based on the information gap, 

or the interval between the expected (known) value and the 

actual value, rather than probability. So, IGDT can model 

uncertainties in cases with a severe lack of information. 

Moreover, one significant application of IGDT is to help de-

cision makers make robust decisions under uncertain circum-

stances. Here, robustness denotes the requirements on the 

system’s immunity against uncertainties. So, IGDT proposes a 

specific function (or index) used for quantitative measurement 

of the robustness. In this context, uncertainties model and 

robustness function act as two key components to formulate 

IGDT-based optimization problem from which robust decision 

can be derived. Thus, the following subsections will introduce 

the details of these important IGDT components. 

A. System Operation Performance 

The function R(q, u) is utilized to represent the operation 

performance of a system affected by the decision variable q 

and the uncertain variable u. For instance, R(q, u) could be the 

damping ratio of an electromechanical mode of concern in a 

power system. Therefore, the system is considered to be in 

normal operation when minimal performance requirements (rc) 

are satisfied, as follows: 

Objective: ( ), cR q u r                                  (1) 

( )

( )

, 0

, 0

H q u

G q u

=



                                 (2) 

where H(·) and G(·) are the other equality and inequality 

constraints of the system’s operation, respectively. 

B. Uncertainties Model 

The uncertain variable can be modeled in several forms by 

IGDT [15]. In this paper, the following uncertainties model is 

employed: 

 ( ),u U u                                         (3) 

( )  , : , 0U u u u u u  = −                      (4) 

where u̅ denotes the predefined expected value of the uncer-

tain variable and α measures the uncertain extent of u. Thus, 

this model considers that the deviation of u with respect to u̅ 

will not surpass 𝛼u̅. 

C. Robustness Function and Optimal Decision 

The robustness function in IGDT is literally described, as 

follows: 

αm(q) = max {𝛼: minimal requirements on system operation 

performance are always satisfied}      (5) 

Equation (5) means that the greatest robustness is reached 

when the system is immune to the maximum degree of un-

certainties with simultaneous satisfaction of the minimal re-

quirements with respect to system operation performance. 

Moreover, the robustness is also dependent on the decision 

variable (q). Thus, the optimal (robust) decision corresponds 

to q, which maximizes αm. 

Based on (1)-(5), the robust decision can be derived by 

solving the following optimization problem:
   

 

max   
q

                                       (6) 
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


  

               (7) 

The above optimization problem (6)-(7) is concise but clearly 

delivers the essence of IGDT: first, the robustness measure-

ment (or say, size of the robust region) α makes sense only 

when all the constraints (representing the minimal require-

ments on the operational performance of the system) hold for 

any uncertain variable u in the robust region U(α,u̅); then, the 

optimal decision (solution) q is the one which maximizes α. 

Indeed, (6)-(7) is a general and universal optimization 

which is known as the envelop-bound model in the IGDT 

family. A number of literatures have shown that the most ef-

fective and efficient way of applying IGDT in a specific 

problem is to map the IGDT components to the concrete ob-

jects of this problem [16]-[18]. Then, the optimization solved 

for the optimal decision can be formulated according to the 

IGDT model, such as the envelop-bound model. Hence, this 

paper will follow this procedure to derive an IGDT-based op-

timization issue which is used to tune wide-area damping 

controllers.  



 3 

III. DESIGNING WPSSS BASED ON IGDT 

Uncertainties in WF power outputs in the steady state may 

influence the small-signal stability of a system by altering the 

system’s power flow. Therefore, a novel method based on 

IGDT is proposed to design robust WPSSs for suppression of 

inter-area oscillations in power systems with considerable 

operating point drifts due to wind power and system parameter 

changes. 

A. Preliminaries for Design 

The closed-loop structure of a power system is shown in 

Fig. 1, where the measured signal y is used as input signal of 

the feedback control system (K(s)) which generates the control 

input signal uwpss to control the power system. The nonlinear 

model of the closed-loop system can be linearized around an 

operating point. Hence, the eigenvalues of the state matrix 

derived from the linearized model indicate the small-signal 

stability of the system at this point. Specifically, the structure 

(Fig. 1) of the WPSSs used in this study consists of the tradi-

tional phase lead-lag blocks with three tunable parameters 

(gain K, time constants T1, T2) and a washout block with a 

fixed time constant Tw. Above three tunable parameters can 

markedly influence the electromechanical oscillation modes of 

concern.  

It is assumed that Nt traditional synchronous generators and 

Nw WFs are connected to the system; their steady-state power 

outputs are represented by p
t1

,  p
t2

, …,p
tNt

 and p
w1

,  p
w2

, …, 

 p
wNw

, respectively. At a nominal operating point, the WF 

power outputs are assumed to be the expected values (p̅
w1

,  p̅
w2

, 

…, p̅
wNw

). However, as mentioned, the WF practical power 

outputs in the steady state might deviate from their expected 

values. Thus, the conventional generators would also change 

their power outputs from scheduled values at the nominal op-

erating point in order to maintain the generation-load balance 

of the whole system. This addresses the operating point shift 

caused by the wind power variation, which consequently af-

fects the small-signal stability (eigenvalues) of the system. 

