
   

Abstract—The inherent uncertainty in predicting wind power gener-

ation makes the operation and control of power systems very challeng-

ing. Probabilistic measurement of wind power uncertainty in the form 

of a reliable and sharp interval is of utmost importance, but construc-

tion of such high-quality prediction intervals (PIs) is difficult because 

wind power time series are non-stationary. In this paper, a framework 

based on the concept of bandwidth (BW) selection for a new and flexible 

kernel density estimator is proposed. Unlike previous related works, the 

proposed framework uses neither a cost function-based optimization 

problem nor point prediction results; rather, a diffusion-based kernel 

density estimator (DiE) is utilized to achieve high-quality PIs for non-

stationary wind power time series. Moreover, to adaptively capture the 

uncertainties of both the prediction model and wind power time series in 

different seasons, the DiE is equipped with a fuzzy inference system and 

a tri-level adaptation function. The proposed framework is also founded 

based on a parallel computing procedure to promote the computational 

efficiency for practical applications in power systems. Simulation results 

demonstrate the efficiency of the proposed framework compared to 

well-known conventional benchmarks using real wind power datasets 

from Canada and Spain.  

Index Terms— Kernel density estimation, prediction intervals, prob-

abilistic wind power prediction, wind power time series. 

I. NOMENCLATURE 

A. Functions  

𝜅(∙) Kernel function. 

𝜑(∙) Gaussian kernel function. 

𝑓𝑡(∙), �̂�𝑡(∙) Estimated PDF and CDF for subinterval 𝑡. 

𝛿(∙) Dirac delta function. 

𝜏(∙) Pilot bandwidth function. 

�̂�(∙) Plug-in estimator function. 

𝜎(∙) Diffusion coefficient function. 

𝝃(∙) Adaptation function. 

λ(∙) Fuzzy function. 

𝜇𝐿 , 𝜇𝑀 , 𝜇𝐻 Fuzzy membership functions. 

B. Parameters  

ℎ(∙)
∗  Optimal bandwidth. 

𝑋𝑖  𝑖𝑡ℎ wind power sample of variable 𝑥. 

𝑋𝑗  𝑗𝑡ℎ wind power sample of variable 𝑦. 

𝑁𝑠 Number of samples inside each subinterval. 

𝑁test Number of future test samples. 

𝑁 Total number of ELM training sets. 

𝑁lag Number of time lags. 

𝑁sub Number of subintervals. 

�̃� Number of ELM hidden nodes. 

1 − 𝛼 Nominal coverage probability of PIs. 

𝑚 Number of ELM outputs. 

 
This work was supported in part by the Natural Sciences and Engineering Re-

search Council (NSERC) of Canada and the Saskatchewan Power Corporation 

(SaskPower). Benyamin Khorramdel, C. Y. Chung, and Nima Safari are with the 

Department of Electrical and Computer Engineering, University of Saskatche-
wan, Saskatoon, SK S7N 5A9 Canada (e-mail: benyamin.khorramdel@usask.ca; 

c.y.chung@usask.ca; n.safari@usask.ca). G.  C.  D  Price is with   Operations – 

System Control Centre, SaskPower, Regina, SK S4P 0S1 (e-mail: 
gprice@saskpower.com). 

 

𝓌1,𝓌2 Adjusting parameters of fuzzy membership 

functions. 

C. Variables  

𝓉 Variable indicating time. 

𝑥 , 𝑦 Variables indicating wind power values. 

ℎ Bandwidth of kernel functions. 

𝛾 Bandwidth growth factor. 

�̅� Mean of samples inside each subinterval. 

𝑄𝑡

(𝛼𝑙), 𝑄𝑡
(𝛼𝑢)

 Lower and upper quantiles for subinterval 𝑡. 

D. Matrices & Vectors 

𝛃 Output weights matrix of ELM. 

𝐆     Output vector of ELM. 

𝐇 Input matrix of ELM. 

𝒙𝑖 , 𝒈𝑖 Input and output vectors of ELM as 𝑖𝑡ℎ train-

ing set. 

II. INTRODUCTION 

IND energy, one of the most widely used renewable energy 

sources around the world, brings huge uncertainty into power 

systems in a high penetration scenario, and thereby makes optimal 

decision-making problematic. This uncertainty originates from: (i) 

uncertainty in wind speed resulting from chaotic weather systems 

and (ii) nonlinear and uncertain characteristics of actual wind power 

curves. As such, wind power generation is uncertain and is repre-

sented by non-stationary time series [1]-[3]. Therefore, the predic-

tion of wind power, as an essential part of modern power systems, is 

challenging.  

Although diverse techniques have been proposed to reduce it, the 

unavoidable prediction error in point prediction approaches remains 

a problem that must be addressed [3]-[6]. The increasing penetration 

of wind power generation in existing power systems has resulted in 

the proposal of approaches to quantify wind power prediction (WPP) 

uncertainty, allowing power system operators to make optimal deci-

sions to mitigate prediction error. One of the most well-known and 

widely-used methods of uncertainty representation is a probabilistic 

prediction approach that estimates a probability density function 

(PDF) or an interval for the uncertainty of wind power generation 

prediction [7]-[18]. Compared to point prediction, probabilistic pre-

diction of future wind power generation provides much more mean-

ingful and beneficial information for various decision-making prob-

lems in power systems such as economic dispatch, reserve alloca-

tion, optimal sizing of energy storage systems, wind farm control, 

stochastic unit commitment, and frequency dynamics constrained 

unit commitment [19]-[28]. In this context, prediction intervals (PIs) 

with specific confidence levels (CLs) from 90 to 99% and certain 

prediction horizons from minutes to days can be efficiently used for 

optimal operation of power systems using three different optimiza-

tion strategies: robust optimization, interval optimization, and ad-

justable interval optimization [23]-[25]. 

Various PI construction approaches have been proposed to date; 

however, concerns regarding the quality of PIs remain. For example, 

lower upper bound estimation (LUBE) approach proposes a non-

linear and multi-objective function that should be minimized through 

heuristic optimization algorithms [7], [8]. It might be solved effi-
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ciently, but dealing with nonlinear and multi-objective functions is a 

challenging issue because they might decrease the computational 

efficiency and be entrapped in local minima for some highly volatile 

time series. The quantile regression (QR) approach is also based on 

the minimization of a nonlinear objective function that is usually 

solved with particle swarm optimization (PSO) or genetic algorithm 

[9], [10]. However, the objective function can be linearized to be 

efficiently solved using a linear programming (LP)-based 

optimization problem [11]. The bootstrap-based extreme learning 

machine (BELM) approach uses point prediction results and as-

sumes a standard Gaussian distribution for data noise and prediction 

model uncertainty [13]. Although BELM uses the excellent general-

ization ability and extremely low learning effort of ELM for single-

hidden layer feedforward neural networks (SLFNs), it depends on 

the type of bootstrap method and the number of replicates, which 

make it computationally unproductive for large datasets. Autoregres-

sive integrated moving average (ARIMA) as a classical time series-

based approach does not utilize neural networks and can be used for 

probabilistic prediction as well [6], [16]. Conditional kernel density 

estimation (KDE) techniques utilizing Nadaraya-Watson kernel 

smoother or joint PDF formulation are other methods of probabilis-

tic prediction. The main concern is the selection of a proper kernel 

function to avoid boundary effects and/or ignoring multi-modality, 

local uniformity, and long tail features of wind power PDFs [14], 

[15]. Furthermore, the bandwidth (BW) of these kernels is tradition-

ally selected with plug-in techniques [29]-[32]. Importantly, the 

performance of this techniques strongly depends on the point predic-

tion results. However, conditional density estimation using paramet-

ric distributions, i.e., versatile, truncated versatile, and beta distribu-

tions proposed for wind power PDF estimation, can be also used for 

PI construction [26]-[28]. A PI construction approach based on de-

composition of original time series into trend, cycle, and noise com-

ponents has also been proposed [16]. The first two components are 

predicted with deterministic approaches, and the lower/upper bounds 

of the noise component are provided by a probabilistic approach 

such as LUBE. Based on regular vine copulas, an advanced technol-

ogy is used in [18] to model the dependence structures among wind 

farms for probabilistic prediction. However, it requires large datasets 

because its probabilistic WPP is based on historical point forecasts 

and real measurements. 

