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Abstract—This paper addresses a novel approach for rotor angle 

stability prediction in power systems. In the proposed framework, a 

fault cluster (FC) concept is introduced to divide an electrical net-

work into several disparate zones. FCs are determined in accord-

ance with the installed PMU locations so that the well-developed 

wide-area fault detection modules can estimate the origin of any 

fault in the network among FCs. The proposed framework assigns a 

stability prediction model to each FC. Parameters of the Thévenin 

equivalent network (TEN) seen from some generators are calculated 

both in steady-state and during fault; the TEN parameters are then 

applied as inputs to the prediction models. The proposed method 

benefits from parallel computation in the training process and does 

not require post-fault data. The performance of the proposed dis-

tributed framework is validated on several IEEE test systems, fol-

lowed by a discussion of results. 

 

Index Terms—Decision tree, fault cluster (FC), feature selection, 

phasor measurement unit (PMU), Thévenin equivalent, transient 

stability. 

 

I. INTRODUCTION 

OWER systems are usually confronted with various weather 

conditions and fortuitous events that may lead to incidents 

causing partial or complete instability of the network. Transient 

stability refers to the ability of the system to maintain synchro-

nism of generators and bring itself back to a stable steady-state 

following a large disturbance [1]. Transient instability is among 

the most infrequent, yet most severe, events in power systems 

and can bring about unintended islanding, cascading outages, and 

widespread blackouts.  

Conventionally, power system operating limits are conserva-

tively set to prevent system instability; therefore, optimal exploi-

tation of the existing facilities is confined [2]. However, rapid 

development of phasor measurement units (PMUs), as part of the 

wide-area measurement system, paved the way for network oper-

ation closer to stability limits. Early prediction of rotor angle sta-

bility based on PMU data can trigger sets of emergency control 

strategies that can prevent or reduce destructive impacts of large 

disturbances [3]. 

Several methods and algorithms have been developed for rotor 

angle stability prediction in recent years. Time-domain analysis 
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of an identified event with respect to the system parameters is the 

most conventional and accurate approach to tackle this problem 

[4], [5]; however, unaffordable computational burden hinders its 

application to online prediction [6]. Transient-energy-function 

based algorithms form another group of techniques in which var-

iations of kinetic and potential energies against reference values 

are employed as criteria for stability assessment [7], [8]. None-

theless, calculating levels of these energies following certain 

contingencies is challenging in real-life power systems [9].  

Data-driven approaches offer an alternative framework for 

online stability prediction; these methods engage sophisticated 

artificial intelligence (AI) techniques to find a prediction model 

over a large set of training data obtained by offline analysis. No-

tably, data-driven based algorithms (DDA) have garnered interest 

in recent years due to their advantages in real-time applications 

[10]–[17]. Various techniques have been developed based on this 

approach for either pre- or post-fault system variables. In [10], 

post-fault rotor angles of generators are preprocessed and then 

fed into a hybrid classifier composed of probabilistic neural net-

works (NNs). Application of adaptive artificial NNs is also in-

vestigated in [11] in which a pre-disturbance operating point is 

employed to predict system stability. Performance of a support 

vector machine is evaluated in [12], [13]; in both papers, post-

fault rotor angles are used as inputs to the prediction model, 

though [12] also uses generator speeds and voltages in the train-

ing process. Significant success with robustness of decision tree 

(DT) [13]–[15], core vector machine [16], and extreme learning 

machine [17] have been reported; furthermore, new indices have 

been introduced for feature extraction in [14], [15] and a feature 

selection process employed by [16] and applied to a wide array 

of pre- and post-disturbance parameters in the specialized litera-

ture. 

To date, the majority of AI-based algorithms for stability pre-

diction have been formed based on post-fault or pre-disturbance 

information [9]–[17]. However, PMU devices benefit from high 

sampling rates and can provide useful data during a fault, even 

though it is very short [18]. Recent publications use the first few 

cycles of post-disturbance data (~2 cycles), which is less than the 

duration of a large proportion of faults observed in real-life sys-

tems [9], [17]. Thus, performance of the data extracted from syn-

chronized measurement devices during disturbances can be eval-

uated with more focus. 

Moreover, the structure of DDAs to address the current prob-

lem has remained largely unchanged in recent years; therefore, 

several recent advancements in PMU-related studies can now be 

included in the stability prediction problem. Amongst them, fault 
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location detection and fault area estimation are introduced in 

[18]–[20] and online event and fault type detection are reported 

in [21], [22]. These methods realize a reliable estimate of fault 

area, fault type, and fault duration, which are determinative fac-

tors in system instability. Moreover, some state-of-the-art algo-

rithms can determine real-time parameters of the Thévenin 

equivalent network (TEN) seen from different buses by means of 

PMU measurements [23]–[25]. The TEN is widely used in vari-

ous power system analysis problems; however, its efficacy in 

DDA-based stability prediction requires further investigation. 

