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Abstract—Successful transition to active distribution networks 
(ADNs) requires a planning methodology that includes an accurate 
network model and accounts for the major sources of uncertainty. 
Considering these two essential features, this paper proposes a novel 
model for the multistage distribution expansion planning (MDEP) 
problem, which is able to jointly expand both the network assets 
(feeders and substations) and renewable/conventional distributed 
generators (DGs). With respect to network characteristics, the 
proposed planning model employs a convex conic quadratic format 
of AC power flow equations that is linearized using a highly accurate 
polyhedral-based linearization method. Furthermore, a chance-
constrained programming (CCP) approach is utilized to deal with the 
uncertain renewables and loads. In this regard, as the probability 
distribution functions (PDFs) of uncertain parameters are not 
perfectly known, a distributionally robust (DR) reformulation is 
proposed for the chance constraints (CCs) that guarantees the 
robustness of the expansion plans against all uncertainty 
distributions defined within a moment-based ambiguity set. Effective 
linearization techniques are also devised to eliminate the 
nonlinearities of the proposed DR reformulation, which yields a 
distributionally robust chance-constrained mixed-integer linear 
programming (DRCC-MILP) model for the MDEP problem of 
ADNs. Finally, the 24-node and 138-node test systems are used to 
demonstrate the effectiveness of the proposed planning methodology.          
 

Index Terms— Chance-constrained programming, distributionally 
robust optimization, mixed-integer linear programming (MILP), 
multistage distribution expansion planning (MDEP).      

I. NOMENCLATURE 
A. Sets/Indices  

𝛺𝑎/𝑎 , 𝜔 Set/indices of conductor types.   

𝛺𝑏/ 𝑏 Set/index of alternatives for substations. 

𝛺𝐹/ 𝑖𝑗 , 𝑘𝑖 Set/indices of feeder sections (𝛺𝐹𝐶 ∪ 𝛺𝐹𝐼 ∪ 𝛺𝐹𝑅).  

𝛺𝐹𝐶   Set of candidate feeder sections for construction.  

𝛺𝐹𝐼   Set of existing irreplaceable feeder sections.  

𝛺𝐹𝑅   Set of existing replaceable feeder sections.  

𝛺𝑔𝑐/ 𝑔 Set/index of alternatives for conventional DGs.  
𝛺𝑔𝑟/ 𝑔  Set/index of alternatives for renewable DGs.  

𝛺𝑁/ 𝑖 , 𝑗 Set/indices of nodes (𝛺𝑁𝐺 ∪ 𝛺𝑡
𝑁𝐿 ∪ 𝛺𝑁𝑆 ∪ 𝛺𝑡

𝑁𝑇 ). 

𝛺𝑁𝐺   Set of candidate nodes for DG installation.  

𝛺𝑡
𝑁𝐿 , 𝛺𝑁𝑆  Sets of load and substation nodes, respectively.  

𝛺𝑡
𝑁𝑇    Set of transfer nodes.  

𝛺𝑆  Set of substations (𝛺𝑆𝐶 ∪ 𝛺𝑆𝑅).  

𝛺𝑆𝐶   Set of candidate substations for construction.  

𝛺𝑆𝑅  Set of existing reinforceable substations.  

𝛺𝑇/ 𝑡, 𝜐 Set/indices of planning stages.  

C. Constants   

𝑎𝑖𝑗
𝐹𝐼 , 𝑎𝑖𝑗

𝐹𝑅 Initial conductor types of existing irreplaceable 
and replaceable feeder sections, respectively.  

𝑐𝐸  Energy cost ($/MWh).  

𝑐𝑔
𝐸𝐺𝐶  Generation cost of conventional DGs ($/MWh).   

𝑐𝑎
𝐹𝐶 , 𝑐𝑎

𝐹𝑅 Investment costs required to construct and replace 
feeder sections, respectively ($/km).  

𝑐𝑔
𝐺𝐶 , 𝑐𝑔

𝐺𝑅 Investment costs required to install conventional 
and renewable DGs, respectively ($).  

𝑐𝑏
𝑆𝐶 , 𝑐𝑏

𝑆𝑅 Investment costs required to construct and 
reinforce substations, respectively ($).  

𝑐𝑖
𝑆𝑂  Operation cost of substations ($/MWh).  

𝐷  Number of years in each planning stage.  

𝐼𝑎     Maximum current flow of conductors (kA). 

𝑙𝑖𝑗  Length of feeder sections (km).   

𝑁𝐺𝐶  , 𝑁𝐺𝑅 Maximum number of installed DGs.      

𝑃�̇�,𝑡
𝐷̿̿ ̿̿ , 𝑄�̇�,𝑡

𝐷̿̿ ̿̿   Expected active and reactive power demands of 
load nodes, respectively (MW, MVAR).  

𝑃𝑔
𝐺𝐶 , 𝑄𝑔

𝐺𝐶   Upper limits for active and reactive powers of 
conventional DGs, respectively (MW, MVAR).  

𝑃𝑔
𝐺𝑅̿̿ ̿̿ ̿  Expected active power of renewable DGs (MW). 

𝑟  Annual interest rate. 
𝑅𝑎, 𝑋𝑎, 𝑍𝑎  Resistance, reactance, and impedance of 

conductors, respectively (Ω/km).   

𝑆𝑏  Capacity of alternatives for substations (MVA).  

𝑆𝑖
0  Initial capacity of existing substations (MVA).  

𝑉 , 𝑉  Lower and upper voltage magnitude limits (kV).  

∆𝑉  Upper bound of the variable ∆𝑉𝑖𝑗,𝑡.  

�̃�𝑖,𝑡
𝐷   Fictitious current flow demand of load nodes.  

𝜌𝐺𝑅  Power factor of renewable DGs.  

𝜏  Number of hours in one year.  

𝜙𝑆  Loss factor of substations.  
D. Decision Variables  

𝑓𝑖𝑗,𝑎,𝑡
𝐹   Square of current flow of feeder sections.  

𝑓𝑖,𝑡
𝑆   Square of current flow provided by substations.  

𝑃𝑖𝑗,𝑎,𝑡
𝐹 ,𝑄𝑖𝑗,𝑎,𝑡

𝐹  Active and reactive power flows of feeder 
sections, respectively (MW, MVAR). 

𝑃𝑖,𝑔,𝑡
𝐺𝐶 ,𝑄𝑖,𝑔,𝑡

𝐺𝐶  

𝑃𝑖,𝑔,𝑡
𝐺𝑅 ,𝑄𝑖,𝑔,𝑡

𝐺𝑅  

Active and reactive powers of conventional and 
renewable DGs, respectively (MW, MVAR).  

𝑃𝑖,𝑡
𝑆  , 𝑄𝑖,𝑡

𝑆  Active and reactive powers provided by 
substations, respectively (MW, MVAR).  

𝑆𝑖𝑗,𝑎,𝑡
𝐹   Apparent power flow of feeder sections (MVA).   

𝑆𝑖,𝑡
𝑆   Apparent power provided by substations (MVA). 

𝑢𝑖,𝑡  Square of voltage magnitude of nodes.  
𝑥𝑖𝑗,𝑎,𝑡

𝐹𝐶 ,𝑥𝑖𝑗,𝑎,𝑡
𝐹𝑅   Binary investment variables for construction and 

replacement of feeder sections, respectively.  
𝑥𝑖,𝑔,𝑡

𝐺𝐶 , 𝑥𝑖,𝑔,𝑡
𝐺𝑅  Binary investment variables for installation of 

conventional and renewable DGs, respectively.  

𝑥𝑖,𝑏,𝑡
𝑆𝐶 , 𝑥𝑖,𝑏,𝑡

𝑆𝑅  Binary investment variables for construction and 
reinforcement of substations, respectively.    

𝑦𝑖𝑗,𝑎,𝑡 , 𝑧𝑖,𝑡   Binary utilization variables of feeder sections and 
transfer nodes, respectively.   
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∆𝑉𝑖𝑗,𝑡  Auxiliary variable used for applying Kirchhoff’s 
voltage law to feeder sections.  

�̃�𝑖𝑗,𝑡
𝐹   Fictitious current flow of feeder sections. 

�̃�𝑖,𝑡
𝑆   Fictitious current supplied by substations.  

II. INTRODUCTION 

VER the last few years, driven by several technical and 
environmental factors, there has been a growing interest in 

the concept of active distribution networks (ADNs)  [1]. Based on 
this new concept, traditional passive distribution networks will 
evolve into modern active ones by employing distributed energy 
resources (DERs) such as distributed generators (DGs) and 
demand responsive loads (DRLs) [2]. This transition from passive 
to active networks poses serious challenges to distribution system 
planners. On the one hand, the ability of DGs to directly inject 
active and reactive powers into the system nodes leads to 
bidirectional power flows through the distribution feeders [2]. 
This issue, if not adequately addressed at the design stage, can 
adversely affect various operational aspects of ADNs, such as 
reactive power balance and voltage regulation. Thus, the new 
context in which DGs come into play necessitates the development 
of a planning methodology that incorporates an accurate network 
model reflecting realistic operational characteristics of the system. 
On the other hand, large-scale integration of renewable DGs 
results in intermittent and volatile nodal power injections [3], [4], 
and the implementation of demand response programs further 
complicates the long-term predictability of load growth [2]. These 
factors introduce a huge amount of uncertainty to the planning 
process of ADNs. Hence, effective approaches must also be 
devised to properly model the major sources of uncertainty.  

Based on the above discussion, obtaining economic, reliable, 
and robust expansion plans for ADNs requires a planning 
methodology that has two key features:  
Feature 1: It should consider an accurate network model 
representing AC power flow equations and energy losses.  
Feature 2: It should adequately account for the uncertainties 
associated with renewable DGs and loads. 

This paper aims to develop a multistage distribution expansion 
planning (MDEP) model that is able to jointly expand both the 
network assets (feeders and substations) and DG units over the 
course of a number of planning stages, while giving full 
consideration to the above-mentioned key features.  

Recently, many researchers have devoted their attention to 
modelling the MDEP problem in the context of ADNs [5]. The 
following presents a careful review of the current literature from 
the perspective of the noted features.   