In power systems with high penetration of wind power genera-

tion, an efficient probabilistic WPP approach is required to offer a 

highly reliable and sharp PI with low computational burden for prac-

tical applications. To achieve this goal, this paper focuses on a new 

nonparametric density estimation (NDE)-based approach. NDE is a 

very important tool for statistical analysis of power systems’ data, 

and has a great potential for efficiently estimating any statistical 

features such as multimodality, high or low skewness, local uni-

formity, local modes, and other structures in the distribution of the 

data that are of value [29]. This paper refers to KDE as the most 

well-known NDE approach with BW as an important parameter 

[30]. Despite the huge body of literature, KDE suffers from three 

main problems: (i) the use of normal reference rule as a preliminary 

assumption in conventional BW selection techniques (i.e., plug-in 

technique) contradicts the motivation for using NDE [31], [32], (ii) 

conventional KDE approaches result in a tendency to ignore the 

peaks and valleys of the true density [33], and (iii) boundary effects 

might lead to invalid densities [34]-[35]. Although these problems 

have been mitigated to some extent using more advanced estimators, 

e.g., balloon estimators, nearest neighbor estimators [33], [36], 

sample point adaptive estimators [29], and boundary kernel estima-

tors [37], these solutions are still unsatisfactory due to the high com-

putational burden and/or invalid densities. In the context of wind 

power density estimation, the above problems would lead to unsatis-

factory results mainly because wind power datasets are double-

bounded and presents special features that change over time.  

To address these problems, this paper uses a flexible density esti-

mator called the diffusion-based kernel density estimator (DiE), 

which is based on the smoothing properties of linear diffusion pro-

cesses [38]. A novel wind power PI construction framework is also 

proposed based on the DiE that can present highly reliable and sharp 

PIs. The proposed framework is formed based on a PDF estimation 

procedure over consecutive short time intervals (also referred to as 

subintervals) of wind power time series. Because PDFs can present 

complete information (e.g., mean, variance, lower/upper quantiles, 

etc.) of wind power samples (WPSs) inside each subinterval, they 

are highly beneficial for analyzing non-stationary wind power time 

series. After completing the PDF estimation procedure for each sub-

interval, lower/upper quantiles are obtained and stored in a database. 

To this end, a historical wind power dataset is initially subdivided 

into numerous subintervals to create a historical piecewise dataset. 

Then, the DiE along with an efficient BW selection technique is 

implemented for each subinterval to estimate historical wind power 

PDFs. Finally, lower/upper quantiles of each PDF are obtained to 

create a historical quantiles dataset. In this context and in contrast to 

kernel functions used in the literature, the DiE can flexibly deal with 

amorphous wind power PDFs with changing features using a well-

defined fuzzy inference system. In addition, through a parallel com-

puting process, the proposed fuzzy DiE uses an adaptation function, 

with a parameter called BW growth factor, to adapt the DiE’s BW to 

capture the uncertainty of the prediction model and consider the 

seasonality of wind power time series on the PDF estimation proce-

dure. Hence, this paper proposes a fuzzy and adaptive DiE-based PI 

construction framework (FADiE) to deliver high quality PIs. The 

proposed framework employs a completely different strategy than 

previous works [26]-[28] to deal with the historical data. The ap-

proach in [26]-[28] requires at least one year of historical data, and 

the forecast range [0,1] (p.u.) is divided into a few forecast bins, e.g., 

25.  Then, based on a forecast value in the next step, a PDF is fitted 

to the historical error samples inside the related bin.  

To the best of the authors’ knowledge, the DiE with its efficient 

BW selection technique has not been used with respect to wind 

power datasets and PI construction. Because the FADiE framework 

does not require widely-used optimization techniques (i.e., 

(non)linear programming and heuristic optimization algorithms), 

point prediction results, and any assumptions regarding prediction 

error and data noise distribution, it can be simply used in practical 

applications. The main contributions of this paper can be summa-

rized as follows: 

• The concept of optimal BW selection for a new and flexible 

density estimator is introduced for the first time to construct high-

quality PIs for wind power time series. 

• A piecewise wind power PDF estimation procedure is intro-

duced using piecewise and successive wind power sample sets. 

• Three trapezoidal fuzzy sets are proposed to tune the flexibility 

of the proposed kernel density estimator for double-bounded wind 

power time series to avoid boundary effects. 

• A tri-level adaptation function is proposed to model the uncer-

tainty of the prediction model and variability (seasonality) of wind 

power time series. 

• A parallel computing process is proposed to increase the com-

putational efficiency and remove the widely-used cost function-

based optimal PI construction methodologies. 

This paper is organized as follows. In Section III, the main prob-

lems regarding wind power PDF estimation with conventional and 

modern KDE techniques are presented. Section IV presents optimal 

BW selection techniques for double-bounded and non-stationary 

wind power time series. The proposed FADiE framework is de-

scribed in Section V. Comprehensive simulation results are analyzed  



 

Fig. 1. Diagram of KDE technique variants and corresponding BW selection 

techniques. 

in Section VI. Finally, Section VII concludes the paper. 

III. PROBLEM STATEMENT FOR WIND POWER PDF ESTIMATION 

USING KDE TECHNIQUES  

This section briefly introduces the main characteristics of wind 

power time series and the existing problems for wind power PDF 

estimation, then presents conventional and new KDE techniques.  

A. Wind Power Time Series Characteristics and PDF Estimation 

Problems 

Wind power time series have four main characteristics: (i) non-

stationary, (ii) double-bounded ([0,1] (p.u.)), (iii) PDFs containing 

special features, and (iv) prediction error with high skewness and 

kurtosis [2], [28]. Under such conditions, the PDF of WPSs (for a 

subinterval) and WPP error (for a dataset) might be estimated by two 

methods: (a) using parametric distributions, such as Gaussian, beta, 

t-student, and so on and (b) using conventional KDE techniques. 

Although the latter has more satisfactory performance than the for-

mer, both methods fail to accurately estimate the underlying PDF in 

a dataset and can lead to inefficient results [14], [15], [17], as dis-

cussed in the Introduction. The classification of different kinds of 

KDE techniques with related BW selection techniques is illustrated 

in Fig. 1. The performance of KDE-based PI construction approach-

es depends on the type of kernel and properly adjusting the BW; 

therefore, inflexible KDE techniques (as opposed to flexible ones) 

encounter three main problems, 𝐏𝟏 to 𝐏𝟑, as described in [29], [30], 

[32], [38]. 

𝐏𝟏: They use either an inherently false assumption, i.e., normal 

reference rule, or an inefficient BW selector in the conventional 

selection techniques. 𝐏𝟐: They tend to flatten the wind power PDF’s 

peaks and valleys. 𝐏𝟑: They suffer from boundary effects. These 

problems are addressed in the proposed framework in Sections IV 

and V in more detail. 

B. Conventional Kernel Density Estimate of Wind Power 

Given 𝑁𝑠 independent stochastic WPSs 𝒳𝑁𝑠
≡ {𝑋1, … , 𝑋𝑁𝑠

} over 

subinterval 𝑡, the unknown underlying PDF of the wind power is 

estimated by the kernel density estimate of 𝑓 as: 

𝑓𝑡(𝑥) =
1

𝑁𝑠
∑ 𝜅(𝑥, 𝑋𝑖; ℎ)

𝑁𝑠
𝑖=1         𝑥 ∈ 𝕩 = [0,1]  (1) 

where 𝜅(∙) is the kernel function with parameter ℎ as the BW. Be-

cause wind power time series present a double-bounded dataset, 

WPSs take values between zero and a nominal capacity (1 p.u.). The 

Gaussian kernel function in (2) has been widely used in the literature 

[17], [30], [38]. In this paper, the Gaussian kernel density estimator 

(GE) is denoted as a conventional KDE technique and compared 

with the DiE. 

𝜅(𝑥, 𝑋𝑖; ℎ) = 𝜑(𝑥, 𝑋𝑖; ℎ) =
exp (−((𝑥 − 𝑋𝑖) √2ℎ⁄ )

2
)

√2𝜋 ℎ
 (2) 

C. Diffusion Kernel Density Estimate of Wind Power 

In this flexible kernel density estimator, the unknown wind power 

PDF 𝑓 is approximated by the kernel density estimator 𝑓, which is 

based on the smoothing properties of the general linear partial dif-

ferential equation (PDE) in (3).  

𝜕𝑓(𝑥; 𝓉)

𝜕𝓉
= 𝐿 (𝑓(𝑥; 𝓉))             𝓉 > 0  ,   𝑥 ∈ 𝕩 = [0,1] (3) 

𝑓(𝑥; 0) = ∆𝑥 =
1

𝑁𝑠
∑ 𝛿(𝑥 − 𝑋𝑖)

𝑁𝑠
𝑖=1   (4) 

where ∆𝑥 in the initial condition (4) is the empirical density of data 

on 𝕩. The linear differential operator 𝐿(∙), expressed by (5), includes 

two arbitrary positive functions, 𝑎(𝑥) and 𝑝(𝑥), that meaningfully 

affect the performance of the DiE. The boundary condition (6) 

should also be considered to ensure that 𝑓 integrates to unity [38].  