Although past methods conduct offline simulations in parallel 

to shape the database, the overall training process does not bene-

fit from parallel computation because the training process begins 

once the whole database is constructed. Such deficiency may ei-

ther confine application of some AI-based methods or curb the 

generation of more training data in large-scale networks [26]. 

In addition, considering the importance of quick action against 

instability, several methods have been introduced in recent years 

to try and reduce the amount of post-fault data required for faster 

prediction of stability status [9], [17]. Thus, approaches that can 

predict stability without post-fault data not only decrease re-

sponse time to the lowest possible value but can also be used in 

conjunction with [9]–[17] to increase the performance of and 

confidence in the prediction process. 

Aimed at addressing the above-mentioned shortcomings of the 

prediction approaches proposed to date, and benefiting from ad-

vancements in PMU-related studies, a novel framework is put 

forward. A fault cluster (FC) concept is developed in which a 

typical network is divided into several areas to ensure perfor-

mance of the prevalent fault area estimation and fault detection 

algorithms with respect to the PMU layout. A new feature extrac-

tion approach is employed in which parameters of the TEN seen 

from generators are calculated both in steady-state and during 

fault. A feature selection algorithm is also employed to minimize 

the required amount of input data and subsequently increase the 

robustness of the proposed method against PMU losses. The de-

veloped approach finds a prediction model for each FC, solely 

relying on a portion of training data dedicated to faults occurring 

in that area. Thus, it takes advantage of parallel processing in the 

training stage. Finally, the effectiveness of the developed frame-

work is assessed and compared with existing approaches using 

several IEEE test systems, including 10-, 16-, 48-, and 50-

machine networks. 
 

II. METHODOLOGY 

As noted above, outcomes of recent studies on PMU applica-

tions are used in this paper to form a novel stability predication 

framework. Explanations and justifications for the adaptability of 

such approaches to the current problem are described in this sec-

tion. 

 

A. PMU-Based Fault Location Estimation 

Once a fault occurs in a power system, voltages measured at 

buses near the fault location observe the largest changes in com-

parison  to other  parts  of the network.  PMU data can be used to 

 

Fig.  1. FCs in a network with PMUs located on buses 1, 3, 6, and 9. 

 

find exact fault locations in a fully-observable network [27]. 

However, considering line outages, PMU failures, and unavaila-

bility of PMUs at every bus of the network, precise fault locating 

may not always be possible. In these cases, fault region identifi-

cation can be calculated with a limited number of PMUs [18]–

[20]. The authors of [18] introduced an algorithm in which the 

suspicious fault region is computed with 100% accuracy. In [19], 

a travelling wave-based method is employed to estimate fault ar-

eas while PMUs are distributed based on a given limited depth-

of-unobservability (DOU) [27], [28]. Finally, [20] addresses a 

fault estimation method in which PMUs are only installed in 

generation buses. 
 

B. The Proposed Fault Cluster (FC) Concept 

Based on the explanations in the previous section, recent ad-

vancements have made it feasible to obtain a reliable estimate of 

the fault area even with a limited number of PMUs. At least two 

PMUs should be installed in an interconnected network for fault 

area detection purposes [18]; as the number of PMUs in a net-

work increases, fault detection can be accomplished with more 

accuracy. Based on information about the fault area, stability 

prediction of a bulk power system can be conducted by zeroing 

in on the analysis of the suspicious FC. This approach not only 

omits a huge amount of irrelevant data used in the prediction 

phase, but also markedly enhances the accuracy and speed of the 

estimator and facilitates distributed computing in the training 

process. 

The main reasoning behind the FC concept is to divide an 

electrical system into several disparate areas, called FCs. In this 

way, the prevalent wide-area fault detection methods can deter-

mine the fault location among FCs [18]–[20], [27].  

Fig. 1. represents an illustrative example in which a 10–bus 

network is reinforced by four PMUs. PMUs are distributed so 

that bus 7 remained unobservable. In this case, a fault occurring 

in lines that are connected to that bus but may not be exactly 

identified, though the fault area can be recognized with accepta-

ble reliability [18]–[20]. Hence, all lines connected to bus 7 are 

selected as a single FC. The figure shows that the remaining lines 

are chosen as independent FCs because buses at both ends of the 

lines are observable; thus, the 10-bus network is dissected into 

nine FCs as shown in Fig. 1. 

Different from the prior stability prediction methods in which 

a single model is trained for the whole network, this study trains 

and assigns a prediction model to each FC; as such, nine different  
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Fig.  2. FCs in a network with PMUs located on buses 1, 3, and 6. 

 
models will be developed for Fig. 1. Because the FCs play a 

weighty role in the proposed approach, they should be defined so 

that loss of lines or PMU failures does not affect the fault area 

estimation [27]. The following steps explain the FC detection 

method used in this paper. 
 

1) Receive data 

A set of line and PMU outages (Ω𝑂), set of network lines (Ω𝑙), 

and set of PMUs (Ω𝑝) are received from the user. Note that 

|Ω𝑂| = |Ω𝑙| + |Ω𝑝| + 1 in order to consider a normal network to-

pology accompanied by all possible single line and PMU outag-

es. 
 