From the perspective of Feature 1, the existing MDEP models 
can be categorized into two groups: nonlinear and linear. The first 
group of MDEP models precisely reflect the nonlinear 
characteristics of the network (i.e., AC power flow equations and 
energy losses), but they are formulated as mixed-integer nonlinear 
programming (MINLP) problems that are very difficult to solve 
[1], [6-9]. For instance, the authors of [7] propose an optimization 
model for the MDEP problem in the presence of DGs, which aims 
to enhance the reliability levels of distribution networks. This 
model has a nonlinear formulation involving many local optimums 
and is solved using a modified version of the particle swarm 
optimization (PSO) algorithm. In [9], a Pareto-based multi-
objective problem formulation subject to AC power flow 
constraints is proposed to determine the optimal size and location 
of DGs, where a hybrid evolutionary approach based on the 
combination of the PSO and shuffled frog-leaping (SFL) 
algorithms is employed to solve the problem. As can be seen, the 
MINLP models are solved using heuristic methods that not only 
cannot guarantee obtaining the global optimal solution, but also 

require a large computational effort. Moreover, these methods do 
not provide a measure of the quality of the obtained solution as 
they cannot estimate the distance to the global optimum.  

To overcome the above drawbacks, the second group of MDEP 
models are presented in the form of mixed-integer linear 
programming (MILP) problems achieved by eliminating the 
nonlinearities of the network model [3], [4], [10-16], but these 
models have their own shortcomings. For instance, an MILP 
model, based on an extension of the linear disjunctive model 
normally used in the expansion planning of transmission 
networks, is proposed for the MDEP problem in [10]. This linear 
model is obtained by making some simplifications, such as 
employing DC power flow equations and ignoring energy losses. 
Similarly, the authors of [3], [4] propose an MILP model 
incorporating an adapted version of DC power flow equations, 
where energy loss and reactive power balance (i.e., the essential 
factors in any study on ADNs) are entirely neglected. Using these 
simplified network models may cause the solutions found for the 
MDEP problem to be optimistic or even deficient. The MILP 
models presented in [11-13] have a relative advantage over those 
proposed in [3], [4], [10] because they take the energy losses into 
account. Nevertheless, they also utilize a variant of DC power flow 
equations. A linear MDEP model will provide dependable 
expansion plans for ADNs only if it incorporates a complete study 
of the network operation based on AC power flow equations. This 
issue has recently attracted the attention of some researchers [15], 
[16]. As an example, the MILP model proposed in [15] employs a 
linearized version of AC power flow equations to better capture 
the inherent characteristics of the network. However, this 
linearized network model is obtained by making several error-
prone assumptions that adversely affect its correctness. In [16], a 
more accurate MILP model reflecting AC power flow equations is 
developed for the MDEP problem, which utilizes a piecewise-
based linearization technique to overcome the nonlinearities. 
Nevertheless, the accuracy of the adopted linearization technique 
needs to be improved. In summary, the MILP models proposed in 
the literature for the MDEP problem sacrifice the accuracy of the 
network model and, hence, new linear models with higher degrees 
of accuracy need to be introduced.   

From the perspective of Feature 2, several different approaches 
have been used in the existing literature. Many reported works 
utilize a deterministic approach in which one or a few certain 
values are considered for each uncertain parameter [7-11], [16]. In 
[7-9], for example, all DG units are presumed to be conventional 
(i.e., no renewable DG units are considered) and the uncertainties 
associated with loads are completely neglected. In [11], the system 
demand is characterized by three load levels and the wind power 
generation is determined based on three given wind speed values 
that are assumed to remain unchanged during the whole planning 
horizon. These simplistic approaches will obviously result in 
inaccurate and unreliable solutions for the MDEP problem as they 
entirely ignore the uncertainties. Another group of works adopt a 
scenario-based stochastic programming (SBSP) approach [2-4], 
[13-15], which models the uncertainties by defining a finite 
number of scenarios for the random variables and finds the optimal 
solution of the MDEP problem by weighting the objective 
function of each scenario in proportion to its probability of 
occurrence. However, several studies have demonstrated that the 
SBSP approach is computationally demanding as it requires a 
large number of scenarios to precisely describe the uncertainties 
[17]. For example, in [3], [4], a total number of 1296 operating 
conditions are defined for each planning stage to model the 
uncertainties associated with renewable DGs and loads. Such a 
large number of scenarios can obviously cause the MDEP problem 
to become intractable when dealing with large-scale distribution 
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systems. Probabilistic approaches such as point estimate method 
(PEM) [1], [18], cumulant method [19], and unscented 
transformation (UT) method [20] have also attracted the attention 
of many researchers due to their computational tractability. But 
the main drawback of these approaches is that they assume the 
existence of perfect knowledge about the probability distribution 
functions (PDFs) of random variables, which are very difficult to 
obtain in practice. For instance, in [1], a two-point estimate 
method (2-PEM) is utilized to approximate the Gaussian PDF 
assumed for load demand by two concentration points located 
around its mean value. The authors of [19] also propose a 
cumulant-based method to model the uncertainties presuming that 
the load demand follows a Gaussian distribution and the wind 
speed has a Weibull distribution. Another approach gaining 
widespread use is the robust optimization (RO) in which a suitable 
uncertainty space is defined for uncertain parameters and the 
optimal solution of the problem is found for the worst-case 
scenario [21-23]. The RO approach has a low computational 
demand as opposed to the SBSP approach, and also does not 
require detailed knowledge about the PDFs of uncertain 
parameters in contrast to the probabilistic approaches. However, it 
often leads to over-conservative solutions as it cannot effectively 
control the degree of conservatism. In summary, despite the efforts 
of previous researchers, it is essential to develop a more efficient 
approach that not only is able to adequately characterize the 
inherent uncertainties of the MDEP problem, but also results in a 
reasonable computational cost.  

In this paper, with respect to Feature 1, first a deterministic non-
convex MINLP model is developed for the MDEP problem, which 
reflects the essential characteristics of the network model in a 
realistic manner. This model provides several expansion 
alternatives including construction/replacement of feeder sections, 
construction/reinforcement of substations, and installation of 
renewable/conventional DGs. With the aim of obtaining a more 
tractable problem formulation, the developed non-convex MINLP 
model is then converted to a convex mixed-integer second-order 
conic programming (MISOCP) model by proposing a conic 
quadratic format for AC power flow equations. Finally, a highly 
accurate polyhedral-based linearization method [24] is utilized to 
approximate the conic quadratic constraints with a number of 
linear constraints. This linearization results in an accurate MILP 
model for the MDEP problem that is computationally tractable and 
ensures the optimality of the solution found.         

With respect to Feature 2, this paper employs a chance-
constrained programming (CCP) approach, which is a powerful 
technique to control the risk in decision making under uncertainty 
[25]. In this approach, the uncertainties are handled by defining a 
number of chance constraints (CCs) which ensure that the 
constraints subject to uncertainty will be satisfied with a certain 
probability level specified by the decision maker. The only 
difficulty with using the CCP approach is that the CCs, due to their 
implicit form, are not straightforward to deal with and, hence, need 
to be reformulated as explicit constraints. In most of the existing 
research works (e.g., [26-28]), this reformulation is carried out 
assuming that the random variables affecting CCs are Gaussian 
distributed. In practice, however, this assumption is quite 
unrealistic. Some other works (e.g., [29], [30]) do not consider any 
specific PDFs for random variables, but they propose approximate 
reformulations (not exact ones) for CCs, which can adversely 
affect the correctness and dependability of the CCP approach. To 
address these issues, we propose a distributionally robust (DR) 
reformulation for CCs, which not only is exact, but also does not 
make any assumptions about the uncertainty distributions [31]. To 
this end, first a moment-based ambiguity set, covering all PDFs 
whose first two moments lie within its confidence intervals, is 

constructed. This ambiguity set is then used to derive the DR 
variants of CCs. After that, using the duality theory of conic linear 
programming problems [32] and the S-Lemma [33], the DR 
variants of CCs are equivalently reformulated as a number of 
explicit nonlinear constraints. Finally, the nonlinear DR 
reformulations of CCs are expressed in the form of some conic and 
bilinear constraints that can be linearized using suitable 
linearization methods.      

The main contributions of this paper are as follows:  

 Developing a convex MISOCP model with conic quadratic AC 
power flow equations and employing a highly accurate 
polyhedral-based linearization method to convert it to an MILP 
model that guarantees computational tractability and solution 
optimality for the MDEP problem.  

 Proposing a novel distributionally robust chance-constrained 
(DRCC) model to account for the uncertainties associated with 
renewable DGs and loads. This model offers four significant 
advantages: first, it has a low computational demand and 
provides the opportunity to deal with large-scale systems; 
second, it requires limited information about the random 
variables, rather than perfect knowledge of their PDFs; third, it 
immunizes the solution of the MDEP problem against all 
realizations of the uncertainty distributions defined within a 
moment-based ambiguity set; fourth, it enables the decision 
maker to effectively control the degree of conservatism of the 
solution. These properties make the proposed DRCC model 
highly applicable for the planning of ADNs where long-term 
data about the uncertain parameters are very difficult to acquire.  

 Proposing effective linearization techniques to overcome the 
nonlinearities of the DR reformulations of CCs, resulting in a 
DRCC-MILP model for the MDEP problem that can be 
efficiently solved by off-the-shelf optimization tools.              

III. DETERMINISTIC PROBLEM FORMULATION  

In this section, the uncertainties are ignored and a deterministic 
mathematical formulation is proposed for the MDEP problem. To 
this end, first a non-convex MINLP model is developed. This 
model is then changed to a convex MISOCP model that can be 
converted to an MILP model using a highly accurate linearization 
method. The key advantage of the proposed MILP model is that it 
can be solved using standard off-the-shelf mathematical 
programming solvers that not only guarantee convergence to the 
global optimal solution, but also provide a measure of the distance 
to the global optimum during the solution process.   

A. Non-Convex MINLP Model of the MDEP Problem 

This model, which is partly based on the models described in 
[11] and [16], provides several expansion alternatives while 
minimizing the total investment and operation costs and taking all 
the necessary constraints into account, as given in (1)-(44).  