𝐿(∙) = 𝑑 (𝑎(𝑥) 𝑑(∙ 𝑝(𝑥)⁄ ) 𝑑𝑥⁄ ) 2𝑑𝑥⁄  (5) 

 𝜕 (𝑓(𝑥; 𝓉) 𝑝(𝑥)⁄ ) 𝜕𝑥⁄ |
𝜕𝕩

= 0 (6) 

The solution to (3) is a flexible kernel density estimator if 𝑝(𝑥) is 

a valid PDF on the dataset 𝕩 and 𝑝(𝑥) = 𝑙𝑖𝑚
𝓉→∞

𝑓(𝑥; 𝓉). The func-

tion 𝑝(𝑥) is estimated by GE and named the pilot PDF. In (5), the 

operator 𝐿(∙) can be adjusted when 𝑎(𝑥) =  𝑝(𝑥)λ and λ ∈ [0,1].  
Therefore, a general solution to (3) is written in the form of (7), in 

which PDEs (8)-(9) are satisfied for fixed values of 𝑦 and 𝑥, respec-

tively. 

𝑓(𝑥; 𝓉) =
1

𝑁𝑠
∑ 𝜅DiE(𝑥, 𝑋𝑖; 𝓉)𝑁𝑠

𝑖=1   (7) 

𝜕(𝜅DiE(𝑥, 𝑦; 𝓉)) 𝜕𝓉⁄ = 𝐿(𝜅DiE(𝑥, 𝑦; 𝓉)), 𝑥 ∈ 𝕩 , 𝓉 > 0 (8) 

𝜕(𝜅DiE(𝑥, 𝑦; 𝓉)) 𝜕𝓉⁄ = 𝐿∗(𝜅DiE(𝑥, 𝑦; 𝓉)), 𝑦 ∈ 𝕩 , 𝓉 > 0 (9) 

where 𝐿∗(∙) = 𝜕 (𝑎(𝑦) 𝜕(∙) 𝜕𝑦⁄ ) 𝜕𝑦⁄ 2𝑝(𝑦)⁄  is the adjoint operator 

of 𝐿(∙). For wind power time series, boundary conditions (10) and 

(11) should be applied to guarantee that 𝑓(𝑥; 𝓉) is a valid PDF that 

integrates to one. The general form of the DiE in which the general 

parameters 𝑥 and 𝑦 are defined to satisfy constraints (8)-(11) on 𝕩 is 

expressed in the form of (12). 

𝜕(𝜅DiE(𝑥, 𝑦; 𝓉) 𝑝(𝑥)⁄ ) 𝜕𝑥⁄ |𝜕𝕩 = 0     (10) 

𝜕(𝜅DiE(𝑥, 𝑦; 𝓉)) 𝜕𝑦⁄ |𝜕𝕩 = 0               (11) 

𝜅DiE(𝑥, 𝑦;  ℎDiE) =
𝑝(𝑥). exp (−∫ 𝜎−1(𝑧)

𝑥

𝑦
𝑑𝑧 (√2 ℎDiE)

2
⁄ )

√2𝜋  ℎDiE √𝑝(𝑥)𝑎(𝑥)𝑝(𝑦)𝑎(𝑦)
4

 
(12) 

where ℎDiE = √𝓉 is the BW of diffusion kernel 𝜅DiE, and 

𝜅DiE(𝑥, 𝑦; 0) = 𝛿(𝑥 − 𝑦). Also, 𝜎(𝑥) = √𝑎(𝑥) 𝑝(𝑥)⁄   which in-

cludes 𝑎(𝑥) and 𝑝(𝑥) is called the diffusion coefficient and assists 

the diffusion kernel (12) in diffusing the initial density ∆𝑥 at a dif-

ferent rate to provide a plausible smoothing property to extract the 

important features of the wind power PDF. If 𝑎(𝑥) = 𝑝(𝑥) = 1, the 

PDE in (3) would be the well-known Fourier heat equation with the 

conventional inflexible GE in (2) as its solution. The approach that 

estimates 𝑝(𝑥) and 𝑎(𝑥) is explained in the next section. The flexi-

ble KDE technique introduced herein, referred to as DiE, can solve 

the problems related to practical applications of KDE-based ap-

proaches. Because the performance of all kernel density estimators 

crucially depends on optimal BW selection as the cornerstone of 

wind power PDF estimation, different BW selection techniques are 

explained in the next section. 

IV. OPTIMAL BW SELECTION TECHNIQUES FOR WIND POWER PDF 

ESTIMATION 

With the intent to implement the DiE for proposing a novel wind 

power PI construction framework, this section first describes two 

well-known BW selection techniques, i.e., conventional direct plug-

in (DPI) and advanced plug-in (API). An efficient BW selection 

technique is then introduced for the DiE. Finally, the performance of 

kernel density estimators is evaluated using these techniques through 

wind power PDF and quantiles estimation. 

A. Optimal BW Selection: Criterion and Techniques 

A well-defined criterion for optimal BW selection is the mean in-

tegrated squared error (𝑀𝐼𝑆𝐸) expressed by (13), which can be
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Fig. 2. General diagram of wind power PDF estimation via optimal BW selection 

techniques. 

divided into two components: the integrated squared bias and inte-

grated variance. It is proven with technical details in [29], [30], [38] 

that an optimal BW minimizes the first-order asymptotic approxima-

tion of 𝑀𝐼𝑆𝐸: 

𝑀𝐼𝑆𝐸 = ∫ (𝔼𝑓 (𝑓𝑡(𝑥)) − 𝑓𝑡(𝑥))
2

𝑑𝑥 + ∫𝑉𝑎𝑟𝑓[𝑓𝑡(𝑥)]𝑑𝑥    (13) 

where 𝔼𝑓(∙) and 𝑉𝑎𝑟𝑓(∙) are respectively the expectation and vari-

ance operators. A large BW leads to over-smoothing and can result 

in loss of some features in the wind power PDF, while an overly 

small BW generates a PDF with many peaks that are not meaningful. 

To extract diverse features such as multi-modality, local uniformity, 

and long tails within the probability distribution of wind power time 

series, efficient BW selection techniques should be used in conjunc-

tion with flexible kernels. Otherwise, the approach fails to accurately 

capture the features [29], as will be shown in Section IV-B. 

A common property among DPI, API, and DiE optimal BW se-

lection techniques is the existence of an intermediate estimator 

called the plug-in estimator (�̂�) and an intermediate BW called the 

pilot BW (𝜏). The distinction between these techniques arises from 

diverse 𝑙-stage algorithms for calculation of 𝜏 and �̂� that lead to 

completely different performances.  

1) Direct plug-in BW selection technique for GE 

In this technique, DPI optimal BW, denoted by ℎDPI
∗ , which min-

imizes the asymptotic approximation of 𝑀𝐼𝑆𝐸, is found using (14)-

(15). Because the DPI BW selection technique depends on the pilot 

BW 𝜏DPI in (14) and the 𝑟𝑡ℎ derivative of standard Gaussian ker-

nel 𝜅G
(𝑟)

 with second moment 𝜇2(𝜅G) = ∫ 𝑥2𝜅G(𝑥)𝑑𝑥
ℝ

, an 𝑙-stage 

DPI BW selector is developed in algorithm 1 [30]. 

𝜏DPI = (−2 𝜅G
(𝑟)

(0) 𝑁𝑠 𝜇2(𝜅G) �̂�DPI
(𝑟+2)

⁄ )
1 𝑟+3⁄

 
(14) 

�̂�DPI
(𝑟)

=
1

𝑁𝑠
2 ∑ ∑  𝜅G

(𝑟)
(𝑋𝑖 , 𝑋𝑗 ; 𝜏DPI)

𝑁𝑠
𝑗=1

𝑁𝑠
𝑖=1   (15) 

 

Algorithm 1 DPI BW selection (𝑟 ∈ 2𝑛 , 𝑟 ≥ 6) 

1: Set 𝑙, e.g., 𝑙=5, and then 𝑟 = 2𝑙 + 4.  

2: Calculate 𝜎𝑠 as the standard deviation of 𝑁𝑠 random samples then 

set the initial value of �̂�DPI
(𝑟)

 with �̂�DPI
(𝑖𝑛𝑖)

=

(−1)𝑟/2 𝑟! (√𝜋(2𝜎𝑠)
𝑟+1(𝑟/2)!)⁄ . 

3: Find pilot BW 𝜏DPI using (14) and then �̂�DPI
(𝑟)

 using (15). 

4: Continue the process to obtain �̂�DPI
(4)

, then use (14) to obtain the 

optimal value of BW as ℎDPI
∗ = 𝜏DPI|𝑟=2. 

As a conventional BW selection technique, the DPI technique is 

inefficient for wind power PDF estimation because it is too smooth 

and ignores the main features of the wind power PDF over its main 

interval [0,1]. In this paper, the Gaussian estimator that uses the DPI 

technique is denoted by GEDPI, and the estimated PDF is indicated 

by 𝑓𝑡(DPI)(𝑥). 

2) Advanced plug-in BW selection technique for GE 

This technique finds the minimum value of the asymptotic ap-

proximation of 𝑀𝐼𝑆𝐸 using the optimal BW ℎAPI
∗  shown in (16), 

where an 𝑙-stage algorithm is stated in detail to calculate the pilot 

BW 𝜏API
(1)

 using (17)-(18). The wind power PDF estimated by this 

technique (i.e., 𝑓𝑡(API)(𝑥)) is then used to implement the DiE BW 

selection technique. In this study, the Gaussian estimator equipped 

with the API technique is referred to as GEAPI. In (18), the 𝑗𝑡ℎ deriv-

ative of the Gaussian kernel 𝜑 is shown by 𝜑(𝑗) [38]. 