 

2) Find observable buses and lines 

For each array of Ω𝑂, such as 𝑠, a set of observable buses (Ω𝑠
𝑜𝑏) 

and observable lines (Ω𝑠
𝑜𝑙) are constructed by (1)–(4): 

 

               Ω𝑠
𝑜𝑏 = {∀ 𝑖 ∈ Ω𝑏 | 휁𝑖 = 1} (1) 

Ω𝑠
𝑜𝑙 = {∀ 𝑖 ∈ Ω𝑙 | 휁𝑘 = 휁𝑗 = 1, (𝑘, 𝑗) ∈ Ω𝑖

𝑏} (2) 

                   휁𝑖 = {
1 𝑓𝑖

𝑜𝑏 ≥ 1

0 𝑓𝑖
𝑜𝑏 = 0

           ∀ 𝑖 ∈ Ω𝑏 (3) 

 

               𝑓𝑖
𝑜𝑏 = ∑ 𝛽𝑘

𝑘∈Ω𝑖
𝑛𝑒

                     ∀ 𝑖 ∈ Ω𝑏 (4) 

 

where Ω𝑏 and Ω𝑖
𝑏 are the set of network buses and pair of buses 

connected to line 𝑖, respectively; 휁𝑖 represents a binary decision 

variable that is equal to 1 if bus 𝑖 is observable and 0 otherwise; 

𝑓𝑖
𝑜𝑏 is an observability function of bus 𝑖; 𝛽𝑘 indicates a binary 

decision variable that is equal to 1 if a PMU is installed at bus 𝑖 
and 0 otherwise; and Ω𝑖

𝑛𝑒 stands for a set of neighboring buses of 

bus 𝑖, including itself. 

 
 

3) Find initial FCs 

While observable buses and lines are calculated in the previous 

stage, a set of FCs is defined for each array of Ω𝑂. To this end, 

each observable line is considered to be a single FC. Then, all 

observable lines are removed from Ω𝑙 to form a new system for 

further investigation. Afterwards, the first bus of the new system 

is selected and the depth-first search (DFS) algorithm is conduct-

ed to find the interconnected subgraph connected to this bus [29]. 

The elements of this entire subgraph are considered to be another 

FC and are removed from Ω𝑙. The DFS is applied to another un-

observable bus of the new system and this process continued un-

til |Ω𝑙| = 0. 

TABLE I 
FCS OBTAINED FOR FIG. 1 UNDER DIFFERENT CONTINGENCIES 

 

Case 
Failed 
PMU 

# of 
FCs 

FCs 

1 -- 9 {},{},{},{},{},{,},{},{},{} 

2 bus 1 9 {},{},{},{},{},{,},{},{},{} 

3 bus 3 6 {},{,,,,},{},{},{},{} 

4 bus 6 7 {},{},{},{,,},{,},{},{} 

5 bus 9 7 {},{},{},{},{},{,,,},{} 

Cases 1–5  12 
{},{},{},{},{},{,},{},{},{},{,,}, 

{,,,,},{,,,} 

 

4) Determine final FCs 

To find the final FCs, the union operator is applied to the ini-

tial FCs obtained in the latter stage.  
 

The 10-bus system shown in Figs. 1–2 is employed to provide 

more information about the overall FC determination algorithm. 

Two different contingencies are considered: 1) no loss of line or 

PMU and 2) loss of PMU located at bus 9. For the former case, 

as illustrated in Fig. 1, bus 7 is unobservable based on the formu-

lation addressed in Step 2. All unobservable buses and lines are 

shown by hatched area. Lines – and – are observable 

and each will form a single FC. By removing these lines from the 

network, each connected subgraph with at least one line will be 

considered as an FC. In this case, one subgraph consisting of 

lines  and  is available. Thus, nine FCs, as shown in Fig. 1, 

are available for the first case. The network of the second study 

is shown in Fig. 2. In this case, buses 7–9 are unobservable. 

Lines – and  create distinct FCs and a subgraph consisting 

of lines – form a single FC. Hence, seven FCs are available 

in the latter case, as shown in Fig. 2.  

The obtained initial FCs associated with the discussed cases 

accompanied by those of other PMU outages are summarized in 

Table I. The table shows that 12 FCs are selected as the final FC 

layout for this network with respect to PMU failures; this means 

12 prediction models will be developed for this network. Note 

that line outages or other complex contingencies can be consid-

ered without loss of generality. Moreover, the FC determination 

algorithm is solved only once for any network but can be updated 

in case of network expansions.  
 