1) Objective Function 

Minimize  𝑐 = 𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟.                (1) 

𝑐𝐼𝑛𝑣. = ∑
1

(1+𝑟)(𝑡−1)𝐷 [∑ ∑ 𝑐𝑎
𝐹𝑅𝑙𝑖𝑗𝑥𝑖𝑗,𝑎,𝑡

𝐹𝑅
𝑎∈(𝛺𝑎−𝑎𝑖𝑗

𝐹𝑅)(𝑖𝑗)∈𝛺𝐹𝑅𝑡∈𝛺𝑇     

+ ∑ ∑ 𝑐𝑎
𝐹𝐶 𝑙𝑖𝑗𝑥𝑖𝑗,𝑎,𝑡

𝐹𝐶
𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹𝐶 + ∑ ∑ 𝑐𝑏

𝑆𝑅𝑥𝑖,𝑏,𝑡
𝑆𝑅

𝑏∈𝛺𝑏𝑖∈𝛺𝑆𝑅   

+ ∑ ∑ 𝑐𝑏
𝑆𝐶𝑥𝑖,𝑏,𝑡

𝑆𝐶
𝑏∈𝛺𝑏𝑖∈𝛺𝑆𝐶 + ∑ ∑ 𝑐𝑔

𝐺𝑅𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)   

+ ∑ ∑ 𝑐𝑔
𝐺𝐶𝑥𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿) ]              (2) 

𝑐𝑂𝑝𝑒𝑟. = ∑
1

(1+𝑟)(𝑡−1)𝐷

(1+𝑟)𝐷−1

𝑟(1+𝑟)𝐷𝑡∈𝛺𝑇 [∑ 𝜏𝑐𝐸𝑃𝑖,𝑡
𝑆

𝑖∈𝛺𝑆   

+ ∑ 𝜏𝑐𝑖
𝑆𝑂𝜙𝑆𝑓𝑖,𝑡

𝑆
𝑖∈𝛺𝑠 + ∑ ∑ 𝜏𝑐𝑔

𝐸𝐺𝐶𝑃𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) ]      (3) 

The objective function is comprised of two parts. In equation 
(2), 𝑐𝐼𝑛𝑣. represents the present value of the investment costs 
required for replacement and construction of feeder sections, 
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reinforcement and construction of substations, and installation of 
renewable and conventional DGs. In equation (3), 𝑐𝑂𝑝𝑒𝑟. 
represents the present value of the system operation costs 
including the cost of electrical energy received from the upstream 
power grid, operation costs of substations, and generation costs of 
conventional DGs. Note that 𝑐𝑂𝑝𝑒𝑟. also includes the costs of 
energy losses in feeder sections; this is because the active power 

received from the upstream grid (i.e., 𝑃𝑖,𝑡
𝑆 ) includes the power 

losses in feeder sections as well.     
2) Constraints   

∑ ∑ [𝑃𝑘𝑖,𝑎,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹   

+𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐 + ∑ 𝑃𝑖,𝑔,𝑡

𝐺𝑅
𝑔∈𝛺𝑔𝑟 = 𝑃�̇�,𝑡

𝐷̿̿ ̿̿   ∀𝑖 ∈ 𝛺𝑁 , ∀𝑡 ∈ 𝛺𝑇     (4) 

∑ ∑ [𝑄𝑘𝑖,𝑎,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹   

+𝑄𝑖,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐 + ∑ 𝑄𝑖,𝑔,𝑡

𝐺𝑅
𝑔∈𝛺𝑔𝑟 = 𝑄�̇�,𝑡

𝐷̿̿ ̿̿  ∀𝑖 ∈ 𝛺𝑁 , ∀𝑡 ∈ 𝛺𝑇    (5) 

𝑢𝑖,𝑡 − 𝑢𝑗,𝑡 = ∑ [2(𝑅𝑎𝑙𝑖𝑗𝑃𝑖𝑗,𝑎,𝑡
𝐹 + 𝑋𝑎𝑙𝑖𝑗𝑄𝑖𝑗,𝑎,𝑡

𝐹 )𝑎∈𝛺𝑎   

−(𝑍𝑎𝑙𝑖𝑗)
2

𝑓𝑖𝑗,𝑎,𝑡
𝐹 ] + ∆𝑉𝑖𝑗,𝑡  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (6) 

𝑢𝑖,𝑡𝑓𝑖𝑗,𝑡
𝐹 = (�̂�𝑖𝑗,𝑡

𝐹 )
2
     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇            (7) 

(�̂�𝑖𝑗,𝑡
𝐹 )

2
= (�̂�𝑖𝑗,𝑡

𝐹 )
2

+ (�̂�𝑖𝑗,𝑡
𝐹 )

2
 ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇           (8) 

𝑓𝑖𝑗,𝑡
𝐹 = ∑ 𝑓𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎      ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇           (9) 

�̂�𝑖𝑗,𝑡
𝐹 = ∑ 𝑃𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎      ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (10) 

�̂�𝑖𝑗,𝑡
𝐹 = ∑ 𝑄𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (11) 

�̂�𝑖𝑗,𝑡
𝐹 = ∑ 𝑆𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎      ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (12) 

𝑢𝑖,𝑡𝑓𝑖,𝑡
𝑆 = (𝑆𝑖,𝑡

𝑆 )
2
      ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇       (13) 

(𝑆𝑖,𝑡
𝑆 )

2
= (𝑃𝑖,𝑡

𝑆 )
2

+ (𝑄𝑖,𝑡
𝑆 )

2
  ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇       (14) 

(𝑉)
2

≤ 𝑢𝑖,𝑡 ≤ ( 𝑉 )
2
    ∀𝑖 ∈ 𝛺𝑁 , ∀𝑡 ∈ 𝛺𝑇        (15) 

𝑓𝑖𝑗,𝑎,𝑡
𝐹 ≤ ( 𝐼𝑎  )

2
𝑦𝑖𝑗,𝑎,𝑡    ∀(𝑖𝑗) ∈ 𝛺𝐹 , 𝑎 ∈ 𝛺𝑎 , ∀𝑡 ∈ 𝛺𝑇   (16) 

|∆𝑉𝑖𝑗,𝑡| ≤ ∆𝑉(1 − ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 )  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇     (17) 

𝑆𝑖,𝑡
𝑆 ≤ 𝑆𝑖

0 + ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1   ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇     (18) 

𝑆𝑖,𝑡
𝑆 ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1     ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇     (19) 

0 ≤ 𝑃𝑖,𝑔,𝑡
𝐺𝐶 ≤ 𝑃𝑔

𝐺𝐶𝑥𝑖,𝑔,𝑡
𝐺𝐶  ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (20) 

|𝑄𝑖,𝑔,𝑡
𝐺𝐶 | ≤ 𝑄𝑔

𝐺𝐶  𝑥𝑖,𝑔,𝑡
𝐺𝐶   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (21) 

𝑃𝑖,𝑔,𝑡
𝐺𝑅 = 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥𝑖,𝑔,𝑡
𝐺𝑅    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟 , ∀𝑡 ∈ 𝛺𝑇  (22) 

𝑄𝑖,𝑔,𝑡
𝐺𝑅 = tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥𝑖,𝑔,𝑡
𝐺𝑅  ∀𝑖ϵ(𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔ϵ𝛺𝑔𝑟 , ∀𝑡ϵ𝛺𝑇   (23) 

∑ ∑ 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝐶

𝑎∈𝛺𝑎𝑡∈𝛺𝑇 ≤ 1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐶         (24) 

∑ ∑ 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝑅

𝑎∈(𝛺𝑎−𝑎𝑖𝑗
𝐹𝑅)𝑡∈𝛺𝑇 ≤ 1   ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅        (25) 

∑ ∑ 𝑥𝑖,𝑏,𝑡
𝑆𝐶

𝑏∈𝛺𝑏𝑡∈𝛺𝑇 ≤ 1      ∀𝑖 ∈ 𝛺𝑆𝐶          (26) 

∑ ∑ 𝑥𝑖,𝑏,𝑡
𝑆𝑅

𝑏∈𝛺𝑏𝑡∈𝛺𝑇 ≤ 1      ∀𝑖 ∈ 𝛺𝑆𝑅         (27) 

∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑡∈𝛺𝑇 + ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑡∈𝛺𝑇 ≤ 1 ∀𝑖 ∈ 𝛺𝑁𝐺     (28) 

∑ ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐺𝑅                                (29) 

∑ ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐺𝐶                              (30) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ ∑ 𝑥𝑖𝑗,𝑎,𝜐
𝐹𝑅𝑡

𝜐=1 ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅, ∀𝑎 ∈ (𝛺𝑎 − 𝑎𝑖𝑗
𝐹𝑅), ∀𝑡 ∈ 𝛺𝑇    (31) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ 1 − ∑ ∑ 𝑥𝑖𝑗,𝜔,𝜐
𝐹𝑅

𝜔∈(𝛺𝑎−𝑎𝑖𝑗
𝐹𝑅)

𝑡
𝜐=1 ∀(𝑖𝑗)ϵ𝛺𝐹𝑅 , ∀𝑎 = 𝑎𝑖𝑗

𝐹𝑅 , ∀𝑡ϵ𝛺𝑇   (32) 

𝑦𝑖𝑗,𝑎,𝑡 = 0  ∀(𝑖𝑗) ∈ 𝛺𝐹𝐼 , ∀𝑎 ∈ (𝛺𝑎 − 𝑎𝑖𝑗
𝐹𝐼), ∀𝑡 ∈ 𝛺𝑇      (33) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ 1      ∀(𝑖𝑗) ∈ 𝛺𝐹𝐼 , ∀𝑎 = 𝑎𝑖𝑗
𝐹𝐼 , ∀𝑡 ∈ 𝛺𝑇      (34) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ ∑ 𝑥𝑖𝑗,𝑎,𝜐
𝐹𝐶𝑡

𝜐=1   ∀(𝑖𝑗) ∈ 𝛺𝐹𝐶 , ∀𝑎 ∈ 𝛺𝑎 , ∀𝑡 ∈ 𝛺𝑇      (35) 

∑ ∑ 𝑦𝑖𝑗,𝑎,𝑡 =𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 |𝛺𝑁| − |𝛺𝑁𝑆| − ∑ (1 − 𝑧𝑖,𝑡)𝑖∈𝛺𝑡
𝑁𝑇  ∀𝑡𝜖𝛺𝑇   (36) 