 ℎAPI
∗ ≅ (0.9 𝜏API

(1)
)

1

2  
(16) 

𝜏API
(𝐽)

= [
(1+1 (2𝐽+0.5)⁄ ) ((2𝐽−1)×…×3×1)

(3𝑁𝑠√𝜋 2⁄ �̂�API
(𝐽+1)

)
]

2

3+2𝐽

  
(17) 

�̂�API
(𝐽)

=
(−1)𝐽

𝑁𝑠
2 ∑ ∑ 𝜑(2𝐽)(𝑋𝑖 , 𝑋𝑗; 2𝜏API

(𝐽)
)

𝑁𝑠
𝑗=1

𝑁𝑠
𝑖=1   (18) 

 

Algorithm 2 API BW Selection 

1: Choose 𝑙, e.g., 𝑙 = 5. 

2: Set the pilot BW 𝜏API
(𝑙)

 to a small value, e.g., 0.001, and find the 

plug-in estimator  �̂�API
(𝑙)

 using (18). 

3: Find the pilot BW 𝜏API
(𝑙−1)

via (17). 

4: Find the plug-in estimator �̂�API
(𝑙−1)

 using (18) and 𝜏API
(𝑙−1)

 obtained 

from the previous stage, and continue this procedure until �̂�API
(2)

 and 

consequently 𝜏API
(1)

  are acquired.     

5: If |𝜏API
(1)

 − 𝜏API
(𝑙)

| < 𝜀, equation (16) gives the optimal BW for the 

Gaussian estimator (1); else go to step 2 with 𝜏API
(𝑙)

= 0.9 𝜏API
(1)

.  

3) BW selection technique for DiE 

DiE BW selection leads to the minimum value of asymptotic 

𝑀𝐼𝑆𝐸 using the DiE optimal BW in (19) where the plug-in estimator 

�̂�DiE is estimated by (20) using the pilot BW 𝜏DiE and the flexible 

kernel 𝜅DiE. The value of 𝜏DiE is twice that of 𝜏API in the (𝑙 − 1)𝑡ℎ 

stage of the API technique. Because 𝔼𝑓[𝜎
−1(𝑥)] in (21), 𝐿(∙), and 

𝐿∗(∙) depend on 𝑎(𝑥) and  𝑝(𝑥), algorithm 2 is first executed to es-

timate 𝑝(𝑥) = 𝑓𝑡(API)(𝑥). Then, by adjusting λ ∈ [0,1], 𝑎(𝑥) is ac-

quired using 𝑎(𝑥) =  𝑝(𝑥)λ.  

ℎDiE
∗ ≅ (0.5 𝔼𝑓[𝜎

−1(𝑥)] (𝑁𝑠√𝜋 �̂�DiE)⁄ )
1
5 (19) 

�̂�DiE =
1

𝑁𝑠
2 ∑ ∑ 𝐿∗ (𝐿 (𝜅DiE(𝑋𝑖 , 𝑋𝑗 ; 𝜏DiE)))

𝑁𝑠
𝑗=1

𝑁𝑠
𝑖=1   (20) 

𝔼𝑓[𝜎
−1(𝑥)] =

1

𝑁𝑠
∑ (𝑎(𝑋𝑖) 𝑝(𝑋𝑖)⁄ )−

1

2
𝑁𝑠
𝑖=1   (21) 

 

Algorithm 3 Diffusion BW Selection 

1: Find 𝑝(𝑥) using the implementation of GE with ℎAPI
∗ . 

2: Set 𝑎(𝑥) = 𝑝(𝑥)λ with λ ∈ [0,1]. 

3: Calculate the value of 𝔼𝑓[𝜎
−1(𝑥)] using (21). 

4: Find the value of �̂�DiE using (20), where 𝜏DiE = 2 𝜏API
(2)

 and 𝜏API
(2)

 is 

determined from step 4 in Algorithm 2. 

5: Calculate ℎ𝐷𝑖𝐸
∗  using (19) as the DiE optimal BW. 

A general diagram of BW selection techniques is provided in Fig. 

2. A normal reference rule is not used; instead, diffusion coefficient 

𝜎(𝑥) and an 𝑙-stage algorithm are utilized to efficiently tune the 

flexibility of DiE (problem 𝐏𝟏 is removed). Due to its similarity to 

API process, the DPI process is not shown in Fig. 2. The DiE uti-

lized herein, in which a diffusion-based BW selection technique is 

used, offers far greater flexibility in modeling a given dataset with 

high accuracy and consistency [38]. The PDF estimated by DiE is 

denoted by 𝑓𝑡(DiE)(𝑥). 

B. Estimation of Wind Power PDFs, Quantiles and Intervals  

The above-mentioned inflexible (GEDPI-GEAPI) and flexible (DiE) 

kernel density estimators are implemented and compared in this 

section. Using a wind power dataset, PDFs over three different sub-

intervals are estimated to see how well the important features of 

WPSs can be extracted via DiE. First, using optimal 
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Fig. 3. Comparison of KDE techniques for three different sets of WPSs drawn 

from the Centennial wind farm dataset (located in South Saskatchewan, Canada). 

TABLE I 
THE RESULTS OF INTERVAL CALCULATION FOR CL=95%. 

KDE 
WPSs 1 WPSs 2 WPSs 3 

[𝑄𝑡
(𝛼𝑙), 𝑄𝑡

(𝛼𝑢)
]     𝐼𝑛𝑡. [𝑄𝑡

(𝛼𝑙), 𝑄𝑡
(𝛼𝑢)

]      𝐼𝑛𝑡. [𝑄𝑡
(𝛼𝑙), 𝑄𝑡

(𝛼𝑢)
]        𝐼𝑛𝑡. 

GEDPI     [0.128,0.425]  0.297 [0.117,0.348]  0.231 [0.062,0.180]  0.118 

GEAPI     [0.232,0.301]  0.069 [0.196,0.270]  0.074 [0.115,0.126]  0.011 

DiE        [0.236,0.294]  0.058 [0.211,0.257]  0.046 [0.118,0.120]  0.002 

BWs ℎDPI
∗ , ℎAPI

∗  (with Gaussian kernel) and ℎDiE
∗  (with diffusion ker-

nel) the associated PDFs are respectively estimated as shown in Fig. 

3 (a)-(i). Thereafter, using corresponding cumulative distribution 

functions 𝐹𝑡(∙)(𝑥), obtained from (22), one can calculate the low-

er/upper quantiles 𝑄𝑡

(𝛼𝑙) and 𝑄𝑡
(𝛼𝑢)

 and the related interval width 

using (23) and (24), respectively.  

𝐹𝑡(∙)(𝑥) = ∫ 𝑓𝑡(∙)(𝜔)𝑑𝜔
𝑥

0
  (22) 

𝑄𝑡

(𝛼𝑙) = 𝐹𝑡(∙)
−1(𝛼 2⁄ )  ,  𝑄𝑡

(𝛼𝑢)
= 𝐹𝑡(∙)

−1(1 − 𝛼 2⁄ ) (23) 

𝐼𝑛𝑡. = 𝑄𝑡
(𝛼𝑢)

− 𝑄𝑡

(𝛼𝑙)  (24) 

where 𝛼𝑙 = 𝛼 2⁄  and 𝛼𝑢 = 1 − 𝛼 2⁄  lead to CL=100×(1 − 𝛼)%. 

Fig. 3 and Table I show that, unlike GEDPI and GEAPI, the DiE can 

efficiently identify existing features of wind power PDFs (e.g., mul-

ti-modality, local uniformity, long tail, and high skewness) and con-

sequently eliminates problem 𝐏𝟐. To provide a better sense of wind 

power interval estimation, the widths of intervals in KDE techniques 

are shown in Table I for CL=95%. Observe that narrower intervals 

are obtained by the DiE. Based on this superior performance, sharp 

PIs are constructed in the next section in the context of probabilistic 

WPP.  

V. THE PROPOSED FADIE FRAMEWORK FOR OPTIMAL WIND POWER 

PI CONSTRUCTION 

The proposed FADiE framework aims to mitigate the drawbacks 

of conventional PI construction approaches, such as dependency on 

historical prediction results, assuming parametric distributions, and 

definition of certain objective functions based on reliability and 

sharpness of PIs in an optimization framework. It utilizes four build-

ing blocks to construct optimal PIs: (i) DiE with its efficient BW 

selection technique, (ii) a fast and efficient prediction model (i.e., 

ELM) [11], [13], [16], [39], (iii) three trapezoidal fuzzy sets, and (iv) 

a tri-level adaptation function. The fuzzy sets are defined according 

to WPSs average values and used for DiE flexibility tuning, by ad-

justing the parameter λ, to avoid boundary effects. The adaptation 

function provides an adaptive procedure for the fuzzy DiE to create 

diverse lower/upper quantiles datasets with different average interval 

widths to model time series seasonality and prediction model uncer-

tainty. The following sections introduce wind power PI evaluation 

criteria, then explain the building blocks (ii)–(iv) in more detail fol-

lowed by FADiE framework stages. 