According to the above discussion, the eigenvalues (modes) 

of the closed-loop system are determined by the WPSS pa-

rameters and the WF steady-state power outputs, which can be 

mathematically expressed as follows: 

( ),i iλ f= S X         i=1, 2, …, Na     (8) 

where λi denotes the ith interested mode; Na is the number of 

such modes; fi(·) is a highly nonlinear function; X is the vector 

consisting of the adjustable parameters of the WPSSs; and S is 

the vector defined as follows: 

Ww1 w2 wN, ,...,p p p =  S                       (9) 

A large number of approaches to damping power system 

electromechanical oscillations of inter-area modes are based 

on properly placing the eigenvalues of closed-loop systems in 

the complex plane [11]-[13]. Hence, the desired WPSSs (X) 

should consistently work well to meet prespecified placements 

of all λi when the uncertain WPG S varies in a region as large 

as possible. Obviously, this requirement on designing WPSSs 

exactly matches the philosophy of IGDT. Therefore, this paper 

follows the procedure introduced at the end of Section II to 

apply IGDT for the design of WPSSs. In particular, the con-

crete IGDT components relevant to this damping control 

problem are prepared. For example, the requirements on ei-

genvalue placement represent the minimal system perfor-

mance requirements. Hence, before constructing the specific 

optimization problem according to (6)-(7), these IGDT com-

ponents are introduced first in the following subsections.  
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Fig. 1.  A closed-loop power system 

B. Requirements on Eigenvalue Placement to Suppress In-

ter-area Oscillations 

To damp the inter-area oscillations, the most direct objec-

tive for eigenvalue placement-based control design is to move 

the inter-area modes to the region with satisfactory damping in 

the complex plane. Besides the nominal operating condition, 

system damping levels under the emergent operating condi-

tions (e.g. transmission line outages) are also considered. Thus, 

this objective can be expressed in terms of the damping ratio, 

as follows: 

Objective: ( ) ( )

_ spec

n n

i iξ ξ   n=1, 2, …, Ns and i=1, 2, …, Na
(n) (1

0) 

where Ns denotes the number of operating conditions consid-

ered during the design of WPSSs; Na
(n) is the number of the 

targeted oscillation modes in the nth operating condition and 

they are successively numbered from 1 to Na
(n); and ξ is the 

damping ratio of λ with the following definition: 

2 2

σ
ξ

σ ω
= −

+
                                   (11) 

where σ and ω are the real and imaginary parts, respectively, of 

λ; and ξi_spec
(n)

 is the prespecified acceptable damping ratio of 

λi
(n)

. 

In addition to the requirements on the damping ratios of the 

inter-area modes, it is generally preferable that the frequencies 

of these electromechanical modes be only mildly affected by 

the damping controllers, because considerable frequency ex-

cursion may adversely influence the system transient stability. 

Thus, the following constraints on frequency changes nor-

mally hold for tuning parameters of the damping controllers: 
( ) ( ) ( ) ( )

_o _o

n n n n

i i i i   −                                (12) 

where ωi_o

(n)
 is the frequency of λi

(n)
 in the open-loop state and 

ρ
i

(n)
 indicates the allowable frequency changing ratio. 

Based on the above introductions, the inter-area oscillations 

are considered to have been feasibly suppressed by the WPSSs 

if the following requirements are satisfied: 

Objective: 
( ) ( )

_spec

n n

i iξ ξ                                (13a) 
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s.t. ( ) ( ) ( ) ( )

_o _o/n n n n

i i i iω ω ω ρ−                             (13b) 

n =1, 2, …, Ns and i=1, 2, …, Na
(n)          (13c) 

min max X XX                                      (13d) 

Where Xmax and Xmin denote the upper and lower boundaries of 

X, respectively. 

C. IGDT-Based Optimization for Tuning WPSS Parameters 

Section II described the structure of the robust decision 

based on IGDT ((3)-(4) and (6)-(7)). By matching (13) to this 

structure, the robust decision (optimization) of the WPSS pa-

rameters mentioned at the end of Subsection III-A can be 

formulated. In particular, a power system integrated with only 

two WFs (Nw=2) is taken as an example to demonstrate the 

optimization problem. So, these two WFs’ steady-state power 

outputs pw1 and pw2  are two uncertain variables and then 

handled by the uncertainties model in IGDT. Inspired by (3) 

and (4), a round region is constructed to depict the possible 

values (positions) of the two uncertain variables. According to 

the distribution characteristics of wind power, the operating 

point (pw1, pw2) corresponding to the two WFs’ power outputs 

is normally with a large probability to appear around the ex-

pectation point (p̅
w1

,  p̅
w2

). Therefore, if a robust round region 

is constructed and maximized using the expectation point as 

center, the occurring probability of the event that the required 

damping control effects are satisfied will be apparently en-

hanced. Thus, according to above explanations, the uncertain-

ties of wind power generation will be described by a round 

region, as follows: 

( ) ( )w1 w2 w1 w2 m, , ,p p U p p R                   (14) 

( ) ( ) ( ) ( ) 2 2

w1 w2 m w1 w2 w1 w1 w2 w2 m, , , : - -U p p R p p p p p p R= + 

(15) 

where Rm is the radius of the round region. Then, together with 

(13), the IGDT-based optimization for deriving the WPSS 

parameters (robust decision) can be built, as follows: 
sN

( ) ( )

m

1

max n n

s
X

n

R W R
=

=                         (16a) 

s.t. ( ) ( ) ( ) ( )

_o _o/n n n n

i i i iω ω ω ρ−                     (16b) 

( ) ( )

_spec

n n

i iξ ξ                                   (16c) 

( ) ( )( ) ( ) ( ) ( ) ( )

w1 w2 w1 w2 m, , ,n n n n np p U p p R                (16d) 

( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

w1 w2 m w1 w2 w1 w1 w2 w2 m, , , : - -n n n n n n n n n nU p p R p p p p p p R
 

= +  
 

 (16e) 

n =1, 2, …, Ns and i=1, 2, …, Na
(n)          (16f) 

min max X XX                                 (16g) 

where Rm
(n) is the radius of the round region in the nth operating 

condition; W(n) is the weight to indicate the relative priority of 

optimizing the performance of WPSSs in the nth operating 

condition; Rs is the weighted sum of Rm
(n) with respect to Ns 

considered operating conditions; p
w1

(n)
 and p

w2

(n)
 are the power 

outputs of the two WFs, respectively, in the nth operating 

condition; p̅
w1
(n)  and p̅

w2
(n)  are the expected values of  p

w1

(n)
 and p

w2

(n)
, 

respectively. Highlighted here is that the above formulation 

procedure of (16) is also suitable for cases with more than two 

WFs. 