∑ 𝑦𝑘𝑖,𝑎,𝑡 ≤ 𝑧𝑖,𝑡𝑎∈𝛺𝑎   ∀(𝑘𝑖) ∈ 𝛺𝐹 , ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇 , ∀𝑡 ∈ 𝛺𝑇       (37) 

∑ 𝑦𝑖𝑗,𝑎,𝑡 ≤ 𝑧𝑖,𝑡𝑎∈𝛺𝑎   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇 , ∀𝑡 ∈ 𝛺𝑇      (38) 

∑ ∑ 𝑦𝑘𝑖,𝑎,𝑡𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 +∑ ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ≥ 2𝑧𝑖,𝑡  ∀𝑖ϵ𝛺𝑡
𝑁𝑇 , ∀𝑡ϵ𝛺𝑇 (39) 

∑ �̃�𝑘𝑖,𝑡
𝐹

(𝑘𝑖)∈𝛺𝐹 − ∑ �̃�𝑖𝑗,𝑡
𝐹

(𝑖𝑗)∈𝛺𝐹 + �̃�𝑖,𝑡
𝑆 = �̃�𝑖,𝑡

𝐷  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇  (40)  

0 ≤ �̃�𝑖𝑗,𝑡
𝐹 ≤ |𝛺𝑁𝐺| ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎    ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇             (41) 

0 ≤ �̃�𝑖,𝑡
𝑆 ≤ |𝛺𝑁𝐺|         ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇      (42) 

0 ≤ �̃�𝑖,𝑡
𝑆 ≤ |𝛺𝑁𝐺|(∑ ∑ 𝑥𝑖,𝑏,𝜐

𝑆𝐶
𝑏∈𝛺𝑏

𝑡
𝜐=1 )   ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇      (43) 

�̃�𝑖,𝑡
𝐷 = {

1   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑡 ∈ 𝛺𝑇  

0    ∀𝑖 ∉ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑡 ∈ 𝛺𝑇                          (44) 

The above constraints can be categorized into four main groups:  
a) Power flow equations: Constraints (4)-(14) represent the AC 

power flow model in a radial distribution network based on a set 
of recursive equations called DistFlow branch equations [34-36]. 
More specifically, constraints (4) and (5) ensure the active and 
reactive power balances in system nodes. Equations (6)-(8) relate 
the active, reactive, and apparent power flows and the current flow 
of a feeder selction to the voltages of its sending and receiving 
ends. These three equations apply Kirchhoff’s voltage law (KVL) 
to each feeder section. Constraints (9)-(12) are employed based on 
the fact that each feeder section uses only one of the candidate 
conductor types at each planning stage. Constraints (13) and (14) 
relate the active, reactive, and apparent powers provided by a 
substation to its current flow and voltage. Note that DistFlow 
branch equations are an exact representation of the AC power 
flow equations in a radial distribution network [34-36]. The 
detailed proof of this exactness can be found in [35], [36].  

b) Voltage, current, and capacity limits: Constraint (15) 
determines the acceptable range of the nodal voltage magnitudes. 
Constraint (16) represents the limits on the current flows of feeder 
sections based on the conductor types used for constructing them. 
Constraint (17) sets appropriate bounds on the variable ∆𝑉𝑖𝑗,𝑡 used 

in (6). Constraints (18) and (19) cause the apparent power 
provided by each substation to be less than its installed capacity. 
Constraints (20) and (21) limit the active and reactive powers 
generated by conventional DGs. Constraints (22) and (23) set the 
active and reactive power generations of renewable DGs equal to 
their expected values. Note that renewable DGs are assumed to 
operate at a constant power factor (𝜌𝐺𝑅) as they often lack the 
ability to provide controlled reactive power.  

c) Constraints on binary investment and utilization variables: 
Constraints (24)-(27) ensure that a maximum of one construction 
or reinforcement is performed for each feeder section or substation 
during the planning horizon. Constraint (28) limits the number of 
DG installations at each candidate node to one. Constraints (29) 
and (30) specify the maximum number of renewable and 
conventional DGs that can be installed in the system. Constraints 
(31)-(35) address the operating conditions of different feeder 
section categories including existing replaceable/irreplaceable 
feeder sections and candidate feeder sections for construction. In 
this regard, 𝑦𝑖𝑗,𝑎,𝑡 equals one if its corresponding feeder section is 

operated and zero otherwise. Imposing these constraints on the 
utilization variables denoted by “𝑦” guarantees that a feeder 
section with a specific conductor type can be used only if its 
corresponding investment has already been made.  

d) Radiality constraints: Constraints (36)-(44) guarantee the 
radiality of the distribution network [11], [37]. When DGs are not 
considered as expansion alternatives, (36)-(39) are sufficient to 
ensure the radiality. However, when DGs are brought into play, 
(40)-(44) should also be considered to prevent the existence of 
areas exclusively supplied by DGs. These constraints assign 
fictitious current flow demands to the candidate nodes for DG 
installation and, in this way, keep them connected to the 
substations to preclude formation of isolated areas [11]. Moreover, 
the distribution system is here assumed to include a number of so-
called transfer nodes at some of the planning stages [37]. These 
nodes are not connected to the loads or substations, but they can 
be used to connect different load nodes to each other and, in this 
way, may help to find better planning solutions. The binary 
variables denoted by “𝑧” indicate the operating conditions of the 

transfer nodes, so that 𝑧𝑖,𝑡 equals one if its corresponding transfer 

node is utilized and zero otherwise. 
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B. Convex MISOCP Model Proposed for the MDEP Problem 

Although the above-discussed model well reflects the essential 
characteristics of the MDEP problem, it is a non-convex MINLP 
model that not only is very difficult to solve, but also cannot 
guarantee obtaining the global optimal solution. To overcome 
these drawbacks, it should be changed to a convex model. 

The non-convexity of the model arises from (7), (8), (13), and 
(14). In order to convexify the model, first the objective function 
should be modified in the following manner:   
𝑐 = 𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟. + 𝑐𝐶𝑜𝑛𝑣.                (45) 

𝑐𝐶𝑜𝑛𝑣. = 𝜕 [∑ ∑ �̂�𝑖𝑗,𝑡
𝐹

(𝑖𝑗)∈𝛺𝐹𝑡∈𝛺𝑇 + ∑ ∑ 𝑆𝑖,𝑡
𝑆

𝑖∈𝛺𝑆𝑡∈𝛺𝑇    

+ ∑ ∑ 𝑓𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ]                (46)  

The main purpose of this modification is to add positive 

multiples of the variables �̂�𝑖𝑗,𝑡
𝐹  and 𝑆𝑖,𝑡

𝑆  to the objective function. 

Accordingly, 𝜕 is a positive coefficient that can be set to a small 
value such as 10−6. Considering the modified objective function, 
convexity can now be obtained by relaxing the equality constraints 
(7), (8), (13), and (14) as follows:  

(�̂�𝑖𝑗,𝑡
𝐹 )

2
≥ (�̂�𝑖𝑗,𝑡

𝐹 )
2

+ (�̂�𝑖𝑗,𝑡
𝐹 )

2
 ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (47) 

(𝑆𝑖,𝑡
𝑆 )

2
≥ (𝑃𝑖,𝑡

𝑆 )
2

+ (𝑄𝑖,𝑡
𝑆 )

2
  ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇       (48) 

𝑢𝑖,𝑡𝑓𝑖𝑗,𝑡
𝐹 ≥ (�̂�𝑖𝑗,𝑡

𝐹 )
2
     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (49) 

𝑢𝑖,𝑡𝑓𝑖,𝑡
𝑆 ≥ (𝑆𝑖,𝑡

𝑆 )
2
      ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇        (50) 

Note that the above relaxation technique is exact and hence the 
inequality constraints (47)-(50) act exactly as equality constraints. 
The detailed proof of the exactness of this relaxation technique can 
be found in [38]. Based on [38], the proposed relaxation technique 
will be exact if: 1) the network is radial; and 2) the objective 

function is strictly increasing with respect to �̂�𝑖𝑗,𝑡
𝐹 , 𝑆𝑖,𝑡

𝑆 , 𝑓𝑖𝑗,𝑡
𝐹 , and 

𝑓𝑖,𝑡
𝑆 , which appear on the left-hand sides of (47)-(50), respectively. 

It is obvious that the first condition is fully satisfied because the 
radiality constraints force the network to always be radial. To 
satisfy the second condition, however, the objective function 

should contain positive multiples of �̂�𝑖𝑗,𝑡
𝐹 , 𝑆𝑖,𝑡

𝑆 , 𝑓𝑖𝑗,𝑡
𝐹 , and 𝑓𝑖,𝑡

𝑆 . A 

careful look at the objective function reveals that it already 

includes positive multiples of 𝑓𝑖,𝑡
𝑆 , but it does not contain �̂�𝑖𝑗,𝑡

𝐹 , 𝑆𝑖,𝑡
𝑆 , 

and 𝑓𝑖𝑗,𝑡
𝐹 . Therefore, the new component (46) is included in the 

objective function to make it strictly increasing with respect to 

�̂�𝑖𝑗,𝑡
𝐹 , 𝑆𝑖,𝑡

𝑆 , and 𝑓𝑖𝑗,𝑡
𝐹  as required by the second condition.        

Using the above relaxation technique, the resultant MDEP 
model is now a convex MISOCP problem that, in contrast to the 
initial non-convex MINLP problem, is tractable and ensures 
obtaining the global optimal solution. However, it is still 
computationally demanding due to the nonlinearities of (47)-(50). 
Therefore, these four constraints should also be linearized.  