A. Wind Power PIs Evaluation Criteria 

Three important indices are used to assess the quality of con-

structed wind power PIs by the proposed FADiE framework. 

1) Reliability 

The average coverage error (𝐴𝐶𝐸) in (25), which is the deviation 

of the PI coverage probability (𝑃𝐼𝐶𝑃) in (26) from its nominal cov-

erage (𝑃𝐼𝑁𝐶) should be positive and too close to zero to guarantee 

the high reliability of the PIs as the main feature. 

0 ≤ 𝐴𝐶𝐸 = 𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶 < 𝜀 (25) 

𝑃𝐼𝐶𝑃 =
1

𝑁test
∑ 𝕝[𝐿𝑖

𝛼,𝑈𝑖
𝛼](𝑦𝑖)

𝑁test
𝑖=1   (26) 

𝕝[𝐿𝑖
𝛼,𝑈𝑖

𝛼](𝑦𝑖) = {
1 𝑦𝑖 ∈ [𝐿𝑖

𝛼 , 𝑈𝑖
𝛼]

0 𝑦𝑖 ∉ [𝐿𝑖
𝛼 , 𝑈𝑖

𝛼]
   (27) 

 where 𝕝[𝐿𝑖
𝛼,𝑈𝑖

𝛼](∙) is an indicator function, 𝐿𝑖
𝛼 and 𝑈𝑖

𝛼 are, respective-

ly, the lower and upper bounds of wind power PI associated with the 

prediction target, 𝑦𝑖. Note that 𝑃𝐼𝐶𝑃 is generally used to illustrate 

the probability that future wind power, 𝑦𝑖, as a target, will be en-

closed by the interval [𝐿𝑖
𝛼 , 𝑈𝑖

𝛼].  
2) Sharpness 

To perceive meaningful information from a PI, its normalized av-

erage width (𝑃𝐼𝑁𝐴𝑊) in (28) should take small values to induce a 

sharp PI.  

𝑃𝐼𝑁𝐴𝑊 =
1

𝑅.𝑁test
∑ (𝑈𝑖

𝛼 − 𝐿𝑖
𝛼)𝑁test

𝑖=1   (28) 

where 𝑅, the range of targets, is used to normalize the PI average 

width.  

3) Overall score 

To assess the overall skill of a PI construction approach, the over-

all score in (29) is considered in evaluation process because it simul-

taneously takes both reliability and sharpness aspects into account. A 

sharp PI presents a small value for |𝑆𝑐|. 

𝑆𝑐 =
1

𝑁test
∑ [−2𝛼(𝑈𝑖

𝛼 − 𝐿𝑖
𝛼) − 4𝕝[0,𝐿𝑖

𝛼)(𝑦𝑖)( 𝐿𝑖
𝛼 − 𝑦𝑖) −

𝑁test
𝑖=1

4𝕝(𝑈𝑖
𝛼,1](𝑦𝑖)(𝑦𝑖 − 𝑈𝑖

𝛼) ]  
(29) 

Since very sharp PIs may violate the reliability criterion, the over-

all score index, 𝑆𝑐, in which the reliability is also included can rea-

sonably reflect the real sharpness of PIs.  

B. The Prediction Model for Lower/Upper Quantiles Prediction 

In gradient-based traditional approaches for neural network train-

ing, some unavoidable limitations include high computational effort 

to tune the parameters, slow learning procedure, and overtraining 

[13]. Therefore, the proposed framework uses ELM as an easy-to-

implement learning algorithm for training SLFNs with excellent 

generalization ability, extremely low learning effort, and high ability 

to avoid local minima and overtraining [39]. In the ELM approach, 

if the activation functions in the hidden layer are infinitely differen-

tiable, by randomly selecting the input weights and biases, SLFNs 

can be viewed as a simple linear system with the output weights 

analytically determined using a generalized inverse operation. 

Considering 𝑁 different training sets (𝒙𝑖 , 𝒈𝑖)|𝑖=1
𝑁  drawn from 𝑁d 

days of a dataset, ELM with �̃� hidden nodes is expressed by 

𝐇𝑁×�̃�𝛃�̃�×𝑚 = 𝐆𝑁×𝑚. Input and output vectors 𝒙𝑖 and 𝒈𝑖  are shown 

in (30) and Fig. 4, and the output weight matrix, 𝛃, and the target 

matrix, 𝐆, are denoted by (31).  

𝒙𝑖 = [𝑥𝑖1, … , 𝑥𝑖𝑛]
𝑇 ∈ ℝ𝑛, 𝒈𝑖 = [𝑔𝑖1, … , 𝑔𝑖𝑚]𝑇 ∈ ℝ𝑚 (30) 

𝛃 = [ 𝜷1 …  𝜷�̃�]𝑇 , 𝐆 = [𝒈1 … 𝒈𝑁]𝑇    (31) 

where  𝜷𝑗 = [𝛽𝑗1, … , 𝛽𝑗𝑚]
𝑇
is the output weight vectors. After calcu-

lation of 𝐇 according to [13] or [39], matrix 𝛃 is obtained using 𝛃 =
𝐇†𝐆 where 𝐇† is the Moore–Penrose generalized inverse of matrix 

𝐇 [40]. To train ELM, the input matrix 𝐇 and the output matrix 𝐆 

should be constructed based on input vector 𝒙𝑖 (i.e., a set of WPSs) 

and output vector 𝒈𝑖  (i.e., lower and upper quantiles). A temporal 

diagram of ELM input and output data is provided in Fig. 4, where 

historical datasets are divided into 𝑁sub subintervals, 𝒙𝑖 contains 

𝑁lag time lags with the same sample size 𝑁s(e.g., one-hour samples 

for each lag), and 𝒈𝑖  includes the lower/upper quantiles for one step 

ahead. In this paper, the 10-fold cross validation technique in [41] is 

used to identify the optimal number  of  time lags and  hidden  nodes 
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Fig. 4. Temporal diagram of input and output data structure for ELM training. 

 
Fig. 5. Flowchart of the main prediction process. 

and optimal length of the training dataset, which includes 𝑁 input 

vectors [𝒙𝑖](𝑁lag×𝑁s)×1 and 𝑁 output vectors [𝒈𝑖]2×1 where 𝑁 =

𝑁sub − 𝑁lag and 𝑁sub = 𝑁d × 24 × 6 𝑁𝑠⁄ .These optimal variables 

are obtained by minimizing the mean absolute error or root mean 

square error to avoid underfitting and overfitting. After optimal 

training of the ELM, the validation or test datasets can be used to 

construct corresponding PIs by the generation of lower and upper 

bounds 𝐿𝑖
𝛼 and 𝑈𝑖

𝛼 for each test sample as shown in the flowchart in 

Fig. 5.  

C. The Proposed Trapezoidal Fuzzy Sets for Flexibility Tuning 

To capture wind power uncertainty by estimating bona fide PDFs 

over successive subintervals, the DiE takes the advantage of trape-

zoidal fuzzy sets (𝜇) shown on the left axis of Fig. 6. Using the av-

erage value of WPSs (�̅�) inside each subinterval, the fuzzy sets 

tune the flexibility of the DiE through (32) to avoid boundary ef-

fects. Fig. 7 shows the boundary effects with an ellipse with a prob-

ability allocation for values outside of [0,1]. 

λ(�̅�, 𝜇) = (1 − 𝜇𝐿)𝕝[0,𝓌1]
(�̅�) + 𝜇𝑀𝕝[𝓌1,𝓌2]

(�̅�) +  

                                                    (1 − 𝜇𝐻)𝕝[𝓌2,1]
(�̅�) 

(32) 

 The philosophy behind the proposed trapezoidal fuzzy sets is to 

alleviate problem 𝐏𝟑. If the average of the WPSs is near boundaries, 

i.e., low-power (�̅� ∈ [0,𝓌1
−]) and high-power (�̅� ∈ [𝓌2

+, 1]) re-

gions where boundary effects might happen, the DiE sets λ=0 to 

generate sharp and bona fide PDFs as shown in Fig. 7. For the medi-

um power region (�̅� ∈ [𝓌1
+,𝓌2

−]), where boundary effects do not 

matter, the DiE chooses λ=𝜇𝑀 (0 < 𝜇𝑀 ≤ 1) to estimate smoother 

PDFs while preserving the main features.  