C. Thévenin Equivalent Network (TEN) Calculation 

The Thévenin equivalent represents a compact abstraction and 

accurate substitute of a network; it is widely used to solve vari-

ous power system problems in which a portion of the system data 

is unavailable [24]. With recent advancements in PMU technolo-

gy, the TEN parameters can be efficiently determined in real-

time, especially in cases with considerable changes in power fre-

quency [27]. If the generator dynamics are faster than the grid 

dynamics, the grid can be replaced by its TEN representing a 

single voltage source (𝑣𝑖
𝑇) in series with an impedance (𝑧𝑖

𝑇), as 

shown in Fig. 3. At each instant of time (𝑡), the TEN parameters 

seen from a generator (𝑖) can be calculated with two consecutive 

synchronized measurements, as follows [23]: 

                       𝑧𝑖
𝑇(𝑡) =

𝑉𝑖
𝐺(𝑡 + 1) − 𝑉𝑖

𝐺(𝑡)

𝐼𝑖
𝐺(𝑡 + 1) − 𝐼𝑖

𝐺(𝑡) + 휀
, ∀ 𝑖 ∈ Ω𝑔 (5)  

                      𝑣𝑖
𝑇(𝑡) = 𝑉𝑖

𝐺(𝑡) − 𝑧𝑖
𝑇(𝑡) . 𝐼𝑖

𝐺(𝑡) (6) 



 4 

 

Fig.  3. TEN seen from generator 𝑖. 

 

              𝑉𝑖
𝐺(𝑡 + 1) = 𝑉𝑖

𝐺(𝑡 + 1) . 𝑒−𝑗 ∆𝜑𝑖(𝑡+1) (7) 
 

               𝐼𝑖
𝐺(𝑡 + 1) = 𝐼𝑖

𝐺(𝑡 + 1) . 𝑒−𝑗 ∆𝜑𝑖(𝑡+1) (8) 

            ∆𝜑𝑖(𝑡 + 1) = Δ𝛼𝑖(𝑡 + 1) − Δ𝜃𝑖(𝑡 + 1) (9) 

            Δ𝛼𝑖(𝑡 + 1) = 𝛼𝑖(𝑡 + 1) − 𝛼𝑖(𝑡) (10) 

            Δ𝜃𝑖(𝑡 + 1) =
𝜋

4
 . 𝑅𝑂𝐶𝑂𝐹(𝑡 + 1) . 𝜆2 (11) 

 

where 𝑉𝑖
𝐺 and 𝐼𝑖

𝐺 are phasor values of the 𝑖th generator voltage 

and phase current, respectively. The overbars represent the modi-

fied phasor values in which the effects of phase shift and phase 

drift are considered via (5)–(11). Ω𝑔 shows a set of generator 

buses. 𝛼𝑖 and Δ𝛼𝑖 are the phase angle and its difference between 

two consecutive measured values at node 𝑖, respectively. Δ𝜃𝑖 in-

dicates the phase shift at node 𝑖 in which the rate of change of 

frequency (𝑅𝑂𝐶𝑂𝐹) and width of the time window (𝜆) between 

two tandem samples are considered. 휀 in (5) represents a very 

small value and is used to avoid infinite values once a generator 

is out of service. 

Fig. 4 shows the Thévenin equivalent impedance (TEI) seen 

from different generators of the IEEE 10-machine system when a 

3-phase fault is applied on bus 16 at 0.1 s and cleared at 0.3 s. 

The figure shows that the generators express stark contrast in TEI 

values both in steady-state and during fault. Fig. 5 represents the 

TEIs seen from generator 7 of the same system for several con-

tingency cases, as an illustrative example. It shows that TEI 

characteristics are different for different contingencies. Similar 

behavior was observed for Thévenin equivalent voltages. Based 

on the above discussion, it can be concluded that the TEN pa-

rameters provide easily discriminated features for different sys-

tem statuses, which might be helpful for transient stability pre-

diction. 
 

III. THE PROPOSED SOLUTION FRAMEWORK 

The proposed solution framework consists of feature extrac-

tion, feature selection, and training phases, as described below. 
 

A. Feature Extraction 

Three groups of features are employed in this study of stability 

prediction. 
 

1) Steady-state stability index 

This index measures the stability level of a system in pre-fault 

condition. A system that is operated close to its stability limits is 

more prone to instability phenomena in case of a fault compared 

to a system in which preventive prescriptions are strictly met. 

 
Fig.  4. Thévenin impedance seen from different generators of the 10-machine 

system with a fault occurring on bus 16 at 0.1 s and cleared at 0.3 s. 
 

 
Fig.  5. Thévenin impedance seen from generator 7 of the 10-machine system at 

different contingencies. 