C. Proposed MILP Model for the MDEP Problem 

As the first step to overcome the nonlinearities, (47) and (48) 
are rewritten in the following manner:  

�̂�𝑖𝑗,𝑡
𝐹 ≥ √(�̂�𝑖𝑗,𝑡

𝐹 )
2

+ (�̂�𝑖𝑗,𝑡
𝐹 )

2
  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (51)           

𝑆𝑖,𝑡
𝑆 ≥ √(𝑃𝑖,𝑡

𝑆 )
2

+ (𝑄𝑖,𝑡
𝑆 )

2
   ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇        (52) 

The left-hand sides of (49) and (50) can also be expressed as: 

𝑢𝑖,𝑡𝑓𝑖𝑗,𝑡
𝐹 = [(𝑢𝑖,𝑡 + 𝑓𝑖𝑗,𝑡

𝐹 )/2]
2

− [(𝑢𝑖,𝑡 − 𝑓𝑖𝑗,𝑡
𝐹 )/2]

2
       (53) 

𝑢𝑖,𝑡𝑓𝑖,𝑡
𝑆 = [(𝑢𝑖,𝑡 + 𝑓𝑖,𝑡

𝑆 )/2]
2

− [(𝑢𝑖,𝑡 − 𝑓𝑖,𝑡
𝑆 )/2]

2
         (54) 

As a result, (49) and (50) can be written as:  

[(𝑢𝑖,𝑡 + 𝑓𝑖𝑗,𝑡
𝐹 )/2] ≥ √[(𝑢𝑖,𝑡 − 𝑓𝑖𝑗,𝑡

𝐹 )/2]
2

+ (𝑆𝑖𝑗,𝑡
𝐹 )

2
 ∀(𝑖𝑗)ϵ𝛺𝐹 , ∀𝑡ϵ𝛺𝑇 (55) 

[(𝑢𝑖,𝑡 + 𝑓𝑖,𝑡
𝑆 )/2] ≥ √[(𝑢𝑖,𝑡 − 𝑓𝑖,𝑡

𝑆 )/2]
2

+ (𝑆𝑖,𝑡
𝑆 )

2
 ∀𝑖ϵ𝛺𝑆 , ∀𝑡ϵ𝛺𝑇       (56) 

In this way, (47)-(50) are respectively represented as the 
second-order conic constraints (51), (52), (55), and (56), which all 
have the following form:   

𝑥3 ≥ √(𝑥1)2 + (𝑥2)2                  (57) 

Using a highly accurate method based on polyhedral 
approximation, the second-order conic constraint (57) can be 
approximated by a system of linear equalities and inequalities that 
are expressed in terms of 𝑥1, 𝑥2, 𝑥3, and a number of auxiliary 
variables (i.e., 𝜉ℓ and 𝜂ℓ) [24]: 
𝜉ℓ ≥ |𝑥1| , 𝜂ℓ ≥ |𝑥2|          ∀ℓ = 0      (58) 

{
𝜉ℓ = 𝜉ℓ−1 cos (

𝜋

2ℓ+1) + 𝜂ℓ−1 sin (
𝜋

2ℓ+1)      

𝜂ℓ ≥ |−𝜉ℓ−1 sin (
𝜋

2ℓ+1) + 𝜂ℓ−1 cos (
𝜋

2ℓ+1)|
 ∀ℓ = 1, … , ℒ  (59) 

𝜉ℓ ≤ 𝑥3 , 𝜂ℓ ≤ 𝜉ℓ tan (
𝜋

2ℓ+1)      ∀ℓ = ℒ    (60) 

Note that ℒ is a parameter that determines the number of 
additional constraints and variables required to linearize (57), and 
the linearization error will decrease as this parameter increases. In 
[24], it is proved that the set of linear constraints (58)-(60) 
approximate (57) in such a way that:   

𝑥3(1 + 𝜚) ≥ √(𝑥1)2 + (𝑥2)2              (61) 

where 𝜚 is dependent on ℒ and can be calculated as follows:  

𝜚 = [1/ cos (
𝜋

2ℒ+1)] − 1                (62) 

Choosing an appropriate value for ℒ will obviously result in a 
highly accurate approximation. For instance, choosing ℒ = 8 
leads to 𝜚 = 1.88 × 10−5, which demonstrates the high accuracy 
of the polyhedral approximation. 

In a similar manner, each of the conic quadratic constraints (51), 
(52), (55), and (56) can also be replaced by the polyhedral 
approximation represented by (58)-(60). This causes the MISOCP 
model to be converted to an MILP model.   

IV. DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED 

PROBLEM FORMULATION 

In this section, the developed deterministic MILP model is 
improved to incorporate the uncertainties of renewable DGs and 
loads. In this regard, first a number of CCs are added to the model 
to guarantee that the constraints subject to uncertainty will be 
satisfied with a certain probability level. These CCs are then 
reformulated as a number of explicit nonlinear constraints that are 
robust against the PDFs of random variables. Finally, the 
nonlinear DR reformulations proposed for CCs are linearized 
using appropriate techniques.     

A. Chance Constraints  

The operational constraints of power systems are of two types: 
hard and soft [39]. Hard constraints (e.g., power balance equations 
and power generation limits) are physically impossible to violate 
as they are imposed by the nature of the system. Whereas, minor 
violations of soft constraints (e.g., voltage and current magnitude 
limits) for short time periods are quite tolerable. Note that the CCs 
can only be applied to soft constraints. Considering this fact, we 
have added the following CCs to the proposed deterministic MILP 
model to account for the uncertainties associated with renewable 
generations and loads:                

ℙ {(𝑉)
2

≤ �̃�𝑖,𝑡(�̃�) ≤ ( 𝑉 )
2

} ≥ 1 − 𝜖 ∀𝑖 ∈ 𝛺𝑁 , ∀𝑡 ∈ 𝛺𝑇       (63) 

ℙ {𝑓𝑖𝑗,𝑎,𝑡
𝐹 (�̃�) ≤ ( 𝐼𝑎  )

2
𝑦𝑖𝑗,𝑎,𝑡} ≥  1 − 𝜖 ∀(𝑖𝑗)ϵ𝛺𝐹 , 𝑎ϵ𝛺𝑎, ∀𝑡ϵ𝛺𝑇   (64) 

ℙ {�̃�𝑖,𝑡
𝑆 (�̃�) ≤ 𝑆𝑖

0+∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1 } ≥ 1 − 𝜖  ∀𝑖ϵ𝛺𝑆𝑅 , ∀𝑡ϵ𝛺𝑇(65) 

ℙ{�̃�𝑖,𝑡
𝑆 (�̃�) ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1 } ≥  1 − 𝜖  ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇 (66) 

where �̃� = 〈𝜒1̃ , 𝜒2̃〉 = 〈𝜒𝐺�̃�, 𝜒�̃�〉 is a vector containing two random 
variables defined to characterize the stochasticity of renewable 

generations and loads; and �̃�𝑖,𝑡(�̃�), 𝑓𝑖𝑗,𝑎,𝑡
𝐹 (�̃�), and �̃�𝑖,𝑡

𝑆 (�̃�) are the 
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stochastic equivalents of the variables 𝑢𝑖,𝑡, 𝑓𝑖𝑗,𝑎,𝑡
𝐹 , and 𝑆𝑖,𝑡

𝑆 , 

respectively. The above CCs ensure that the voltage magnitudes 
of nodes, current flows of feeder sections, and apparent powers of 
substations remain within their bounds with a probability of at 
least 1 − 𝜖, where 𝜖 is a controllable risk parameter that enables 
the decision maker to adjust the degree of conservatism of the 
solution. It is clear that decreasing the value of 𝜖 results in more 
conservative solutions for the MDEP problem.  

Unfortunately, (63)-(66) are very challenging to handle due to 
their implicit form. The implicitness of these CCs arises from the 
fact that evaluation of the probability statements given on their 

left-hand sides is not straightforward as the PDFs of 𝜒𝐺�̃� and 𝜒�̃� 
are not perfectly known. Most of the existing research works using 
the CCP approach (e.g., [26-28]) assume that the random variables 
follow a Gaussian distribution and, based on this unrealistic 
assumption, reformulate the CCs as a number of explicit 
constraints. In this paper, however, a novel method is proposed to 
reformulate CCs, which does not make any assumption about the 
PDF types of the random variables [31]. That is, we obtain the 
explicit counterparts of CCs in such a way that their satisfaction is 
guaranteed irrespective of the PDF types of the random variables. 
In this way, CCs are immunized against the probability 
distributions of the random variables. Based on this fact, the 
proposed method is called “distributionally robust”, which means 
“robust with respect to probability distributions”. In the following, 
the DR reformulation proposed for CCs is described in detail.  

B. DR Reformulation of CCs  

In order to simplify the notation, each of the constraints (63)-
(66) can be expressed as:   

ℙ{𝐻(�̃�) ≤ 𝐾} ≥ 1 − 𝜖                   (67) 

where 𝐻(�̃�) represents the stochastic variables �̃�𝑖,𝑡(�̃�), 𝑓𝑖𝑗,𝑎,𝑡
𝐹 (�̃�), 

and �̃�𝑖,𝑡
𝑆 (�̃�); and 𝐾 is a variable representing the remaining part of 

each CC. On the other hand, 𝐻(�̃�) can be defined as an affine 
function of �̃� (see [40], [41]):   

𝐻(�̃�) = 𝐻 + ∑ 𝐴𝓃
2
𝓃=1 𝜒�̃�  = 𝐻 + 𝑨𝑇�̃�             (68) 

where 𝐻 represents the deterministic part of 𝐻(�̃�); 𝐴1 and 𝐴2 are 
the affine coefficients of 𝜒1̃ and 𝜒2̃, respectively; and 𝑨 = 〈𝐴1, 𝐴2〉 
is the vector of affine coefficients.   