So far, the IGDT-based optimization (16) has already been 

formulated. Specifically, the optimal WPSSs (X) solved from 

(16) can also meet the specified damping control requirements 

in the considered emergent conditions. This indicates that the 

optimal WPSSs have favorable robustness not only against the 

regular wind power variations but also against emergent 

events such as transmission line outages. In addition, (16) is a 

highly nonlinear programming problem, and thus a novel 

method to solve it is proposed in the next section. 

IV. CUSTOMIZED PARTICLE SWARM OPTIMIZATION 

ALGORITHM  

Particle swarm optimization (PSO) is a self-educating op-

timization method inspired by bird flocking behavior that has 

been widely used to solve highly nonlinear optimization 

problems [20]. Thus, to harness the powerful searching capa-

bility of PSO and also avert the prohibitive computational 

burden, a customized PSO algorithm is proposed to solve the 

nonlinear programming problem of (16). Briefly, the custom-

ized PSO follows the standard PSO procedure but employs 

additional techniques to significantly relieve the intensity of 

the computation yet impart limited adverse impacts on the 

searching quality. 

A. Standard PSO Procedure 

The general procedure of the standard PSO is briefly out-

lined as follows: 

1) Generate a population including a number (Np) of parti-

cles: Xk

(j)
 and Vk

(j)
(k=1,2,…,Np) denote the position and up-

dating velocity, respectively, of the kth particle in the jth iter-

ation. The startup values (Xk

(0)
 and Vk

(0)
) of these terms are 

randomly produced within prespecified ranges. Here, each 

particle X denotes a possible solution of (16).  

2) Define a fitness function F(Xk

(j)
)  to indicate the quality of 

Xk

(j)
: the larger the fitness function, the better is Xk

(j)
. In this 

study, F(Xk

(j)
) can be simply selected to be Rs in (16a). Ac-

cordingly, let Pk be the best position of the kth particle among 

all positions where it has ever travelled, and let Pg be the best 

among all Pk (k=1,2,…,Np).  

3) Calculate Xk

(j+1)
 and Vk

(j+1)
 as follows: 

( ) ( )( 1) ( ) ( ) ( )

1 1 2 2 g

( +1) ( ) ( 1)

j j j j

k k k k k

j j j

k k k

e c r c r+

+

 = + − + −


= +

V V P X P X

X X V
   (17) 

where e is the inertial weight; c1and c2 are the learning factors; 

and r1and r2 are random numbers between 0 and 1. 

4) Evaluate the fitness function for all particles in the j+1 

iteration. Compare the current position of the kth particle with 

Pk, and reset Pk to be the better of the two. Then, select the best 

of all Pk and designate it as Pg. 

5) Terminate the computation if the number of iterations 

reaches a preset maximum or if other termination conditions 
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are met, and output Pg  as the result; otherwise, go to 3) and 

the iteration number increases by one. 

Additionally, successively executing Step 2 to Step 5 one 

time means one ‘iteration’ of PSO. 

B. Linearly Evaluated Fitness Function and its Refinement 

Take the nominal operating condition as an example, for a 

given particle, Fig. 2 schematically indicates the correspond-

ing robust region (confined by the outer irregular dotted line) 

around the nominal operating point (p̅
w1

,  p̅
w2

). In other words, 

(p
w1

,  p
w2

) could be any point in this region where the damping 

ratio and frequency shift of the mode satisfy the requirements. 

However, due to the tremendous difficulties in accurately 

calculating this region, a round region confined by a circle 

(thick line), which uses (p̅
w1

,  p̅
w2

) as its center and is inscribed 

with the real robust region’s contour, is employed as an ap-

proximation. In reality, the sizes of two WFs could be fairly 

different. In such case, p̅
w1

 will be much larger (or smaller) 

than  p̅
w2

 when pw1 (p̅w1
) and pw2 ( p̅w2

) are used in the form of 

actual values or per-unit values with same basis. Thus, the 

derived maximum radius will be greatly constrained by the 

smaller one between p̅
w1

 and  p̅
w2

, and the round robust region 

will be very conservative in comparison to the real robust re-

gion. In order to avoid such unexpected result, pw1 (p̅w1
) and 

pw2 ( p̅w2
) are respectively normalized by their own WF’s ca-

pacity so that they become comparable even though the WFs’ 

capacities are very different. Thus, the conservativeness of the 

round robust region induced by the large capacity differences 

of WFs can be obviously reduced.  

Although the round region is comparatively conservative, 

the robustness of the closed-loop system can be approximately 

represented by Rm which is the radius of the round region. 

However, acquiring an exact Rm is computationally expensive. 

This paper proposes the use of a linearly approximated but 

easily obtained Rm in each considered operating condition to 

indicate the quality of the particle. Moreover, if necessary (this 

matter will be addressed later in this section), more computa-

tions will be required to refine Rm for a much more accurate 

Rm. 
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Fig. 2.  Robust region and bisection searching  

1) Linear prediction of Rm  

With the open-loop power system and the damping con-

trollers described by the state-space models, the sensitivity of a 

closed-loop eigenvalue with respect to the wind power at the 

nominal operating point can be calculated, as follows [21]: 

( ) ( )

o o

c

w1 w11

ow1
c

w1

     

,: :,

      

i
p p

i i
p

p

−

  
    =
 
 

 

C

B 0



A B

U U
C

         (18) 

where Ao, Bo, and Co are the state, input, and output matrices, 

respectively, of the open-loop power system; Bc and Cc are the 

input and output matrices, respectively, of the synthesized 

damping controller; and U(:, i) denotes the ith column of the 

right eigenmatrix U of the closed-loop state matrix. Here, the 

partial derivatives of Ao, Bo, and Co with respect to pw1 at the 

nominal operating point can be calculated irrespective of the 

controller before the optimization, and then remain unchanged 

during the optimization. So, deriving ∂𝜆𝑖 ∂p
w1

⁄  for a particle 

requires the following additional calculations: composing Ac 

(state matrix of the controller), Bc, Cc, and the closed-loop 

state matrix based on the particle; computing the right eigen-

matrix U; and evaluating (18). Moreover, ∂λi ∂p
w2

⁄  can be 

analogously computed.  