 

Various indices have been introduced in the literature to assess 

system status based on rotor angles of generators. Here, the 

transient stability status at any instant of time is calculated as fol-

lows: 
                                                                                         

            𝜓𝑖(𝑡) =
𝛾 − Δ𝛿𝑖(𝑡)

𝛾 + Δ𝛿𝑖(𝑡)
, ∀ 𝑖 ∈ Ω𝐶  (12) 

Δ𝛿𝑖(𝑡) = max(|𝛿𝑖
𝑗(𝑡) − 𝛿𝑖

𝑘(𝑡)|) , ∀ 𝑗, 𝑘 ∈ Ω𝑔 (13) 

where 𝛿𝑖
𝑗(𝑡) is the rotor angle of generator 𝑗 at instant 𝑡 for con-

tingency 𝑖; Δ𝛿𝑖(𝑡) represents the maximum rotor angle deviation 

between any pair of generators at instant 𝑡 for contingency 𝑖; 𝛾 is 

a cut-off value for rotor angle difference among generators and is 

set to 2𝜋 in this paper; Ω𝐶  and Ω𝑔 show sets of fault contingenc-

es and generator buses, respectively; and 𝜓𝑖(𝑡) indicates the sta-

bility index of contingency 𝑖 at instant 𝑡, with positive (negative) 

values indicating a stable (unstable) network. 

For a cycle before fault occurring time, 𝑡𝐹−, 𝜓𝑖(𝑡𝐹−) is consid-

ered as the steady-state stability index of the system for contin-

gency 𝑖 and employed as one of the features in the prediction 

problem. 

2) Fault data related features 

As explained in Section I, event detection algorithms can be 

used in parallel with stability assessment algorithms. These 

methods can determine fault type (𝐹𝑇) and fault duration (𝐹𝐷) 
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by analyzing PMU data. Hence, 𝐹𝑇 and 𝐹𝐷 are considered to be 

features in this study. 
 

3) TEN parameters 

Assuming 𝑡𝐹+ and 𝑡𝐹𝐶− are cycles after the fault occurs and 

before the fault clearing time, respectively, the TEN parameters 

(𝑧𝑖
𝑇(𝑡), 𝑣𝑖

𝑇(𝑡)) seen from generators at 𝑡𝐹−, 𝑡𝐹+, and 𝑡𝐹𝐶− are con-

sidered new features for prediction purposes. Hence, six parame-

ters are calculated for each generator.  
 

B. Feature Selection 

The TEN parameters seen from generators at different time 

frames can provide a huge set of input features for the training 

process. However, because the number of features is relatively 

high for large-scale networks, it is vital to apply a feature selec-

tion technique to overcome the high dimensionality of the input 

space and consequently improve the computational efficiency. 

Moreover, this process can help to reduce the number of genera-

tors required for the prediction model and preserve the informa-

tive features. 

In this paper, a mutual information (𝑀𝐼) based approach, 

called minimum redundancy-maximum relevancy (mRMR), is 

employed for feature selection [30]. 𝑀𝐼 is widely used in the da-

tabase identification literature and is known as a measure of mu-

tual relevancy of variables. For two variables with observation 

domains 𝑋 and 𝑌, it is defined as [30]: 

𝑀𝐼(𝑋; 𝑌) = ∑  ∑ 𝑝(𝑥, 𝑦) .  log (
𝑝(𝑥, 𝑦)

𝑝(𝑥) .  𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (14) 

where 𝑝(𝑥, 𝑦) represents the joint probability distribution func-

tion (PDF) of 𝑋 and 𝑌, and 𝑝(𝑥) and 𝑝(𝑦) respectively denote 

the PDF of 𝑋 and 𝑌. 𝑥 and 𝑦 indicate any points belonging to 𝑋 

and 𝑌, respectively. Larger values of 𝑀𝐼 denote that the variables 

are more correlated. 

Assuming 𝐶 is the desired stability prediction vector resulting 

from offline analysis, the mRMR first tries to maximize the total 

relevance of all features (𝐹𝑖) in subset Ω𝐹𝑆
𝑇  of selected features as 

follows [30]: 

𝑀𝑎𝑥     𝑅𝐸𝐿(Ω𝐹𝑆
𝑇 , 𝐶) (15) 

𝑅𝐸𝐿(Ω𝐹𝑆
𝑇 , 𝐶) =

1

|Ω𝐹𝑆
𝑇 |

 .  ∑  𝑀𝐼(𝐹𝑖; 𝐶)

𝐹𝑖∈Ω𝐹𝑆
𝑇

 (16) 

Then, the redundancy of features with other elements of Ω𝐹𝑆
𝑇  is 

calculated as follows: 

𝑀𝑖𝑛     𝑅𝐸𝐷(Ω𝐹𝑆
𝑇 ) (17) 

𝑅𝐸𝐷(Ω𝐹𝑆
𝑇 ) =

1

|Ω𝐹𝑆
𝑇 |

2  .  ∑  𝑀𝐼(𝐹𝑖;   𝐹𝑗)

𝐹𝑖,𝐹𝑗∈Ω𝐹𝑆
𝑇

 
(18) 

Finally, the mRMR simultaneously maximizes 𝑅𝐸𝐿 and mini-

mizes 𝑅𝐸𝐷 by (19): 

𝑀𝑎𝑥
Ω𝐹𝑆

𝑇 ⊂Ω𝑇  
𝜙(𝑅𝐸𝐿, 𝑅𝐸𝐷, ) (19) 

𝜙 = 𝑅𝐸𝐿 − 𝑅𝐸𝐷 (20) 

TABLE II 
DATA FOR THE NETWORKS USED IN SIMULATIONS 

 

Network |Ω𝑏| |Ω𝑙| 
# of 

  Transformers.    