As a result, by defining 𝐵 = 𝐾 − 𝐻, (67) can be rewritten in the 
following form: 
ℙ{𝑨𝑇�̃� ≤ 𝐵} ≥ 1 − 𝜖                    (69) 

Now, we describe how to derive the DR reformulation of (69). 
First, a moment-based ambiguity set (𝒟) is built to specify all 
PDFs for which the satisfaction of (69) must be guaranteed [31]:  

𝒟 = {𝑓(�̃�)|

∫ 𝑓(�̃�)𝑑�̃� = 1                            
 

�̃�∈𝕊

𝜇𝓃 ≤ 𝔼[𝜒𝓃] ≤ 𝜇𝓃    ∀𝓃 = 1,2      

𝜎𝓃 ≤ 𝔼[(𝜒𝓃)2] ≤ 𝜎𝓃     ∀𝓃 = 1,2

}            (70) 

where 𝑓(�̃�) is the PDF of �̃� ; 𝕊 ∈ ℝ2 is the support of 𝑓(�̃�); 
[𝜇𝓃 , 𝜇𝓃  ] is the confidence interval of the first moment of the 𝓃th 

random variable; and [𝜎𝓃, 𝜎𝓃  ] is the confidence interval of the 

second moment of 𝓃th random variable. The three conditions in 
𝒟 ensure that: (i) the integral of 𝑓(�̃�) over its support is equal to 
one; (ii) the first moment of 𝜒𝓃 lies in the determined interval; and 
(iii) the second moment of 𝜒𝓃 falls within the specified range. 
Note that 𝒟 covers all PDFs whose first and second moments 
agree with its conditions and, hence, it can be used to define a huge 
family of uncertainty distributions. Considering this ambiguity set, 
the DR variant of (69) can be obtained as follows: 

inf 
𝑓(�̃�)∈𝒟

ℙ{𝑨𝑇�̃� ≤ 𝐵} ≥ 1 − 𝜖               (71) 

The left-hand side of (71) yields the worst-case probability 
bound of ℙ{𝑨𝑇�̃� ≤ 𝐵} over 𝒟 and is equal to the objective value 

of the following optimization problem:  

𝛤 = min 
𝑓(�̃�)

 ∫ 𝕀𝒞(�̃�)𝑓(�̃�)𝑑�̃�
 

�̃�∈𝕊
                (72) 

s.t.  ∫ 𝑓(�̃�)𝑑�̃� = 1
 

�̃�∈𝕊
                (73) 

      𝜇𝓃 ≤ ∫ 𝜒𝓃
 

�̃�∈𝕊
𝑓(�̃�)𝑑�̃� ≤ 𝜇𝓃    ∀𝓃 = 1,2      (74) 

      𝜎𝓃 ≤ ∫ (𝜒𝓃)2 

�̃�∈𝕊
𝑓(�̃�)𝑑�̃� ≤ 𝜎𝓃    ∀𝓃 = 1,2     (75) 

where 𝕀𝒞(�̃�) is the indicator function over the set 𝒞 =
{�̃�|𝑨𝑇�̃� ≤ 𝐵}; that is, 𝕀𝒞(�̃�) = 1 if �̃� ∈ 𝛬 and 𝕀𝒞(�̃�) = 0 
otherwise. Obviously, (71) will be satisfied when 𝛤 ≥ 1 − 𝜖. In 
[31], it is demonstrated that by applying the duality theory of conic 
linear programming problems [32] to the optimization problem 
(72)-(75) and using the S-Lemma [33], (71) can be equivalently 
reformulated as follows:   

𝑞 + ∑ (𝜇𝓃  𝑝𝓃
𝐿 − 𝜇𝓃  𝑝𝓃

𝑈)2
𝓃=1 + ∑ (𝜎𝓃  ℎ𝓃

𝐿 − 𝜎𝓃  ℎ𝓃
𝑈)2

𝓃=1 ≥ 1 − 𝜖   (76)  

𝑞 + ∑ 𝛼𝓃 ≤ 12
𝓃=1                    (77) 

𝑞 + ∑ 𝛽𝓃 ≤ 𝛶𝐵2
𝓃=1                    (78)  

‖[
𝑝𝓃

𝐿 − 𝑝𝓃
𝑈

𝛼𝓃 + ℎ𝓃
𝐿 − ℎ𝓃

𝑈]‖ ≤ 𝛼𝓃 − ℎ𝓃
𝐿 + ℎ𝓃

𝑈   ∀𝓃 = 1,2      (79)  

‖[
𝑝𝓃

𝐿 − 𝑝𝓃
𝑈 + 𝛶𝐴𝓃

𝛽𝓃 + ℎ𝓃
𝐿 − ℎ𝓃

𝑈 ]‖ ≤ 𝛽𝓃 − ℎ𝓃
𝐿 + ℎ𝓃

𝑈  ∀𝓃 = 1,2      (80) 

where 𝑞, 𝑝𝓃
𝐿 , 𝑝𝓃

𝑈 , ℎ𝓃
𝐿  , ℎ𝓃

𝑈, 𝛼𝓃 , 𝛽𝓃, 𝛶 ≥ 0 are auxiliary variables.  
By deriving (76)-(80), the DR reformulation of (69) over 𝒟 is 

now achieved. In other words, utilization of (76)-(80) guarantees 
that (69) will be satisfied for all PDFs covered by 𝒟. It is 
worthwhile to note that (76) explicitly includes the risk 
parameter 𝜖. As a result, the proposed DRCC programming 
approach is able to directly control the robustness level of the 
solution based on the value chosen for the risk parameter 𝜖. This 
ability to directly control the robustness level prevents the 
proposed DRCC programming approach from resulting in over-
conservative solutions.  

However, (78)-(80) are highly nonlinear and make the MDEP 
problem intractable. To address this issue, the nonlinearities of the 
noted constraints must be eliminated.     

C. Linearization of the Proposed DR Reformulation   

In the following, (78)-(80) are linearized to attain a tractable 
DRCC-MILP model for the MDEP problem. 

1) Linearization of Constraint (78)   
The nonlinearity of this constraint is only due to the bilinear 

term 𝛶𝐵 on its right-hand side. This bilinear term can be rewritten 
as follows: 
𝛶𝐵 = [(𝐵 + 𝛶)/2]2 − [(𝐵 − 𝛶)/2]2            (81)  

As a result, (78) can also be expressed as: 
𝑞 + ∑ 𝛽𝓃 ≤ [(𝐵 + 𝛶)/2]2 − [(𝐵 − 𝛶)/2]22

𝓃=1         (82)  
Now, (82) can be linearized using a piecewise-based 

linearization method:   

𝑞 + ∑ 𝛽𝓃 ≤2
𝓃=1 ∑ (𝑚𝜆

+𝛿𝜆
+ + 𝑛𝜆

+∆𝜆
+)𝛬

𝜆=1 − ∑ (𝑚𝜆
−𝛿𝜆

− + 𝑛𝜆
−∆𝜆

−)𝛬
𝜆=1   (83) 

(𝐵 + 𝛶)/2 = ∑ 𝛿𝜆
+𝛬

𝜆=1   , (𝐵 − 𝛶)/2 = ∑ 𝛿𝜆
−𝛬

𝜆=1        (84) 

𝜓𝜆−1
+ ∆𝜆

+≤ 𝛿𝜆
+ ≤ 𝜓𝜆

+∆𝜆
+ , 𝜓𝜆−1

− ∆𝜆
−≤ 𝛿𝜆

− ≤ 𝜓𝜆
−∆𝜆

−      (85)      

∑ ∆𝜆
+𝛬

𝜆=1 ≤ 1     , ∑ ∆𝜆
−𝛬

𝜆=1 ≤ 1          (86) 
where the superscripts “+” and “−” respectively indicate the 
elements associated with the quadratic terms [(𝐵 + 𝛶)/2]2 and 
[(𝐵 − 𝛶)/2]2; 𝛿𝜆

 ≥ 0 and ∆𝜆
 ∈ {0,1} respectively denote the 

continuous and binary auxiliary variables needed to obtain the 
piecewise linear expressions of quadratic terms; and 𝜓𝜆

 , 𝑚𝜆
 , and 

𝑛𝜆
  are constant parameters that can be obtained as follows:  

𝜓𝜆
+ = (𝜆)(1/𝛬)[(𝐵 + 𝛶)/2]̅̅̅̅̅̅̅̅̅̅̅̅̅̅ , 𝜓𝜆

− = (𝜆)(1/𝛬)[(𝐵 − 𝛶)/2]̅̅̅̅̅̅̅̅̅̅̅̅̅̅    (87) 

𝑚𝜆
+ = [(𝜓𝜆

+)2 − (𝜓𝜆−1
+ )2]/[𝜓𝜆

+ − 𝜓𝜆−1
+ ]          (88) 

𝑚𝜆
− = [(𝜓𝜆

−)2 − (𝜓𝜆−1
− )2]/[𝜓𝜆

− − 𝜓𝜆−1
− ]           (89) 

𝑛𝜆
+ = (𝜓𝜆

+)2 − 𝑚𝜆
+𝜓𝜆

+   , 𝑛𝜆
− = (𝜓𝜆

−)2 − 𝑚𝜆
−𝜓𝜆

−      (90) 
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Fig. 1. Piecewise linear approximation of the quadratic term [(𝐵 + 𝛶)/2]2. 

To clarify the proposed linearization method, the piecewise 
linear approximation of the quadratic term [(𝐵 + 𝛶)/2]2 is 
illustrated in Fig. 1. As can be seen, the distance between zero and 
[(𝐵 + 𝛶)/2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is first partitioned into 𝛬 segments. Then, 

corresponding to each segment 𝜆, a line with the slope of 𝑚𝜆
  and 

intercept of 𝑛𝜆
  is considered. Finally, using the binary variables 

denoted by ∆𝜆
 , only one of the lines is chosen to represent the 

quadratic term [(𝐵 + 𝛶)/2]2.     
2) Linearization of Constraints (79) and (80)    
With the help of some auxiliary variables (𝑝𝓃, ℎ𝓃 , 𝑑𝓃), (79) and 

(80) can be simplified and rewritten as: 
𝑝𝓃 = 𝑝𝓃

𝐿 − 𝑝𝓃
𝑈     ∀𝓃 = 1,2             (91)                   

ℎ𝓃 = ℎ𝓃
𝐿 − ℎ𝓃

𝑈     ∀𝓃 = 1,2             (92)                      
𝑑𝓃 = 𝑝𝓃 + 𝛶𝐴𝓃    ∀𝓃 = 1,2              (93)          
(𝑝𝓃)2 ≤ −4𝛼𝓃ℎ𝓃   ∀𝓃 = 1,2             (94)          
(𝑑𝓃)2 ≤ −4𝛽𝓃ℎ𝓃   ∀𝓃 = 1,2                (95) 

Now, (93) can be linearized in a similar way as (78) by 
employing the above-described piecewise-based linearization 
method. On the other hand, the right-hand sides of (94) and (95) 
can be expressed as follows: 
−4𝛼𝓃ℎ𝓃 = (𝛼𝓃 − ℎ𝓃)2 − (𝛼𝓃 + ℎ𝓃)2                  (96) 
−4𝛽𝓃ℎ𝓃 = (𝛽𝓃 − ℎ𝓃)2 − (𝛽𝓃 + ℎ𝓃)2               (97) 

Therefore, (94) and (95) can be written as:  

𝛼𝓃 − ℎ𝓃 ≥ √(𝑝𝓃)2 + (𝛼𝓃 + ℎ𝓃)2   ∀𝓃 = 1,2       (98) 

𝛽𝓃 − ℎ𝓃 ≥ √(𝑑𝓃)2 + (𝛽𝓃 + ℎ𝓃)2   ∀𝓃 = 1,2       (99) 

Obviously, (98) and (99) are second-order conic constraints that 
have the same form as (57). Hence, they can be linearized using 
the polyhedral-based method described in Section III-C.  