The sensitivities of ξi with respect to the wind power at the 

nominal operating point are readily calculated based on the 

eigenvalues’ sensitivities. Therefore, ξi will descend fastest 

along the gradient direction represented by the angle β (Fig. 2), 

which is derived as follows: 

( )w1 w2

w2

w1 ,

/
arctan

/

i

i p p

ξ p
β

ξ p

  
 =

  
 

                     (19) 

The descending speed of ξi along this direction is computed as 

follows: 

( ) ( )
( )w1 w2

2 2

w1 w2
,

max

/ /i

i i
p p

ξ
ξ p ξ p

l


 =   +  
 

   (20) 

Hence, if ξi>ξi_spec is the only constraint, the radius Rm can be 

linearly estimated as follows: 

( )
_spec

m

max
/

i i

i

ξ ξ
R

ξ l

−
=

 

                             (21) 

In fact, a predicted Rm can be similarly derived for each con-

straint of (16c). Obviously, the smallest among all predictions 

is the desired Rm. 

2) Refining Rm by method of bisection 

Refining the raw Rm derived in the previous subsection will 

be required for certain particles. Therefore, the bisection 

method is employed in this paper to improve the accuracy of 

calculating Rm. The general principle of the bisection method 

is easily understood and briefly presented here based on Fig. 2. 

All points inside the circle C1 (inner dashed circle) with the 

radius equal to Rin are assumed to satisfy the constraints (16b) 

and (16c), while the circle C2 (outer dashed circle) with radius 

Rou embraces some points that violate the constraints. Then, a 

new circle Cn with radius Rnn=(Rin+Rou)/2 is generated: if the 



 6 

constraints hold over all points along this circle, the circle C1 

will expand to have a radius of Rnn (Rin=Rnn); otherwise, the 

circle C2 will shrink to have a radius of Rnn (Rou=Rnn). Next, 

based on the refreshed Rin and Rou, the circle Cn (Rnn) will be 

regenerated and the expanding or shrinking operation is also 

repeated. The above procedure will continue until the con-

vergence criterion is met (i.e., Rin, Rnn, and Rou are very close to 

each other).  

Two specific issues are necessarily addressed for the above 

searching method. First, Nb points that are uniformly distrib-

uted in the circle Rnn are evaluated. If the constraints (16b) and 

(16c) are satisfied for all of these points, then they are simply 

believed to hold along the whole circle. Second, a point lying 

in the gradient direction that violates the constraints can be 

easily found. So, the circle passing through this point is chosen 

as the starting C2, and the circle center in Fig. 2 as the starting 

C1. 

C. Customized PSO Algorithm 

The customized PSO algorithm inherits most of the stand-

ard PSO algorithm’s procedure and operations. However, its 

unique features are attributed to the following two modifica-

tions to the standard PSO. 

1) In each iteration, the approximated fitness functions of 

all particles are first evaluated based on the linear predictions 

of Rs. All particles are then ordered according to these ap-

proximations. The particles ranking in the first few places 

(with the number of Nc) of the queue are regarded as the 

high-quality candidates. Thus, if the linearly predicted Rs of 

these candidates are also larger than zero (indicating the con-

straints (16b) and (16c) are satisfied at the nominal operating 

point), the accuracies of their fitness functions will be up-

graded by refining Rs. 

2) If two particles’ fitness functions are both calculated by 

the linearly predicted Rs (or both by the refined Rs), the one 

with larger fitness function wins the competition between 

them; otherwise, the particle with the refined Rs-based fitness 

function defeats the particle with the fitness function calcu-

lated from the linearly predicted Rs. 

The flying or evolution process of the particles in PSO is 

the optimization process of the controllers’ parameters. Akin 

to the general mechanism of the evolutionary algorithms fam-

ily, PSO also uses the ‘best’ particle (individual) to lead the 

evolution direction of the swarm (population). Commonly, the 

‘best’ is determined by comparing individuals’ fitness func-

tions. Exactly evaluating the fitness function for each indi-

vidual ensures the absolute correct selection of the ‘best’ one, 

but is fairly time-consuming. Indeed, utilizing the approxi-

mated fitness function as an indicator and discarding most of 

the candidates can save remarkable computing time while 

causing little adverse impact with respect to determining the 

actual ‘best’ individual [14]. So, the customized PSO here 

extends this idea to estimate the robust region of the WPSS 

corresponding to each particle. Then, as a result of that esti-

mation, which requires a fairly limited time, the best particle 

can quite possibly be identified in a significantly reduced 

computation time because most of the inferior particles have 

been filtered out by the estimation. Therefore, the customized 

PSO is expected to perform analogously to the standard PSO 

to solve (16) but with much better computational efficiency.  

V. SIMULATIONS AND ANALYSIS 

In this section, the 10-Machine New England system [22] is 

amended to incorporate wind power for validating the 

IGDT-based design method. All computations are carried out 

with a desktop with a 2.5-GHz Intel Core i5-3210 CPU and 

4.00 GB of RAM. 

A. Modified New England System 

Fig. 3 shows the modified New England system, synchro-

nous generators SG2-SG10 are represented by 4th-order dy-

namic model [23] and all equipped with AVR of IEEE type II. 