  # of Training cases 

(unstable %) 

# of Test cases  

(unstable %) 

10-machine 39 34 12 12000 (28.45%) 3000 (21.77%) 

16-machine 68 66 20 15000 (12.81%) 3000 (12.33%) 

48-machine 140 206 27 17000 (18.55%) 3000 (18.76%) 

50-machine 145 401 52 17000 (15.39%) 3000 (15.83%) 
 

 

where Ω𝑇  is a set containing all TEN parameters. Once 𝑅𝐸𝐿 and 

𝑅𝐸𝐷 are calculated by (16) and (18), a set of TEN parameters 

selected by the feature selection algorithm (Ω𝐹𝑆
𝑇 ), through (19), 

will be used for training purposes, as described next. 
 

C. The Training Process 

Based on the proposed approach, a prediction model is found 

for each FC; the data used for the training process are limited to 

the area covered by that FC. The features introduced in Section 

III.A.3 are extracted and the mRMR feature selection method is 

applied to the training data. The set of Ω𝐹𝑆
𝑇  accompanied by the 

steady-state stability index (𝜓𝑖(𝑡𝐹−)), 𝐹𝑇, and 𝐹𝐷, which are in-

troduced in Section II.A, are used as the input features of the 

prediction engine. 

In this paper, ensemble DT is employed to find the optimal 

classifiers. DT is amongst the most frequently used non-

parametric supervised classification techniques [14]. It tries to 

build a model that predicts the value of a target variable by learn-

ing simple decision rules, which are inferred from the data fea-

tures. An ensemble algorithm consists of a set of classifiers with 

multiple learning algorithms that find the relation between input 

features and output target values for different classifiers whose 

predictions are combined to improve generalizability/robustness 

over a single classifier [13]. In an ensemble DT, a given database 

is used to create multiple training sets and a DT-based classifier 

is developed for each of them. For a new object, each classifier 

returns its prediction as a vote and the ensemble returns the final 

decision considering all votes. Several methods have been intro-

duced in the literature to construct DTs and the voting procedure. 

In this work, the DTs are built with the standard classification 

and regression tree (CART) and the ensembles are formed based 

on the boosting technique [13]. Detailed descriptions of DTs and 

ensemble DTs as well as their application to stability prediction 

are provided in [13]–[15]; they are not a part of the contribution 

of this paper and any other tools can be used without loss of gen-

erality. 

IV. TEST AND RESULTS 

To solve the stability prediction problem by the proposed 

method, the described framework is realized in a MATLAB envi-

ronment. Several case studies, including IEEE 10-, 16-, 48-, and 

50-machine systems, are employed to evaluate the effectiveness 

of the proposed method. The data required for offline analysis 

are shown in Table II and generated through the power system 

toolbox (PST) package [31]. In preparation for the training and 

test cases, various types of faults are considered; some modifica-

tions are implemented in the simulation package based on [32] so 

that faults can be applied at any point along the transmission 

lines.  The  load of each bus  is randomly changed between 0.65– 
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Fig.  6. Distribution of input samples in 𝐹𝑇, 𝐹𝐷, and 𝜓𝑖(𝑡𝐹−) plane for an FC 

representing line 16–17 of the 10–machine system. 
 

TABLE III 

SENSITIVITY ANALYSIS OF INPUT FEATURES ON PREDICTION ACCURACY OF THE 

10–MACHINE SYSTEM 
 

# 𝜓𝑖(𝑡𝐹−) 

𝐹𝑇
, 

𝐹𝐷 

Ω𝐹𝑆
𝑇  

Accuracy (%) 

Training Data Test Data 

Stable Unstable All Stable Unstable All 

1  - - 97.19 66.37 81.78 93.74 51.3 72.52 

2 -  - 95.34 68.36 81.85 94.42 65.08 79.75 

3 - -  99.95 99.84 99.90 98.30 92.34 95.32 

4   - 98.21 90.70 94.46 95.82 76.42 86.12 

5  -  99.96 99.88 99.92 99.02 94.03 96.53 

6 -   99.97 99.80 99.89 99.19 94.95 97.07 

7    100 100 100 99.19 95.1 97.15 

 

1.25 of the base value. Moreover, fault duration is randomly se-

lected between 2–15 cycles and fault resistance is arbitrarily cho-

sen based on the lower and upper values reported in [33] for dif-

ferent voltage levels. In addition, offline analysis is conducted so 

that 85, 14, and 1% of the whole cases are related to nominal 

power network topology, 𝑁 − 1, and 𝑁 − 2 contingencies, re-

spectively. Because PST is a frequency-domain simulator, any 

two consecutive voltage samples are the same in steady-state; so, 

𝑧𝑖
𝑇(𝑡𝐹−) would be equal to zero for all generators. To resolve this 

issue, a simple method proposed in [25] is used for TEN calcula-

tion during steady-state. All test systems are simulated for 6 s 

after the fault clearance [14]. Furthermore, PMUs are assumed to 

provide two measurement samples per cycle [3]. The computer 

used for the simulations featured an Intel 3.4–GHz CPU with 16 

GB of RAM. Two different scenarios are considered in this 

study, as will be discussed next. 
 