V. SIMULATION RESULTS AND DISCUSSION  

In this section, the most important results obtained from the 
implementation of the proposed planning methodology are 
presented and discussed. All the simulations have been 
implemented on a PC with a 3.40 GHz Intel Core i7-4770 
processor and 16 GB of RAM using CPLEX 12.6.1 [42].    

A. Test System Description  

A 24-node distribution system, based on [11], is utilized to carry 
out the simulations. This test system consists of 4 substations, 20 
load nodes, and 33 feeder sections. The set of candidate nodes for 
DG installation is defined as 𝛺𝑁𝐺 = {1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 
17, 18, 19}. As an illustrative example, the renewable DGs are 
here assumed to be wind turbines, but the proposed methodology 
is fully applicable to other renewable DG technologies such as 
photovoltaic panels. The one-line diagram of the system as well as 
detailed data related to the power demands, candidate conductor 
types, alternatives for construction and reinforcement of 
substations, alternatives for installation of renewable/conventional 

DGs, lengths of feeder sections, and other parameters of the 
problem can be downloaded from [43].   

B. A Discussion on the Accuracy and Computation Time of the 

Proposed Deterministic MILP Model  

By ignoring the uncertainties, a comparative analysis is 
conducted here to assess the performance of the deterministic 
MILP model proposed in Section III-C from the aspects of 
accuracy and computational efficiency. The logic behind this 
comparative analysis is illustrated in Fig. 2. As can be seen, the 
MISOCP model developed in Section III-B is exact and does not 
involve any approximations. Based on this fact, we have used the 
MISOCP model as a benchmark against which the approximate 
MILP models can be compared. In this regard, first the MISOCP 
model is solved and the global optimal solution of the problem is 
found. This solution is then used as a benchmark for assessing the 
solution quality of two different approximate MILP models: 1) our 
proposed polyhedral-based MILP model; and 2) a piecewise-
based MILP model presented in [16]. The main reason for 
choosing the model presented in [16] is that it is the most accurate 
MILP model existing in the literature.  

 
 Fig. 2. Illustration of the logic behind the conducted comparative analysis.    

The investment, operation, and total costs obtained by solving 
the MISOCP model are US$6,699,691, US$31,892,808, and 
US$38,592,499, respectively. The MISOCP model, in spite of its 
ability to find the global optimal solution of the MDEP problem, 
is time-consuming and requires 182 min to be solved. This fact 
demonstrates the necessity of introducing an MILP model that is 
able to significantly improve the computational efficiency. Table 
I compares our proposed polyhedral-based MILP model with the 
piecewise-based MILP model presented in [16] from the accuracy 
and computation time perspectives. Note that the errors presented 
in this table indicate the amount by which the solutions of the 
MILP models deviate from the global optimal solution found by 
the MISOCP model. These errors are calculated as follows:   

𝐸𝑟𝑟𝑜𝑟 =
𝑐𝑀𝐼𝐿𝑃−𝑐𝑀𝐼𝑆𝑂𝐶𝑃

𝑐𝑀𝐼𝑆𝑂𝐶𝑃 × 100%              (100) 

where 𝑐𝑀𝐼𝐿𝑃 denotes the costs associated with the MILP models; 
𝑐𝑀𝐼𝑆𝑂𝐶𝑃 denotes the costs associated with the MISOCP model; and 
𝐸𝑟𝑟𝑜𝑟 is the percent error.  

As can be seen, the accuracy of the piecewise-based model 
cannot be improved beyond a certain level, even if the 
linearization parameter is set to a large value such as 60 and 70. 
However, the polyhedral-based model is capable of reaching 
extremely high degrees of accuracy, so that setting the 
linearization parameter to 8 results in the accuracies of 100%, 
99.99%, and 99.99% for the investment, operation, and total costs, 
respectively. On the other hand, by investigating the results shown 
in Table I, it can be realized that after spending almost the same 
amount of computation time on both models, the polyhedral-based 
model provides better solutions. For instance, as shown in the bold 
rows of the table, when a computation time of 15 min is spent on 
the polyhedral-based model, the errors in the investment, 
operation, and total costs are notably lower than the case in which 
17 min is spent on the piecewise-based model. These facts prove 
the superiority of the polyhedral-based model over the piecewise-
based model. Moreover, our proposed MILP model is obviously 
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able to provide the same solution as the MISOCP model, while its 
required computation time is around 12 times shorter than that of 
the MISOCP model. Given these results, it can concluded that the 
MILP model developed in section III-C has a great performance 
in deterministic planning studies of ADNs.  

TABLE I 
COMPARING THE PERFORMANCES OF THE POLYHEDRAL-BASED AND PIECEWISE-

BASED DETERMINISTIC MILP MODELS  

Deterministic 
MILP model 

Linearization 
parameter 

Errors in different costs (%) Time 
(min) Inv. Oper.  Total 

Polyhedral-
based 

3 + 2.91 + 1.47 + 0.71 4.5 
4 + 1.83 + 0.98 + 0.49 5 
5 + 0.35 + 0.62 + 0.45 8 
6 + 0.00 + 0.34 + 0.28 9.5 
7 + 0.00 + 0.05 + 0.04 12 
8 + 0.00 + 0.01 + 0.01 15 

Piecewise-
based 

10 + 3.62 + 2.34 + 2.56 3 
20 + 2.54 + 1.24 + 1.47 4 
30 + 1.97 + 0.93 + 1.11 6.5 
40 + 1.97 + 1.08 + 1.23 10 
50 + 1.97 + 1.26 + 1.38 13 
60 + 1.97 + 0.99 + 1.16 14.5 
70 + 1.97 + 1.15 + 1.29 17 

Note that in the above discussion, the accuracy evaluation of the 
MILP models was conducted based the errors in the investment, 
operation, and total costs. These errors are the most reliable 
indices that can be used to evaluate the accuracy of the MILP 
models because any inaccuracy in these models will cause their 
investment, operation, and total costs to deviate from the global 
optimal values found by the MISOCP model. Nevertheless, other 
types of accuracy evaluation indices may also be utilized. In [16], 
for instance, the error in the active power loss is used as an index 
for evaluating the accuracy of the proposed MILP model.          

C. Robustness Evaluation of the Proposed DRCC-MILP Model   

In this subsection, we demonstrate the robustness of the 
proposed DRCC-MILP model against the uncertain wind 
generations and loads having various types of PDFs. This model 
is also compared with two other models based on the deterministic 
and Gaussian chance-constrained (GCC) approaches that are 
widely used in the existing literature [7-11], [16], [26-28]. That is, 
the following three models are considered:     

 Model 1: Deterministic MILP model in which, similar to [7-11], 
[16], the uncertainties are totally ignored.  

 Model 2: GCC-MILP model in which, similar to [26-28], all the 
uncertainties are assumed to be Gaussian distributed.    

 Model 3: Proposed DRCC-MILP model in which the uncertainty 
distributions are assumed to be unknown.   
In order to build the ambiguity set (𝒟) required by Model 3, the 

confidence intervals of the first and second moments of the 
random variables need to be specified. These confidence intervals 
should be defined based on historical data of random variables. In 

this regard, given a series of data samples {𝜒𝓃,𝓌} 𝓌=1
𝒲  for the 

random variable 𝜒𝓃, the estimated values of the first and second 
moments can be obtained using the following formulas:  

𝜇�̂� =
1

𝒲
∑ 𝜒𝓃,𝓌

𝒲
𝓌=1       ∀𝓃 = 1,2          (101) 

𝜎�̂� =
1

𝒲
∑ (𝜒𝓃,𝓌 − 𝜇�̂�)

2𝒲
𝓌=1   ∀𝓃 = 1,2          (102) 

where 𝜇�̂� denotes the estimated value of the first moment of the 
𝓃th random variable; 𝜎�̂� denotes the estimated value of the second 

moment of the 𝓃th random variable; 𝜒𝓃,𝓌 denotes the 𝓌th data 

sample of the 𝓃th random variable; and 𝒲 is the total number of 

data samples. Now, the confidence intervals [𝜇𝓃, 𝜇𝓃 ] and [𝜎𝓃 , 𝜎𝓃] 

can be obtained by defining reasonable ranges around 𝜇�̂� and 𝜎�̂�, 
respectively. Defining a wider range around 𝜇�̂� or 𝜎�̂� will 
obviously result in robustness against a larger family of PDFs. In 
this paper, the historical wind generation and load data are 
acquired from [44], [45], respectively. These historical data are 

converted to per-unit values and utilized to calculate 𝜇�̂� and 𝜎�̂�. 
The obtained values are as follows: 𝜇1̂ = 0.427, 𝜇2̂ = 0.988, 𝜎1̂ = 
0.0519, and 𝜎2̂=0.0126. Considering plausible ranges around these 

values, the confidence intervals are defined as [𝜇1, 𝜇1 ] = [0.3, 0.5], 

[𝜇2, 𝜇2  ] = [0.95, 1.05], [𝜎1, 𝜎1 ] = [0.02, 0.08], and [𝜎2, 𝜎2 ] = 

[0.01, 0.02]. Note that these confidence intervals can be flexibly 
tailored to meet the decision maker’s requirements.   