D. The Proposed Tri-Level Adaptation Function for Wind Power 

PI Reliability Improvement 

The main factors that reduce the reliability of a PI are associated 

with the uncertainties originating from chaotic wind power datasets 

over different seasons and misspecification of ELM parameters, e.g., 

training based on non-informative samples and randomly generated 

input weights and biases. The proposed adaptation function 𝝃(�̅�, 𝛾), 

shown on the right axis of Fig. 6, aims to adaptively raise the relia-

bility of constructed PIs under such conditions. Using (33)-(34), the 

function 𝝃 leads to the controlled growth of the DiE BW for the sub-

intervals in which the value of �̅� is far from the boundaries and the 

boundary effect does not matter for the PDFs. In (34), 𝛾 is the BW 

growth factor, and 𝓌𝑖
− and 𝓌𝑖

+ are the average values of wind 

power smaller and larger than 𝓌𝑖. The value of 𝝃 for low-power and 

high-power regions is set to unity to prevent boundary effects. For 

the medium-power region, the growth factor 𝛾 increases the DiE 

BW for generation of smoother PDFs or large intervals to capture 

the aforementioned uncertainties. Also, between medium and (low) 

high-power regions, the adaptation function applies an average value 

 
Fig. 6. Proposed trapezoidal fuzzy sets (left axis) and tri-level adaptation func-

tion 𝝃(�̅�, 𝛾) (right axis) considered for the proposed DiE. 

 
Fig. 7. Illustration of boundary effects for WPSs near boundaries.  

for BW growth factor to create a trade-off between both regions. 

Note that the optimal value of 𝛾 that ultimately results in a reliable 

and sharp PI might be different for diverse datasets or even different 

seasons of a dataset. 

 ℎDiE = 𝝃. ℎDiE
∗  (33) 

𝝃 = 𝕝[0,𝓌1
−]∪[𝓌2

+,1](�̅�) + (
1+𝛾

2
) 𝕝( 𝓌1

−,𝓌1
+]∪[𝓌2

−,𝓌2
+)(�̅�) +

(𝛾)𝕝(𝓌1
+,𝓌2

−)(�̅�)   
(34) 

E. The Proposed FADiE Framework Stages for Optimal Construc-

tion of Wind Power PI  

Three stages should be followed to implement the proposed 

FADiE framework for real wind power datasets. Before the first 

stage, the wind power dataset, including training, validation and test 

datasets, is preprocessed and normalized. Then, in a parallel compu-

ting process, considering M values of BW growth factor for adapta-

tion function 𝝃, i.e., 𝛄 = [𝛾1, … , 𝛾M], M groups of wind power PDFs 

in each subinterval in the original training dataset are estimated via 

the fuzzy DiE. Thereafter, M series of lower/upper quantiles with 

nominal coverage probability 𝛼 are calculated and stored in a data-

base (see Fig. 8). A 10-fold cross validation technique is then run for 

case 𝛾 = 1. Note that to update the prediction tool with the most 

recent quantiles data, the process in Fig. 8 should be repeated over 

time after each lower/upper quantile prediction in Fig. 5.  

First Stage: In this stage, ELM1 to ELMM are trained with a parallel 

procedure using the optimal training dataset. The sensitivity analysis 

provided in the case studies section, shows that a limited number of 

ELMs should be considered even for highly chaotic time series to 

find 𝛾opt to simultaneously satisfy reliability and sharpness criteria. 

Second Stage: A validation dataset is first used as input data for the 

trained ELM1 to ELMM to generate PI1 to PIM, respectively. Then, 

𝐴𝐶𝐸 and |𝑆𝑐| are calculated for PI1 to PIM to identify the best ELM 

that results in a PI with high reliability and sharpness. Third Stage: 

The superior ELM obtained from the second stage, i.e., ELMopt, is 

used to construct a reliable and sharp PI for the test dataset with the 

prespecified CL. An in-depth structure of the parallel computing-

based FADiE framework is shown in Fig. 9. 

VI. CASE STUDIES 

A. Experimental Datasets 

 To assess the efficiency of the proposed FADiE framework, four 

wind power datasets are considered. 

Case 1: Canada’s Alberta Electric System Operator (AESO) dataset, 

with Pinst=967 MW, from April to June of 2012 [42].  

Case 2: Canada’s Centennial wind farm (Saskatchewan) dataset, 

with Pinst=150 MW, from June to August of 2016. 

Case 3: Spain’s Sotavento wind farm dataset, with Pinst=17.5 MW
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Fig. 8. General diagram of wind power quantiles database construction. 

from October to December of 2015 [43]. 

Case 4: AESO dataset from January to December of 2015 [42]. 

The main reason behind the selection of these datasets is to thor-

oughly examine the applicability of the proposed FADiE framework 

with diverse wind power generation profiles. The empirical results in 

[3] show that the chaos in Case 2 is much higher than other cases for 

WPP; thus, it is a good case for testing the proposed FADiE frame-

work. Case 4 is considered to assess the seasonality effect on the 

performance of the framework. The datasets are split into training 

(60%), validation (30%), and test (10%) datasets.  

The 30-min and 1-hour very short-term prediction horizons, with 

respective 30- and 60-min subintervals sizes, are considered to con-

struct optimal PIs. Different wind power prediction horizons, e.g., 

from minutes to days, with certain resolutions are required for di-

verse applications in power systems. For example, 30-min and 1-

hour prediction horizons can be used for wind farm control, frequen-

cy control, and real-time economic dispatch [23]. However, short-

term prediction horizons longer than one hour, can also be consid-

ered based on the corresponding applications in power systems such 

as look-ahead economic dispatch, reserve scheduling, unit commit-

ment and day-ahead electricity market [24], [25]. But, in every prob-

abilistic prediction approach, the longer the prediction horizon, the 

more the uncertainty in the prediction error. Without loss of general-

ity, different prediction horizons from one minute to days can be 

implemented in the proposed framework if necessary. For very 

short-term prediction horizons, e.g., one to 60 minutes, only wind 

power datasets are needed, and this is referred to as a statistical ap-

proach. For longer prediction horizons, from two hours to days, oth-

er explanatory variables such as wind speed, wind direction, temper-

ature, numerical weather prediction (NWP), etc. might be needed. 

The optimal selection of explanatory variables is only necessary for 

better training of the ELM in our proposed framework [2], [9], [13]. 

In this paper, the parameters of fuzzy sets and adaptation function 

are set as follows: 𝓌1=0.2, 𝓌1
−=0.15, 𝓌1

+=0.25, 𝓌2=0.8, 

𝓌2
−=0.75, 𝓌2

+=0.85. For 30-min horizon, ∆𝛾 = 0.1, 𝛾1 =0.5, 

and 𝛾M =1.2, and for 1-hour horizon ∆𝛾 = 0.1, 𝛾1 =1, and  𝛾M =3. 

The simulations are performed on a Windows PC with an Intel Core 

i7-6700 CPU with 3.4 GHz and 16 GB RAM. 

B. Analysis of Simulation Results 

1) Sensitivity analysis of the proposed FADiE framework 

Because the FADiE framework is developed based on BW as a 

fundamental parameter, the sensitivity of the constructed PIs needs 

to be assessed versus the BW growth factor 𝛾. Fig. 10 shows that, 

for a certain CL and 1-hour prediction horizon, the desired reliability 

of a PI might be ideally gained by 𝛾opt = 1, which results in original 

BW ℎDiE
∗ , e.g., AESO 2012 and Sotavento datasets. For the Centen-

nial dataset, as a highly chaotic time series, the reliability of the PIs 

is not satisfactory with 𝛾 = 1; therefore, 𝛾 must increase to meet the 

reliability criterion 0 ≤ 𝐴𝐶𝐸 < 𝜀, i.e., 𝛾opt95%
=1.6 and 𝛾opt99%

=2.4.  

For the datasets containing low chaos or for short prediction hori-

zons, the PIs might have high reliability and low sharpness with 𝛾 =
1; thus, 𝛾 should decrease to raise the sharpness while satisfying the 

reliability criterion. Therefore, according to this analysis, the suita-

ble range of 𝛾 can be easily determined to train ELM1 to ELMM to 

satisfy the reliability and sharpness criteria.  

 
Fig. 9. Structure of the parallel computing-based FADiE framework. 

2) Effect of fuzzy sets and adaptation function on wind power PIs 

To establish the superiority of fuzzy DiE over other approaches 

and assess the effects of fuzzy sets on the reliability and sharpness of 

PIs, five PI construction approaches are considered for the AESO 

2012 and Sotavento datasets in Table II. GEDPI evidently cannot 

provide sharp PIs, and GEAPI does not guarantee high reliability. The 

DiE with λ=0 produces very sharp PIs while with λ=1 generates 

reliable PIs. However, by setting λ=1 for all time periods, boundary 

effects happen for some, and the DiE cannot generate bona fide 

PDFs to present a real PI. While satisfying the reliability criterion, 

the sharpness can be further improved by applying the proposed 

fuzzy sets. The effect of the proposed adaptation function on PI con-

struction results is shown for the chaotic Centennial time series in 

Table III where the reliability and sharpness are simultaneously sat-

isfied. Even though 𝑃𝐼𝑁𝐴𝑊 must increase for chaotic datasets to 

satisfy the reliability criterion, sharpness can still be preserved in a 

reasonable range by the FADiE framework. 