A. First Scenario 

The first scenario assumes that PMUs are installed in all buses 

of the network; thus, the number of FCs for each network is 

equal to the number of transmission lines (|Ω𝑙|), as shown in Ta-

ble III. The training process explained in Section III.C is con-

ducted for each FC and the results obtained are reported in Ta-

bles III–IV and Figs. 6–9. The classification accuracy for differ-

ent combinations of input features are shown in Table III for the 

10-machine system. The TEN data (Ω𝐹𝑆
𝑇 ) are able to reach aver-

age prediction accuracies of 99.90 and 95.32% for the training 

and test data, respectively.  Moreover, perfect classification accu- 

 
Fig.  7. Performance of the proposed method on training and test data. 
 

TABLE IV 
COMPARISON OF RESULTS OF DIFFERENT METHODS FOR STABILITY PREDICTION 

ON TEST DATA 
 

Method 10-machine 16-machine 48-machine 50-machine 

Proposed 97.15% 97.37% 99.89% 96.19% 

𝑉-PF 95.06% 94.61% 96.25% 94.30% 

𝛿-PF 92.10% 90.27% 91.68% 90.56% 

𝑉-DF 95.22% 94.82% 97.36% 94.21% 

𝛿-DF 88.49% 89.53% 90.04% 86.78% 

 

racy results when  all features are employed in the training phase 

of DTs. Such outcomes not only verify the importance of the 

TEN parameters proposed in this paper, but also clarify the effec-

tiveness of 𝜓𝑖(𝑡𝐹−), 𝐹𝑇, and 𝐹𝐷 on overall performance, though 

each of them alone may not lead to high prediction accuracy. To 

better illustrate the effects of 𝜓𝑖(𝑡𝐹−), 𝐹𝑇, and 𝐹𝐷, distribution 

of 262 training cases associated with an FC representing faults 

applied on line 16–17 is shown in Fig. 6. The figure shows that 

samples with lower 𝜓𝑖(𝑡𝐹−) are more prone to instability. 

Performance of the proposed framework is compared with 

state-of-the-art techniques in Table IV. In this table, 𝑉-PF and 𝛿-

PF respectively represent methods in which 20-cycles of post-

fault voltages and rotor angles are used for stability prediction 

[12], [13]. For the sake of better illustration, in this study both 

methods are solved with ensemble DT; however, a single model 

is trained for the whole database as the FC concept is not consid-

ered in [12], [13]. Comparing the results obtained for the pro-

posed algorithm with those of 𝑉-PF and 𝛿-PF clearly reveals the 

superior performance of the hybrid FC and Thévenin equivalent-

based framework for stability prediction. The classification 

accuracy of voltage samples are noticebly better than rotor 

angles, which corroborates the conclusion of [12]. Moreover, the 

proposed method outperformed other methods in all networks. 

Notably, 𝑉-PF and 𝛿-PF require 20 cycles of post-fault data, 

which means they respond almost 0.33 s later than the proposed 

method. 

Two extra algorithms, 𝑉-DF and 𝛿-DF, are also developed to 

analyze the effects of TEN parameters in more detail. 𝑉-DF and 

𝛿-DF respectively stand for an algorithm in which the voltage 

and rotor angle of generators during fault (at 𝑡𝐹−, 𝑡𝐹+, 𝑡𝐹𝐶−) are 

used instead of Ω𝐹𝑆
𝑇  in the proposed framework. Table IV shows 

that TEN parameters are more beneficial than voltage samples; 

this is because TEN parameters contain Thévenin voltages seen 

from generators, which almost cover the information of bus 

voltage samples.  Detailed  information  on the proposed classifi- 
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Fig.  8. Performance of the proposed method on test data. 

 

TABLE V 

SENSITIVITY ANALYSIS OF PMU LOCATIONS WITH COMPLETE OBSERVABILITY 

ON PREDICTION ACCURACY OF TEST DATA FOR THE 10-MACHINE SYSTEM 
 

Test Ref. 
# of 

PMUs 
PMU locations 

# of  

FCs 

Accuracy 

(%) 

1 [34] 8 3, 8, 13, 16, 20, 23, 25, 29 94 98.27 

2 [35] 16 
8, 10, 16, 18, 24, 26, 28, 30, 31, 32, 33, 

34, 35, 36, 37, 38 
111 98.60 

3 [35] 17 
2, 3, 6, 8, 10, 12, 16, 20, 21, 23, 25, 26, 

29, 34, 36, 37, 38 
54 97.49 

4 [35] 18 
3, 4, 8, 16, 20, 23, 25, 26, 29, 30, 31, 

32, 33, 34, 35, 36, 37, 38 
79 97.73 

5 -- 39 On all buses 34 97.15 

 

cations is represented in Fig. 8. 