SG1 which has fairly large inertia time constants represents an 

external equivalent system. In addition, two WFs with same 

rated capacity of 1400 MW are attached to Bus-40 and -41 

respectively, via short transmission lines. Moreover, the active 

power load of Bus-16 and -17 are increased by 700 MW, re-

spectively. Here, the WFs are aggregately represented by the 

DFIG-based WTs. Specifically speaking, 5th-order dynamic 

model [24] is used; the wind turbine together with the DFIG 

rotating mass is represented by a two-mass model to take into 

account the torsional mode associated with the shaft. Addi-

tionally, fast stator dynamics of the induction generator are 

normally neglected. The parameters of the DFIG and the state 

space equation of the open-loop power system are given in the 

Appendix. And, loads used in this study are modeled by con-

stant impedances. Moreover, expected power outputs of two 

WFs are assumed to be identical (700 MW) at all considered 

operating conditions. SGs and WFs together provide all power 

supply. Therefore, when the total wind power deviates from 

the expectation (1400 MW), some SGs are selected to com-

pensate the deviation for the balance between power supply 

and demand of power system. Here, SG4, SG9 and SG2 

commonly and proportionally compensate the deviation ac-

cording to their own capacities. Specifically, SG4 and SG9 are 

both supposed to compensate 35% of the deviation while SG2 

compensates the residual part. 

In addition, eigenvalues of the open-loop system in the 

nominal operating condition are calculated. There are nine 

electromechanical oscillation modes including six local modes 

and three inter-area modes. The traditional phase compensa-

tion method is employed to tune six local PSSs for suppressing 

local power oscillations. Moreover, three inter-area modes 

shown in Table I are poorly damped. Thus, WPSSs are em-

ployed to effectively improve the damping level of this system. 

Furthermore, based on residue analysis and calculation of 

participate factors, SG2, SG5 and SG9 are indicated as the 

most suitable places to install the WPSSs, aiming at the three 

inter-area modes, respectively. The active power carried by 

Lines #6-31, #20-34, and #1-2 represents the most effective 

feedback signals for the WPSSs associated with SG2, SG5, 

and SG9, respectively. Specifically, WPSSs associated with 

SG2 and SG5 actually use local signals. It is also tested that the 

desired damping control effects and robustness can be hardly 
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satisfied when only SG2 and SG5 are employed for installment 

of PSSs. Hence, another unit SG9 which should use the remote 

feedback signal is necessarily recruited to cooperate with SG2 

and SG5 for damping the inter-area modes. Besides the nom-

inal operating condition, seven more operating conditions 

which are listed in Table II are considered in this simulation. 

Particularly, the first four operating conditions in Table II are 

directly included in the IGDT-based model for the control 

design while the rest ones are used to verify the effectiveness 

of the proposed method. 
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Fig. 3.  Modified New England System 

B. Tuning WPSS Parameters 

In this study, the acceptable damping ratios of three in-

ter-area modes in the first four conditions (ξ𝑖_spec
(1)

, ξ𝑖_spec
(2)

, 

ξ𝑖_spec
(3)

, ξ𝑖_spec
(4)

) are set to be 0.09, 0.085, 0.085 and 0.085 re-

spectively; and the allowable frequency drift ratios of three 

inter-area modes (ρ
1

(n)
, ρ

2

(n)
, ρ

3

(n)
) are set to be 5%, 5% and 8%. 

The weights (W(1), W(2), W(3), W(4)) are set to be 1.0, 0.3, 0.3 and 

0.3. In addition to the proposed IGDT-based method, the 

WPSS parameters are also tuned by a comparative robust 

method that satisfies same damping ratio and frequency ex-

cursion ratio requirements as well as optimizes a devised H∞ 

index (μ) to enhance the nominal closed-loop system’s ro-

bustness against model uncertainties [19]. Specifically, based 

on the small gain theory [25], the H∞ index (μ) representing 

system robustness can be obtained by calculating the follow-

ing equation: 

( ) ( )( )
1

1 K s P s
−



= +                    (22) 

where P(s) and K(s) are transfer functions of the open-loop 

system and the feedback control system (WPSSs), respectively, 

under nominal operating condition; ∥∥∞ is the infinite norm of 

transfer function. It is known that larger μ is desired since it 

means a better robustness of the system. Accordingly, H∞ in-

dex based optimization model under nominal operating con-

dition is as follows: 

max
X

                                      (23a) 

s.t. 
_o _o/i i i iω ω ω ρ−    i=1, 2,…, Na  (23b) 

_speci iξ ξ                                 (23c) 

min max X XX                         (23d) 

In the study, R-WPSSs denote the WPSSs tuned by H∞ 

index based method while I-WPSSs represent those obtained 

by the IGDT-based method. The parameters of the WPSSs are 

listed in Table III. Specifically, the Rs acquired by solving the 

optimization problem (16) is 541 MW (here, actual values are 

used in order to make more practical sense), which means that 

(Rm
(1), Rm

(2), Rm
(3), Rm

(4)) are, respectively, 289 MW, 363 MW, 

223 MW and 254 MW. Among them, Rm
(1) (289 MW) denotes 

that the required damping control effects will be fulfilled for 

all points within the circle with a radius of 289 MW (Fig. 2) by 

I-WPSSs under the nominal operating condition. 