3) Computational efficiency analysis 

In the FADiE framework, the computation time is mainly devoted 

to training and validation stages for online applications. The compu-

tation time in the FADiE framework is very low compared to 

benchmarks due to the use of a predetermined database and a paral-

lel processing. Moreover, the optimal BW selection procedure takes 

some time for a large dataset. To show the superiority of the pro-

posed framework in online practical applications, BW selection and 

the total training and validation computation time for the 1-hour 

prediction horizons are summarized in Table IV. Based on the simu-

lations, the FADiE is shown to be at least three times faster than LP-

QR, 10 times faster than BELM, 300 times faster than PSO-QR, and 

500 times faster than LUBE. 

4) Comparison with benchmarks 

To validate the satisfactory performance of the proposed FADiE 

framework, five well-known benchmarks (PSO-QR, LP-QR, LUBE, 

BELM, and ARIMA) are used to construct PIs using the same da-

tasets and optimal training processes. They are also evaluated with 

the same criteria. However, none of the benchmark methods except 

ARIMA take advantage of the proposed parallel computing process 

because they have different training strategies. Generally, in this 

paper, 30 ≤ �̃� ≤ 40, 3 ≤ 𝑁lag ≤ 8, and 30 ≤ 𝑁d ≤ 60. Because 

power system operators always need reliable and sharp PIs with high 

confidence levels to ensure optimal generation and control of power 

systems, in this study PIs with CL=95% and 99% are constructed to 

evaluate the performance of the FADiE framework. 
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Fig. 10. The sensitivity of PI reliability to BW growth factor for 1-hour prediction 

horizon in Cases 1 to 3: (a) CL= 95%, (b) CL=99%. 

TABLE II 
COMPARISON OF KDE-BASED APPROACHES AND EFFECT OF FUZZY SETS. 

Approach 
CL=95% 

AESO 2012 (1-hour) Sotavento (1-hour) 

𝑃𝐼𝐶𝑃 
(%) 

𝑃𝐼𝑁𝐴𝑊 
(%) 

|𝑆𝑐|  
(%) 

𝑃𝐼𝐶𝑃 
(%) 

𝑃𝐼𝑁𝐴𝑊 
(%) 

|𝑆𝑐|  
(%) 

GEDPI 99.17 56.50 5.71 97.91 59.73 6.97 

GEAPI 91.67 11.89 1.88 94.17 19.12 3.04 

DiE (λ=0) 75.83 08.70 2.66 84.58 12.15 2.96 

DiE (λ=1) 96.66 15.19 1.78 97.08 19.94 2.40 

Fuzzy DiE 95.83 14.22 1.48 96.25 18.86 2.30 

TABLE III 
EFFECT OF ADAPTATION FUNCTION ON THE FUZZY DIE. 

Centennial  

(1-hour) 

CL=95% CL=99% 

𝑃𝐼𝐶𝑃 

(%) 

𝑃𝐼𝑁𝐴𝑊 
(%) 

|𝑆𝑐|  
(%) 

𝑃𝐼𝐶𝑃 
(%) 

𝑃𝐼𝑁𝐴𝑊 
(%) 

|𝑆𝑐|  
(%) 

Fuzzy DiE 92.08 17.57 3.18 95.41 22.70 1.32 

FADiE 95.41 25.10 3.40 99.58 37.45 0.89 

The detailed simulation results for AESO 2012 (Case 1), Centen-

nial (Case 2), and Sotavento (Case 3) datasets, includ-

ing 𝑃𝐼𝐶𝑃, 𝐴𝐶𝐸, 𝑃𝐼𝑁𝐴𝑊, and |𝑆𝑐|, are respectively given in Tables 

V-VII. To assess the effect of seasonality on the performance of the 

FADiE framework and observe the variations in the optimal BW 

growth factor, Case 4 is used and compared with the ARIMA and 

LP-QR benchmarks, and the results are shown in Tables VIII and IX 

for 30-min and 1-hour prediction horizons, respectively. Note, since 

ARIMA uses parallel computing as well to predict lower/upper 

quantiles, its computation time is close to that of FADiE. The com-

parison of evaluation criteria demonstrates that the FADiE frame-

work outperforms the benchmarks and provides a trade-off between 

high reliability and high sharpness of constructed PIs for both pre-

diction horizons. As an indication of the sharpness of PIs with prior 

considerations of reliability, the simulation results are mainly dis-

cussed in terms of the 𝑆𝑐 criterion. At CL=95%, the maximum value 

of |𝑆𝑐| for the worst case for 30-min and 1-hour prediction horizons 

across Cases 1 to 3 are 2.76 and 3.40%, respectively. Compared to 

the average of the benchmarks, sharpness is improved by 26.15 and 

22.72%, respectively. For CL=99%, |𝑆𝑐|max takes smaller values of 

0.78 and 0.89%, with 31.90 and 42.30% sharpness improvement for 

30-min and 1-hour prediction horizons, respectively. A longer pre-

diction horizon is found to create more uncertainty, which conse-

quently results in lower sharpness. These results illustrate that, for 

the time series containing high chaos, much more meaningful PIs 

can still be obtained by the proposed FADiE framework than by 

existing approaches. From the reliability perspective, the constructed 

PIs in these cases satisfy the reliability criterion 0 ≤ 𝐴𝐶𝐸 < 𝜀. 

Among the benchmarks, BELM and LUBE approaches show ap-

proximately  the  same  performance  and  outperform  the  PSO-QR  

TABLE IV 
CPU TIME FOR BW SELECTION AND TOTAL TRAINING AND VALIDATION 

Off-line BW selection technique DPI API DiE 

1-hour time step (for 30 days) 28.00 (s) 24.50 (s) 28.80 (s) 

Approach CPU time (s) 

FADiE 2.93 
LP-QR 9.20 

BELM 37.82 

PSO-QR 890.20 

LUBE 1521.65 

TABLE V 
THE RESULTS OF PI CONSTRUCTION FOR CASE 1 

Horizon PINC Method 
𝑃𝐼𝐶𝑃  
(%) 

𝐴𝐶𝐸  
(%) 

𝑃𝐼𝑁𝐴𝑊  
(%) 

|𝑆𝑐|  
(%) 

30-min 

95% 

FADiE 95.41 +0.41 12.16 1.52 

PSO-QR 93.33 -1.67 16.96 2.50 

LUBE 94.79 -0.21 15.60 2.21 

BELM 95.83 +0.83 15.93 2.13 

99% 

FADiE 99.37 +0.37 18.88 0.50 

PSO-QR 96.87 -2.13 28.45 1.18 

LUBE 98.33 -0.67 26.02 1.05 

BELM 99.79 +0.79 27.64 1.02 

1-hour 

95% 

FADiE 95.83 +0.83 14.22 1.48 

PSO-QR 94.17 -0.83 22.64 2.84 

LUBE 95.83 +0.83 21.75 2.71 

BELM 96.25 +1.25 22.50 2.58 

99% 

FADiE 99.17 +0.17 29.09 0.69 

PSO-QR 96.67 -2.33 34.45 1.63 

LUBE 98.33 -0.67 32.25 1.20 

BELM 98.75 -0.25 33.44 1.03 

TABLE VI 

THE RESULTS OF PI CONSTRUCTION FOR CASE 2 

Horizon PINC Method 
𝑃𝐼𝐶𝑃  
(%) 

𝐴𝐶𝐸  
(%) 

𝑃𝐼𝑁𝐴𝑊  
(%) 

|𝑆𝑐|  
(%) 

30-min 

95% 

FADiE 95.83 +0.83 21.00 2.76 

PSO-QR 92.71 -2.29 30.08 4.05 

LUBE 93.75 -1.25 23.65 3.55 

BELM 94.79 -0.21 25.80 3.65 

99% 

FADiE 99.17 +0.17 29.25 0.78 

PSO-QR 97.50 -1.50 34.80 1.09 

LUBE 97.70 +1.30 31.20 1.15 

BELM 98.12 -0.88 32.54 1.03 

1-hour 

95% 

FADiE 95.41 +0.41 25.10 3.40 

PSO-QR 94.58 -0.42 37.53 4.83 

LUBE 94.17 -0.83 28.75 4.20 

BELM 94.58 -0.42 30.50 4.38 

99% 

FADiE 99.58 +0.58 37.45 0.89 

PSO-QR 97.08 -1.92 45.12 1.96 

LUBE 97.91 -1.09 41.25 1.25 

BELM 99.17 +0.17 43.20 1.43 

approach. Moreover, using point prediction approach and the as-

sumption of Gaussian distribution for data noise and prediction 

model uncertainty might affect the quality of PIs in BELM ap-

proach. The definition of a certain cost function in a heuristic opti-

mization problem, with the possibility of entrapping in local minima, 

is one reason low-quality PIs are generated in the PSO-QR and 

LUBE approaches. Even if these optimization problems can be effi-

ciently solved to give a global solution, a better solution might exist 

because the defined cost functions might not reflect a suitable crite-

rion to lead to the best solution. However, to improve the results and 

computational efficiency of the QR approach, the cost function can 

be linearly formulated with the linear model of ELM and efficiently 

solved with a linear programming approach. However, no linear 

formulation has yet been suggested for LUBE. 