After solving Models 1-3, their solution robustness is assessed 
considering several different PDFs for wind generation and load. 
To this end, as shown in Fig. 3, three typical PDFs are considered 

for each of the random variables 𝜒𝐺�̃�and 𝜒�̃�. Then, regarding all 
combinations of W1-W3 and L1-L3, a total number of nine test 
cases are defined for PDFs of wind generation and load. Lastly, 
under each defined PDF case, 10000 samples of wind generation 
and load are produced and used for robustness evaluations.  

 
Fig. 3. Illustration of the nine test cases defined for PDFs of wind generation and 

load (𝜇 and 𝜎 denote the first and second moments, respectively).  

Table II compares the performances of Models 1-3 from the  
viewpoints of solution robustness, investment cost, and 
computation time, while considering two different risk parameters 
(𝜖 = 0.1 and 𝜖 = 0.05). In this table, the abbreviations Avg., Min., 
and Max. respectively represent the average, minimum, and 
maximum of the robustness levels found by testing the defined 
PDF cases. The details of the robustness levels of Models 1-3 for 
each PDF case are also provided in Fig. 4. As can be observed, 
Model 1 has the lowest level of robustness, with an average of only 
29.86%. This poor performance is obviously due to the fact that 
Model 1 does not have any information about the uncertainties 
when deciding about the expansion plans. Model 2 results in 
higher robustness levels; however, as can be seen in Fig. 4, its 
robustness is always below the requirement (i.e., 1 − 𝜖) for 
different PDF cases. The reason is that Model 2 finds the solution 
of the MDEP problem assuming Gaussian PDFs for wind 
generation and load and, hence, it cannot sufficiently account for 
other types of uncertainty distributions. In contrast, Model 3 is 
highly robust against the uncertainties and, as illustrated in Fig. 4, 
its robustness is considerably higher than the specified level (i.e., 
1 − 𝜖) under all PDF cases. Moreover, taking a careful look at Fig. 
4 reveals that when 1 − 𝜖 = 90%, the robustness of Model 2 is 
significantly lower than when 1 − 𝜖 = 95%. In contrast, the 
robustness of Model 3 is very high for both 𝜖=0.1 and 𝜖=0.05, 
which implies that this model is less sensitive to the risk parameter 
𝜖. It should be noted that, as expected, the higher robustness of 
Model 3 is obtained at the cost of a small increase in computation 
time and investment. Nevertheless, it is worth to bear such a 
reasonable cost to achieve the reported substantial improvement 
in the robustness of the solution. To sum up, it can be stated that 
Model 3 makes an appropriate trade-off among the solution 
robustness, investment cost, and computational burden as 
compared to the other two models. 
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TABLE II 
PERFORMANCE COMPARISON OF MODELS 1-3 FROM THE VIEWPOINTS OF 

SOLUTION ROBUSTNESS, INVESTMENT COST, AND COMPUTATION TIME  
MDEP Models Model 1 Model 2 Model 3 

1 − 𝜖 (%) N/A 90 95 90 95 

Robustness 
(%) 

Avg. 29.86 41.94 77.26 96.81 98.80 

Min. 10.54 18.99 59.74 94.82 97.94 

Max. 49.18 68.27 90.43 97.76 99.61 
Investment (106 US$) 6.699 6.851 6.946 7.083 7.157 

Time (min) 15 22 24 29.5 33 

 
Fig. 4. Solution robustness of Models 1-3 for different PDF cases.   

D. Sensitivity Analysis of Robustness of the DRCC-MILP Model   

As described in Section IV-C, a combination of two 
linearization methods was utilized to overcome the nonlinearities 
of the DR reformulation of CCs: polyhedral approximation and 
piecewise approximation. In this subsection, we analyze the 
impacts of the accuracy of these linearization methods on the 
robustness of the proposed DRCC-MILP model. 

The accuracy of the polyhedral approximation depends on a 
parameter denoted by ℒ, so that the approximation error decreases 
as ℒ is increased. In Section III-C, it was shown that choosing an 
appropriate value for ℒ causes the polyhedral approximation to be 
highly accurate. For instance, based on (62), setting ℒ to 8 results 

in an approximation error of 𝜚=1.88 × 10−5, which is equivalent 
to an accuracy of almost 100%. Based on this fact, it can be stated 
that when ℒ is greater than or equal to 8, the high accuracy of the 
polyhedral approximation is ensured. Thus, in order to linearize 
the DR reformulation of CCs, we have chosen ℒ=8 to make sure 
about the high accuracy of the polyhedral approximation.   

On the other hand, the accuracy of the piecewise approximation 
is dependent on a parameter denoted by 𝛬, which determines the 
number of segments used for linearization. By increasing 𝛬, the 
approximation error will obviously decrease. However, 
quantifying the effect of 𝛬 on the accuracy of the piecewise 
approximation is not straightforward. As a result, we have 
conducted a sensitivity analysis to study the impacts of 𝛬 on the 
robustness of the DRCC-MILP model. In this regard, 𝛬 is changed 
from 5 to 20 in steps of 1, and the corresponding changes in the 
robustness of the DRCC-MILP model are examined. The obtained 
results are illustrated in Fig. 5. Note that the sensitivity analyses 
are performed for all the PDF cases defined in Section V-C while 
considering ℒ=8 and 𝜖=0.1.  

As can be seen, by increasing 𝛬 in the range of 5 to 13, the 
robustness of the DRCC-MILP model is significantly improved. 
The reason is that in this range, an increase in 𝛬 leads to a big 
improvement in the accuracy of the piecewise approximation, 
which causes the accuracy of the linearized DR reformulation of 
CCs to be considerably improved. However, increasing 𝛬 in the 

range beyond 14 does not make a tangible improvement in the 
robustness of the DRCC-MILP model. This is because when 𝛬 
reaches a value of 14, the piecewise approximation achieves its 
highest accuracy level (almost 100%), and hence the solution 
robustness remains constant beyond 𝛬=14.  

 
Fig. 5. Impact of the accuracy of the piecewise approximation on the robustness of 
the DRCC-MILP model. 

Based on the above discussion, it can be stated that choosing 
suitable values for ℒ and 𝛬 causes the linearized DR reformulation 
of CCs to be highly accurate, so that the approximation errors have 
a negligible impact on the robustness of the DRCC-MILP model. 

E. Demonstration of the Scalability of the Proposed MILP Models    

A 138-node test system, based on [11], is here employed to 
demonstrate the scalability of the proposed MILP models (both 
deterministic and DRCC). This test system consists of 135 load 
nodes, 151 feeder sections, and 3 substations. The set of candidate 
nodes for DG installation is defined as 𝛺𝑁𝐺={4,10,19,25,28,31,   
42,52,56,64,68,72,78,85,94,97,100,103,106,108,111,116,120, 
122,126,133}. The one-line diagram of the system and detailed 
data related to the power demands, candidate conductor types, 
lengths of feeder sections, alternatives for construction and 
reinforcement of substations, alternatives for installation of 
renewable/conventional DGs, and other parameters of the problem 
can be downloaded from [46]. 

The simulation results show that, for the linearization parameter 
of ℒ=8, the deterministic MILP model requires a computation time 
of 83 min to be solved. On the other hand, considering the risk 
parameter of 𝜖=0.1 and the linearization parameters of ℒ=8 and 
𝛬=14, the DRCC-MILP model consumes a computation time of 
152 min to obtain the optimal solution of the MDEP problem. As 
can be seen, the proposed MILP models find the optimal 
expansion plans of the 138-node test system within reasonable 
computation times. This demonstrates another outstanding merit 
of the proposed MILP models, i.e., their ability to deal with the 
MDEP problem of large distribution systems in a computationally 
efficient manner. 

One of the main purposes of our proposed planning 
methodology is to determine the optimal location, size, and type 
of DGs. This aspect is studied using the 138-node test system as it 
is large enough to provide a wide range of options for DG 
installation. In this regard, to investigate the impacts of the 
proposed DRCC programming approach on the DG deployment 
plans, we have compared the deterministic MILP model with the 
DRCC-MILP model from the viewpoints of the location, size, and 
type of the installed DGs, as shown in Table III. In this table, “C” 
and “R” stand for “conventional” and “renewable”, respectively. 

As can be seen, three DG locations (i.e., 10, 28, and 108) are 
the same for both models. However, the sizes and types of DGs 
are different for the deterministic and DRCC models. When 
utilizing the deterministic model, the uncertainties of renewable 
generations are entirely ignored. This causes the deterministic 
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model to deploy more renewable DGs (7 MW) than conventional 
ones (4 MW) because renewable DGs do not have any generation 
costs. However, when the DRCC model is used, the uncertainties 
of renewable DGs are incorporated into the optimization process. 
As a result, the DRCC model deploys less renewable DGs (3 MW) 
to obtain more robust expansion plans. This fact implies that the 
robustness of the expansion plans has an inverse relationship with 
the penetration of renewable DGs. Hence, making a proper trade-
off between these two conflicting factors is of great importance.    

TABLE III 
COMPARISON OF THE DETERMINISTIC MILP AND DRCC-MILP MODELS FROM 

THE VIEWPOINT OF DG DEPLOYMENT  
MDEP Models Specifications of the installed DGs  

Deterministic 
MILP  

Location 10 28 72 85 100 108 133 
Size (MW) 1 2 2 1 1 2 2 

Type C R R C R R C 

DRCC-MILP  
Location 10 28 56 94 97 111 108 

Size (MW)  2 1 2 1 1 1 1 
Type C R C C R C R 

VI. CONCLUSION  

In this paper, a novel DRCC-MILP model has been proposed 
for the MDEP problem of ADNs, which has three notable merits: 
first, it incorporates a highly accurate linearized network model 
reflecting AC power flow equations and energy losses; second, it 
immunizes the expansion plans against the uncertain renewable 
generations and loads with unknown PDFs; and third, its linear 
formulation ensures computational tractability and solution 
optimality. The proposed planning methodology has been 
successfully validated using two different distribution systems. 
The simulation results show that, with regard to network 
modelling, the MILP model developed in this paper offers a higher 
degree of accuracy than the most accurate MILP model existing in 
the literature, while both models consume almost the same amount 
of computation time. Furthermore, after testing the uncertain 
renewable generations and loads with several different PDFs, the 
results demonstrate the significantly higher robustness of the 
proposed DRCC-MILP model compared to the deterministic and 
Gaussian chance-constrained MILP models.         
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