TABLE I 

INTER-AREA MODES OF OPEN-LOOP POWER SYSTEM  

Mode Eigenvalue (damping ratio) Generators 

1 -0.222±7.304i (3.04%) SG2, SG9, SG3 

2 -0.133±6.878i (1.93%) SG5, SG9, SG4 

3 -0.067±4.278i (1.57%) SG1, SG5, SG9 

TABLE II 

MULTIPLE OPERATING CONDITIONS OF MODIFIED NEW ENGLAND SYSTEM 

No. Description 

1 Nominal operating condition (expected wind power) 

2 Tie-line 15-16 is outage 

3 Tie-line 5-6 is outage 

4 Tie-line 4-14 is outage 

5 Tie-line 9-39 is outage 

6 WF1 outputs 905 MW and WF2 outputs 495 MW 

7 WF1 outputs 930 MW and WF2 outputs 150 MW 

8 
Tie-line 9-39 is outage, WF1 outputs 880MW and WF2 

outputs 340MW 

TABLE III 

PARAMETERS OF R-WPSSS AND I-WPSSS 

H∞-based method 

Generator K T1 T2 

SG2 0.2001 0.2349 0.0793 

SG5 0.0371 0.3330 0.0638 

SG9 0.0190 0.2070 0.1100 

IGDT-based method 

SG2 0.1103 0.4982 0.1111 
SG5 0.0177 0.5281 0.0654 
SG9 0.0145 0.4925 0.1295 

C. Effectiveness & Efficiency of Customized PSO Algorithm 

In the customized PSO algorithm, the number of particles in 

the population is set to be 100. Additionally, parameters e, c1 

and c2 are all set to be 0.2. As mentioned previously, the ef-

fectiveness of the customized PSO algorithm is directly asso-

ciated with the correctness of permuting the particles accord-

ing to the linearly predicted Rs. Therefore, the 10th, 20th, 30th, 

40th and 50th iterations during the PSO search are specifically 

recorded to demonstrate such permutation. All particles are 

ordered using the linearly predicted Rs and the refined Rs, re-

spectively, in the selected iterations. Table IV shows the par-

ticles ranking in the first five places for these two permutations. 

Clearly, the permutation based on linear predictions of Rs can 

capture the high-quality particles with fairly high correctness. 

This is also obvious evidence that the customized PSO has 

inherited the searching capabilities of the standard PSO. In 

particular, the best particles of these iteration population all 

occur in the first three places of the linear prediction-based 

permutation, which means that the customized PSO unneces-
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sarily spends a huge amount of time accurately evaluating a 

large number of particles (refining Rs) to identify the leading 

(best) one. Thus, in this study, Nc is chosen to be 4. Then, the 

average time cost of finishing all calculations in one iteration 

by the customized PSO algorithm is about 5 minutes. In con-

trast, such time cost will be totally unacceptable (more than 

one hour) if the fitness functions of all particles are accurately 

computed. Therefore, the customized PSO algorithm has quite 

feasible efficiency to deal with the optimization problem for 

the IGDT-based WPSSs design. Furthermore, the customized 

PSO algorithm needs about 40 iterations on average to reach a 

solution.  

TABLE IV 

VALIDATION OF ACCURACY OF PREDICTION METHOD 

Iteration Refined Linear Prediction Accuracy 

10 74 87 54 89 17 74 87 54 89 17 100% 

20 74 87 54 17 89 74 87 17 54 89 100% 

30 87 06 54 42 29 87 06 29 74 42 80% 

40 18 42 54 57 87 18 42 57 87 54 100% 

50 45 42 35 57 87 76 42 35 57 87 80% 

 

TABLE V 

EIGENVALUES OF INTER-AREA MODES IN FIVE OPERATING CONDITIONS 

No.  No-Controllers R-WPSSs I-WPSSs 

1 

-0.222±7.304i 

(3.04%) 

-0.133±6.878i 

(1.93%) 

-0.067±4.278i 

(15.66%) 

-0.824±7.154i 

(11.44%) 

-0.652±6.961i 

(9.33%) 

-0.402±4.285i 

(9.34%) 

-0.752±7.271i 

(10.29%) 

-0.837±6.683i 

(12.43%) 

-0.504±4.137i 

(12.09%) 

2 

-0.184±7.022i 

(2.62%) 

-0.171±6.549i 

(2.61%) 

-0.041±3.985i 

(1.03%) 

-0.537±7.046i 

(7.60%) 

-0.831±6.569i 

(12.55%) 

-0.375±3.984i 

(9.37%) 

-0.737±7.109i 

(10.31%) 

-0.963±6.475i 

(14.72%) 

-0.464±3.829i 

(12.03%) 

3 

-0.208±7.106i 

(2.93%) 

-0.135±6.870i 

(1.96%) 

-0.068±4.262i 

(1.59%) 

-0.555±7.015i 

(7.89%) 

-0.884±6.944i 

(12.63%) 

-0.401±4.270i 

(9.35%) 

-0.739±7.154i 

(10.27%) 

-0.879±6.681i 

(13.04%) 

-0.502±4.122i 

(12.09%) 

4 

-0.219±7.289i 

(2.30%) 

-0.131±6.861i 

(1.91%) 

-0.068±4.232i 

(1.61%) 

-0.858±7.138i 

(11.93%) 

-0.610±6.944i 

(8.75%) 

-0.403±4.236i 

(9.47%) 

-0.757±7.229i 

(10.41%) 

-0.832±6.685i 

(12.35%) 

-0.499±4.089i 

(12.11%) 

5 

-0.199±7.075i 

(2.81%) 

-0.132±6.829i 

(1.93%) 

0.066±3.366i 

(-1.96%) 

-0.479±7.075i 

(6.75%) 

-0.930±6.762i 

(13.63%) 

-0.331±3.409i 

(9.64%) 

-0.613±7.149i 

(8.54%) 

-0.951±6.527i 

(14.42%) 

-0.477±3.140i 

(15.02%) 

D. Robustness of WPSSs Designed by the IGDT-Based 

Method 

In this section, eigenvalue analysis and time domain simu-

lations are used to verify the control effects and robustness of 

I-WPSSs against system parameter changes (i.e. transmission 

line outages) and wind power variations. Modal analysis for 

the first five operating conditions (Table II) is carried out and 

Table V presents the resulted three inter-area modes. Obvi-

ously, I-WPSSs can guarantee that all these modes have sat-

isfactory damping ratios and frequency excursion ratios. In 

contrast, certain modes (e.g. the first mode associated with the 

emergent operating condition of No. 2) are not with the re-

quired damping ratio as R-WPSSs are installed. To further 

validate the robustness of I-WPSSs against system parameter 

changes, time-domain simulations are conducted with the 

emergent operating condition of No. 5. An instantaneous 

three-phase short-circuit fault occurring at Line #2-3 and 

lasting for 50ms is applied. The dynamics of the synchronous 

generators’ relative power angles are delineated in Fig. 4. Here, 

the relative power angle δ3-δ9 is the strongest signal with 

which to observe the first inter-area mode shown in Table I, 

while δ5-δ9 and δ1-δ5 are used to observe the second and third 

inter-area modes, respectively. It is observed in Fig. 4 that 

I-WPSSs can damp inter-area oscillations more rapidly than 

R-WPSSs. Above simulation results prove that I-WPSSs have 

better robustness than R-WPSSs when the system is subjected 

to transmission line outages. 
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Fig. 4.  Relative power angles under No. 5 emergent operation condition (solid 

line: I-WPSSs; dashed line: R-WPSSs; dotted line: no Controllers) 