To analyze the effects of the FC concept, the proposed input 

features in Section III.A are employed to find a single model for 

the whole training set. The results of this experiment are depicted 

in Fig. 9, which shows that the FC concept substantially im-

proved the efficacy of the prediction technique; among the stud-

ied systems, the 48-machine network experienced the greatest 

change, with prediction accuracy decreasing from 99.89 to 

96.28% if the FCs are ignored. 
 

B. Second Scenario 

This scenario aims to investigate the performance of the pro-

posed method with respect to various PMU locations and practi-

cal issues. Different PMU locations reported in [34], [35] for the 

10-machine network are considered in this examination, as 

shown in Table V. All PMU layouts meet the observability con-

straint for nominal network topology. Moreover, PMUs in “Test 

2”, “Test 3”, and “Test 4” are respectively distributed so that the 

network remains observable in the case of single line, single 

PMU, and single line and PMU outages. In addition, PMUs are 

installed in all buses in “Test 5”, which represents the situation 

considered in the First Scenario. The FCs associated with each 

PMU layout are calculated based on the procedure explained in 

Section II.B and a prediction model is trained for each of them. 

The results obtained for the different analyses are shown in Table 

V. Because 𝑁 − 2 contingences are considered in database gen-

eration, both 𝑁 − 1 and 𝑁 − 2 contingences for lines accompa-

nied by 𝑁 − 1 for PMU failures are considered when preparing 

possible outage sets (Ω𝑂). As can be seen in this Table, 111 FCs 

are identified for “Test 2”; the FC determination algorithm calcu-

lated these FCs in 4.05 s. It is empirically seen in simulations that  

 
Fig.  9. Performance of the proposed method with/without the FC concept. 

 

TABLE VI 

RESULTS OF PREDICTION ACCURACY OF TEST DATA FOR DIFFERENT PMU 

LOCATIONS WITH INCOMPLETE OBSERVABILITY 
 

Test situation 10-machine 16-machine 48-machine 50-machine 

Without PMU noise 97.11% 97.19% 99.35% 95.82% 

With PMU noise 95.65% 95.91% 97.82% 94.78% 

 
the maximum FC calculation time for various PMU locations of 

about 381.77 s belongs to the 50-machine system. Furthermore, 

the overall training time associated with these FCs was about 

869.85 s; considering the parallel nature of the proposed frame-

work, the training time decreased to 13.07 s while running on a 

64 processor Intel E5-2660 2.0-GHz CPU with 64 GB of RAM. 

Table V shows that the prediction accuracy increases from 97.15 

to 98.60% by increasing the number of FCs from 34 to 111. 

However, increasing the number of PMUs, while the system is 

observable, does not necessarily lead to more FCs and conse-

quently better classification accuracy. For instance, the lowest 

accuracy in Table V is related to a situation in which PMUs are 

installed in all buses (“Test 5”). In comparison with “Test 1” in 

which 94 FCs are required, the FCs in “Test 5” cannot provide 

any extra information about the system configuration as they re-

main unchanged for all discussed contingencies (such as line 

failures). 

To evaluate the effects of PMU layout with incomplete ob-

servability, PMU locations are calculated based on [28]. Three 

different PMU locations are generated for each network and the 

stability prediction problem is repeated. Average classification 

accuracies are reported in Table VI. The results are very close to 

those of Table IV and show that the proposed framework can 

bring about satisfactory results with different numbers of PMUs. 

The performance of the proposed method is also investigated 

in the presence of PMU noise. To this end, all offline data are 

randomly changed by ±2% and the training process is repeated 

[9]. The results are illustrated in Table VI. Compared to the sit-

uation in which PMU noise is ignored, the average prediction 

accuracy of all networks decreases by 1.33%. Based on the IEEE 

C37.118.1-2011 standard, the total vector error of the phasor 

measured by PMU should be less than 1%; hence, the proposed 

method can perform better in real-life situations compared to this 

overly harsh analysis. 
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V. CONCLUSION 

This paper proposed a novel solution approach for transient 

stability prediction. The framework introduced, which is inspired 

by PMU related studies, employs an FC concept to find multiple 

prediction models for an interconnected power system. Feature 

extraction is conducted by obtaining TEN parameters at different 

instances of time in both steady-state and during fault. In addi-

tion, a feature selection algorithm is applied to decipher the most 

discriminative features as inputs of the training engine. The 

method developed was successfully tested on several IEEE test 

systems; the results obtained and comparisons reported show that 

the proposed approach is an effective tool for transient stability 

prediction of power systems. 

Further research could be conducted to enhance the perfor-

mance of the proposed method through different machine learn-

ing techniques. Moreover, because the introduced framework 

does not require post-fault data, its prediction might be used as 

an input feature for a wide array of stability prediction methods 

reported in the literature.  
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