Statistical analysis of the results for Cases 1 to 3 shows that, for 

CL=95% and the 30-min prediction horizon, PSO-QR, LUBE, and 

BELM have average reliability values of 93.05, 94.10, and 95.07%, 

respectively, while this value is 95.55% for the FADiE framework. 

In addition, 𝑃𝐼𝑁𝐴𝑊𝑎𝑣𝑔 for the FADiE framework is 16.14%, but it 

equals to 21.88, 19.41, and 20.26% for the respective benchmark 

methods. The  same  analysis for CL=95% and the 1-hour prediction  
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TABLE VII 
THE RESULTS OF PI CONSTRUCTION FOR CASE 3 

Horizon PINC Method 
𝑃𝐼𝐶𝑃  
(%) 

𝐴𝐶𝐸  
(%) 

𝑃𝐼𝑁𝐴𝑊  
(%) 

|𝑆𝑐|  
(%) 

30-min 

95% 

FADiE 95.41 +0.41 15.27 1.83 

PSO-QR 93.12 -1.88 18.60 2.94 

LUBE 93.75 -1.25 18.98 2.76 

BELM 94.58 -0.42 19.05 2.72 

99% 

FADiE 99.79 +0.79 24.63 0.49 

PSO-QR 96.45 -2.55 29.90 1.45 

LUBE 97.70 -1.30 27.05 1.02 

BELM 98.12 -0.88 28.15 1.05 

1-hour 

95% 

FADiE 96.25 +1.25 18.86 2.30 

PSO-QR 93.75 -1.25 28.65 4.29 

LUBE 94.17 -0.83 23.03 3.01 

BELM 95.41 +0.41 25.50 3.07 

99% 

FADiE 99.17 +0.17 23.66 0.60 

PSO-QR 96.25 -2.75 35.47 1.77 

LUBE 97.91 -1.09 28.20 1.04 

BELM 98.75 -0.25 32.44 1.00 

horizon indicates average values of 94.16, 94.72, and 95.41% for 

𝑃𝐼𝐶𝑃 across Cases 1 to 3 for the respective benchmarks, while an 

average reliability of 95.82% is obtained using FADiE. 𝑃𝐼𝑁𝐴𝑊𝑎𝑣𝑔 

values are 29.60, 24.51, and 26.16% for the three respective bench-

marks, while for FADiE is 19.39%. Although the benchmarks can 

achieve the desired reliability on average, they cannot generate sharp 

PIs compared with the FADiE framework. Based on Tables V to 

VII, the same analysis can be done to show the superior performance 

of FADiE for CL=99%. 

To evaluate the ARIMA approach, the lower/upper quantiles ob-

tained by the DiE are predicted using ARIMA(1,1,2). The results 

presented in Tables VIII and IX, for 30-min and 1-hour prediction 

horizons respectively, illustrate that the optimal value of BW growth 

factor, 𝛾opt, changes from season to season according to the level of 

wind power volatility. For 30-min horizon in Case 4, 𝑃𝐼𝑁𝐴𝑊𝑎𝑣𝑔 has 

values of 16.48, 11.46, and 8.55%, while for 1-hour horizon, it takes 

greater values 28.24, 19.78, and 13.90% for ARIMA(1,1,2), LP-QR, 

and FADiE, respectively. In both tables for all seasons, FADiE con-

structs very sharp PIs with desired reliability, i.e., 95%. Although 

ARIMA(1,1,2) can achieve the desired reliability, the PIs are not 

sharp. LP-QR cannot meet the 𝐴𝐶𝐸 criterion for summer case, while 

it generates sharper PIs compared with ARIMA(1,1,2). 

The constructed PIs with CL=95% obtained by the proposed 

FADiE framework and the corresponding real wind power values 

over a period of ten days are illustrated in Figs. 11-13 for Cases 1 to 

3, respectively. These figures illustrate how well the PIs constructed 

by the proposed framework can preserve the sharpness and enclose 

the measured wind power for these three different wind power da-

tasets with different nominal capacities. The results demonstrate the 

flexibility and robustness of the framework to provide high-quality 

PIs. The promising results show that decision-making conditions 

with prediction horizons ranging from minutes to hours, such as 

wind farm control, electricity market, optimal reserve dispatching, 

and so on, can benefit from the proposed WPP uncertainty quantifi-

cation. 

VII. CONCLUSION 

This paper proposed a fast and efficient general framework for 

probabilistic prediction of wind power generation based on the con-

cept of optimal bandwidth selection for a diffusion-based kernel 

density estimator. Because the framework avoids historical deter-

ministic prediction results, any assumptions about prediction error 

and data noise, and widely-used cost-function based optimization 

problems in the literature, it has the potential to outperform other 

approaches in terms of evaluation criteria, computational efficiency, 

and practicality. It can also be efficiently used for probabilistic pre-

diction of solar generation and electricity load containing special  

TABLE VIII 

THE RESULTS OF PI CONSTRUCTION FOR CASE 4, 30-MIN AHEAD. 

Prediction 
Horizon 

30-min (PINC=95%) 
𝜸𝐨𝐩𝐭−𝐒𝐩 = 𝟎.𝟕, 𝜸𝐨𝐩𝐭−𝐒𝐮 = 𝟎. 𝟔, 𝜸𝐨𝐩𝐭−𝐀𝐮 = 𝟎. 𝟔, 𝜸𝐨𝐩𝐭−𝐖𝐢 = 𝟎. 𝟕 

Method FADiE LP-QR ARIMA(1,1,2) 

Indices 
𝑃𝐼𝐶𝑃 
(%) 

|𝑆𝑐| 
(%) 

𝑃𝐼𝐶𝑃 
(%) 

|𝑆𝑐| 
(%) 

𝑃𝐼𝐶𝑃 
(%) 

|𝑆𝑐| 
(%) 

Spring 97.29 0.82 95.21 1.01 95.63 1.56 
Summer 94.58 1.04 92.50 1.49 94.17 2.00 
Autumn 97.50 0.89 95.63 1.36 96.04 1.59 
Winter 96.04 1.25 95.42 1.78 95.00 2.07 
𝑃𝐼𝑁𝐴𝑊𝑎𝑣𝑔 8.55 11.46 16.48 

TABLE IX 

THE RESULTS OF PI CONSTRUCTION FOR CASE 4, 1-HOUR AHEAD. 

Prediction 
Horizon 

1-hour (PINC=95%) 
𝜸𝐨𝐩𝐭−𝐒𝐩 = 𝟏.𝟎, 𝜸𝐨𝐩𝐭−𝐒𝐮 = 𝟐. 𝟎, 𝜸𝐨𝐩𝐭−𝐀𝐮 = 𝟏. 𝟎, 𝜸𝐨𝐩𝐭−𝐖𝐢 = 𝟏. 𝟔 

Method FADiE LP-QR ARIMA(1,1,2) 

Indices 
𝑃𝐼𝐶𝑃 
(%) 

|𝑆𝑐| 
(%) 

𝑃𝐼𝐶𝑃 
(%) 

|𝑆𝑐| 
(%) 

𝑃𝐼𝐶𝑃 
(%) 

|𝑆𝑐| 
(%) 

Spring 96.25 1.17 95.42 1.88 95.42 3.06 
Summer 95.83 1.77 93.75 2.30 95.42 3.13 
Autumn 95.00 1.46 95.83 2.38 94.17 3.26 
Winter 96.25 2.03 94.58 3.08 95.00 3.25 
𝑃𝐼𝑁𝐴𝑊𝑎𝑣𝑔 13.90 19.78 28.24 

 

 
Fig. 11.  The constructed PI for 1-hour prediction horizon for Case 1 (AESO). 

 
Fig. 12. The constructed PI for 1-hour prediction horizon for Case 2 (Centennial). 

 
Fig. 13.  The constructed PI for 1-hour prediction horizon for Case3 (Sotavento). 

patterns in the time series. The key point of the framework is that its 

performance can be optimally oriented via a fuzzy inference system 

and a tri-level adaptation function to capture the inherent uncertainty 

of non-stationary wind power time series in different seasons as well 

as the uncertainty of the prediction model. The high efficiency of the 

framework is verified using simulations with datasets from different 

wind farms and different seasons. Compared to previous approaches, 

the framework can provide both reliable and very sharp PIs for pow-

er system operators. Although the framework uses simultaneous 

processes for construction of the output datasets for prediction mod-

el training, which might make the implementation challenging, this 

does not decrease the computational efficiency because parallel pro-

cessing is applied. Future work could further improve the perfor-

mance of the proposed framework by incorporating techniques that 

provide a priori knowledge about the chaos level of the time series 

under study. The combination of these techniques with parallel com-

puting processes provides an opportunity for better training of the 



prediction model for longer prediction horizons. 
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