The nominal and No. 2 emergent operating conditions are 

selected for validating the robustness of I-WPSSs against wind 

power variations. First, 5000 points are uniformly sampled 

within two round regions which have the same center at (700 

MW, 700 MW) but with the radiuses of, respectively, 296 MW 

and 363 MW. Here, each point in the round region corresponds 

to a wind power output scenario. Then, the eigenvalues of the 

closed-loop system with I-WPSSs and R-WPSSs, respectively, 

are calculated for all scenarios. Thus, Figs. 5(a), 5(b), 6(a), and 
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6(b) depict the distributions of the three inter-area modes in the 

complex plane, while the probability densities of these modes’ 

damping ratios are illustrated in Figs. 5(c), 5(d), 6(c), and 6(d). 

Clearly, the I-WPSSs can consistently drive the three in-

ter-area modes to the required area in the complex plane as the 

WF power outputs vary in the round region. This aligns with 

another observation for I-WPSSs (Fig. 5 (d)) that the proba-

bility densities are equal to zero if the modes’ damping ratios 

are less than 0.9. In contrast, Figs. 5 and 6 both demonstrate 

that the system controlled by R-WPSSs still has some poorly 

damped inter-area modes even when the WF power outputs are 

not beyond the round region. The above results lead to the 

conclusion that I-WPSSs have better robustness than 

R-WPSSs against wind power variations. 

-1 -0.8 -0.6 -0.4
-10

-5

0

5

10

Real Part

Im
a

g
in

a
ry

 P
a

rt

Real Part

(b)(a)

8 10 12 14
0

0.2

0.4

0.6

0.8
(c)

Damping Ratio (%)

9%ξ =

-1 -0.8 -0.6 -0.4
-10

-5

0

5

10

9%ξ =

(d)

Damping Ratio (%)

P
ro

b
a

b
il

it
y

8 10 12 14
0

0.1

0.2

0.3

0.4

 
Fig. 5.  Locus of inter-area modes and probability densities of damping ratios 

with varying wind power under nominal operating condition: (a) R-WPSSs; (b) 

I-WPSSs; (c) R-WPSSs; (d) I-WPSSs. 
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Fig. 6.  Locus of inter-area modes and probability densities of damping ratios 

with varying wind power under No. 2 emergent operating condition: (a) 

R-WPSSs; (b) I-WPSSs(c); R-WPSSs; (d) I-WPSSs. 

Specifically, three wind power scenarios as the power sys-

tem with nominal configuration are studied: The two WFs both 

output expected power (700MW) in Scenario 1 (No. 1 oper-

ating condition); Scenario 2 (No. 6 operating condition) is 

corresponding to a point in the boundary of the round region 

with a radius of 289 MW as mentioned in the previous para-

graph; and Scenario 3 (No. 7 operating condition) denotes an 

extreme point far beyond this round region. Table VI shows 

the three inter-area modes in the second and third scenarios, 

and their values in Scenario1 can be found in Table V. It can be 

observed that I-WPSSs outperform R-WPSSs in all these three 

scenarios, and the gap between their performances becomes 

considerable as the WF power outputs deviate further from 

their nominal values (i.e., the extreme Scenario 3). 

TABLE VI 

EIGENVALUES OF INTER-AREA MODES IN TWO WIND POWER SCENARIOS  

Scenario No-Controllers R-WPSSs I-WPSSs 

2 

-0.234±7.264i 

(3.22%) 

-0.983±7.188i 

(13.55%) 

-0.913±7.102i 

(12.75) 

-0.186±6.769i 

(2.75%) 

-0.542±6.765i 

(7.99%) 

-0.717±6.675i 

(10.68%) 

-0.039±4.301i 

(0.91%) 

-0.367±4.336i 

(8.43%) 

-0.514±4.181i 

(12.20%) 

3 

-0.250±7.252i 

(3.45%) 

-1.094±7.159i 

(15.11%) 

-1.088±7.009i 

(15.34%) 

-0.295±6.324i 

(4.66%) 

-0.558±6.239i 

(8.91%) 

-0.591±6.198i 

(9.49%) 

0.020±4.204i 

(-0.48%) 

-0.325±4.297i 

(7.5%) 

-0.590±4.102i 

(14.24%) 
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Fig. 7.  Relative power angles under Scenario 1 (solid line: I-WPSSs; dashed 

line: R-WPSSs; dotted line: no Controllers) 

Time domain simulations with the three wind power sce-

narios are carried out in Figs. (7)-(9). The dynamics dominated 

by these modes again confirm the satisfactory robustness of 

I-WPSSs, which rapidly annihilate the inter-area oscillations 

in all three scenarios. Furthermore, the R-WPSSs also ac-
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ceptably damp the inter-area oscillations in the first and second 

scenarios. Thus, the obvious degeneration of R-WPSS control 

effects in the third scenarios indicates that the robustness 

gained by only using the system’s information at the nominal 

point is locally effective but unable to withstand model un-

certainties varying over a large region. This justifies the 

IGDT-based design method, which uses the direct and explicit 

robustness index as the optimization objective.  
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Fig. 8.  Relative power angles under Scenario 2 (solid line: I-WPSSs; dashed 

line: R-WPSSs; dotted line: no Controllers) 

E. Comparison of Control Efforts Between I-WPSSs and 

R-WPSSs 

In this subsection, the superior performance of I-WPSSs 

with respect to R-WPSSs will be further justified by compar-

ing their control efforts. Particularly, this paper utilizes the 

integrated map under the envelop of a controller’ output curve 

over the simulation time to simply indicate the control effort of 

this controller. Therefore, a simple comparison is conducted as 

with the operating condition of No. 8 in Table II. The time 

domain simulation is performed with the same disturbance 

used previously and the control efforts of the damping con-

trollers are computed. Since there are three individual WPSSs 

installed with SG2, SG5 and SG9, respectively, their control 

efforts are correspondingly marked by Vss1, Vss2 and Vss3. Then, 

Fig. 10(a) compares the control efforts when the two compared 

design methods are respectively employed to tuning the 

WPSSs. It is seen that the values of Vss1 derived with the two 

design methods are quite close. In fact, analogous situation is 

also observed in Vss2 and Vss3. Moreover, the values of these 

control efforts can also be found in Appendix. All these results 

actually tell that I-WPSSs and R-WPSSs have very close 

control efforts. However, from the comparisons of damping 

ratios of the three inter-area modes in Fig. 10(b) and dynamic 

curves of the relative power angle in Fig. 11, it is also observed 

that I-WPSSs has better control performance than R-WPSSs. 

Consequently, the above comparison results are the direct 

evidence that I-WPSSs do not depend on unfair use of control 

efforts to win the competition with R-WPSSs, and its superior 

performance is derived through appropriately tuning the pa-

rameters by the proposed IGDT-based optimization method. 
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Fig. 9.  Relative power angles under Scenario 3 (solid line: I-WPSSs; dashed 

line: R-WPSSs; dotted line: no Controllers) 
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Fig. 10.  (a) Control efforts of R-WPSSs and I-WPSSs; (b) Damping ratios of 

three inter-are modes with R-WPSSs and I-WPSSs (M1: first inter-are mode; 

M2: second inter-are mode; M3: third inter-are mode). 

VI. CONCLUSION 

In this paper, IGDT is proposed to deal with the uncertain-

ties of WF steady-state power outputs and to design the robust 

WPSSs to suppress inter-area oscillations with consideration 

of WF power outputs variations and transmission line outages. 

Theoretically, in the normal or emergent conditions, WPSSs 

can fulfill the requirements to damp inter-area oscillations if 

the WF power outputs vary in a feasible range. Thus, by op-

timizing the WPSS parameters to maximize this feasible range 



 11 

via a formulated optimization problem constructed based on 

IGDT, robust WPSSs can be derived. Furthermore, the linear 

prediction technique of eigenvalues is employed to produce a 

customized PSO algorithm that efficiently finds a satisfactory 

optimization solution. Simulations of the modified New Eng-

land system confirm the effectiveness and robustness of the 

WPSSs designed using IGDT. 
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Fig. 11.  Relative power angles under No. 8 operating condition (solid line: 

I-WPSSs; dashed line: R-WPSSs; dotted line: no Controllers) 

APPENDIX 

A. Parameters of DIFG Model 

Parameters of DFIG-based WT [14]: WT radius = 35 m; 

Gear box ratio = 74; Rs = 0.00488; Rr = 0.00549; Xs = 0.09241; 

Xm = 3.95279; and H = 3.5s. 

B. State Space Equation of Open-loop System 

The sate space equation of open-loop power system is 

represented by equation (24), and corresponding state vector, 

input vector and output vector are as follows: 

o o o o c

o o o

 = +


=

X A X B u

Y C X
                               (24) 

where Xo is the state vector of the open loop system, and X0 is 

consisted of the state variables of δ, ω, e’d, e’q , vm, vr1, vr2, vf, 

θtw, ωt, ωr , ewd, and ewq: δ is the rotor angle of synchronous 

generator (SG); ω is the rotor speed of SG; e’ is the transient 

voltage of SG; ‘d’ or ‘q’ subscripts indicate that the relevant 

variables are d-axis or q-axis components, respectively; vm, vr1, 

vr2, and vf are the state variables associated with AVR of IEEE 

Type II;  θtw is the shaft twist angle of wind turbine;  ωt and ωr 

are the rotor speeds of wind turbine and DFIG, respectively; ew 

is the internally generated voltage of DFIG; uc is the control 

input vector of the open-loop power system which is consisted 

of supplementary excitation signals of the SGs engaging in the 

damping control; Yo is the output vector which is selected in 

this paper to be with signals of active power carried by 

transmission lines; Ao, Bo and Co are the state, input and output 

matrices, respectively, of the open-loop power system.  

C. Three Inter-are Modes of Closed-loop System under No. 8 

Operating Condition 

TABLE I 

EIGENVALUES OF INTER-AREA MODES UNDER NO. 8 OPERATING CONDITION 

Condition No-Controllers R-WPSSs I-WPSSs 

No.8 

-0.202±6.995i -0.983±6.890i -0.968±6.746i 

(2.88%) (14.10%) (14.21%) 

-0.226±6.591i -0.488±6.567i -0.625±6.546i 

(3.43%) (7.41%) (9.50%) 

0.142±3.376i 

(-4.20%) 

-0.245±3.440i 

(7.09%) 

-0.546±3.137i 

(17.13%) 

D. Control Efforts of R-WPSSs and I-WPSSs under No. 8 

Operating Condition 

TABLE II 

CONTROL EFFORTS OF R-WPSSS AND I-WPSSS UNDER NO. 8 OPERATING 

CONDITION 

Controllers R-WPSSs (p.u.) I-WPSSs (p.u.) 

1 0.2965 0.2839 

2 0.1289 0.1126 

3 0.0904 0.1089 
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