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Abstract—Compressed air energy storage is suitable for large-

scale electrical energy storage, which is important for integrating 

renewable energy sources into electric power systems. A typical 

compressed air energy storage plant consists of compressors, 

expanders, caverns, and a motor/generator set. Current cavern 

models used for compressed air energy storage are either accurate 

but highly nonlinear or linear but inaccurate. The application of 

highly nonlinear cavern models in power system optimization 

problems renders them computationally challenging to solve. In 

this regard, an accurate bilinear cavern model for compressed air 

energy storage is proposed in this paper. The charging and 

discharging processes in a cavern are divided into several 

real/virtual states. The first law of thermodynamics and ideal gas 

law are then utilized to derive a cavern model, i.e., a model for the 

variation of temperature and pressure in these processes. 

Thereafter, the heat transfer between the air in the cavern and the 

cavern wall is considered and integrated into the cavern model. By 

subsequently eliminating several negligible terms, the cavern 

model reduces to a bilinear model. The accuracy of the bilinear 

cavern model is verified via comparison with both an accurate 

nonlinear model and two sets of field-measured data. The bilinear 

cavern model can be easily linearized and is then suitable for 

integration into optimization problems considering compressed 

air energy storage. This is verified via comparatively solving a self-

scheduling problem of compressed air energy storage using 

different cavern models. 

Index Terms—Bilinear cavern model; compressed air energy 

storage (CAES); heat transfer; ideal gas law; thermodynamics. 

NOMENCLATURE 

Parameters 

a,ht Both adiabatic process and heat transfer are 

considered (superscript) 

𝑎𝑖  Parameters, 𝑖 = 1,2,3, ⋯ ,13, given in the Appendix 

𝑐Ain / 

𝑐Aout 

Coefficients used to model the relationship between 

charging/discharging power and mass flow rate in/out  

𝑐𝑖  Parameters, 𝑖 = 0,1, representing the left-hand side 

of (3) and (10), respectively, given in the Appendix 

𝑐𝑗  Parameters, 𝑗 = 2,3, ⋯ ,32, given in the Appendix 

𝑐𝑣  Constant volume specific heat (J/(kg K)) 

ht Heat transfer (superscript) 

ℎ𝑐  Heat transfer coefficient (W/(m2 K)) 

𝑘  A constant equal to 1.4 

𝑙𝑥  Parameters used in (35), (36), (47), and (48), 𝑥 = 1,2,3,4 

 

 
 

𝑚𝑜  Mass of air in virtual container 2 as shown in Fig. 3 

(kg) 

𝑚𝑖𝑛  Mass of air charged into the cavern (kg) 
𝑛𝑡  Number of time steps 

𝑝in  Pressure of the air charged into the cavern (bar) 

𝑝𝑖𝑛𝑗  Pressures in virtual states as shown in Fig. 2, 𝑗 = 1,2  

(bar)  
𝑝min, 

𝑝max 
Maximum and minimum pressures in a cavern for 

optimal operation of compressed air energy storage 

(CAES), respectively (bar) 

𝑝𝑠𝑖  Pressure of the air in the cavern after the charging, 

discharging, and idle processes for 𝑖 =2, 3, and 4, 

respectively (bar) 
𝑡  Time step 

𝐴𝑐  Surface area of the cavern wall (m2) 

𝐶ch
𝑡 , 𝐶dch

𝑡  Operational costs of charging and discharging power 

in CAES, respectively ($/MWh) 
𝑃ch

max,

𝑃ch
min 

Maximum and minimum charging power of CAES, 

respectively (MW) 
𝑃dch

max, 

𝑃dch
min 

Maximum and minimum discharging power of 

CAES, respectively (MW) 

𝑄  Total internal energy (J) 

𝑅  Specific air constant (J/(kg K)) 

𝑇𝑠𝑖  Temperature of the air in the cavern after the 

charging, discharging, and idle processes for 𝑖 =2, 3, 

and 4, respectively (K) 

𝑇𝑅𝑊  Temperature of the cavern wall (K) 

𝑇in  Temperature of the air charged into the cavern (K) 

𝑇𝑖𝑛𝑗  Temperatures in virtual states as shown in Fig. 2, 𝑗 =
1,2  (K) 

𝑉𝑖𝑛1, 𝑉𝑜  Volumes of virtual containers as shown in Figs. 2 and 

3 (m3) 

𝑉𝑠  Volume of a cavern (m3) 

𝑊  Work (J) 

𝜌𝑎𝑣  Average air density in a cavern (kg/m3) 

𝜏𝑡  Electricity price ($/MWh) 

Δ𝑡  Time interval (s) 

Δ𝑈  Change in internal energy (J) 
Ω𝑇0  0,1,2, ⋯ , (𝑛𝑡 − 1)  
Ω𝑇1  1,2,3, ⋯ , 𝑛𝑡  

 

Variables 

𝑚̇𝑖𝑛  Mass flow rate charged into a cavern (kg/s) 

𝑚̇𝑜𝑢𝑡  Mass flow rate discharged out of a cavern (kg/s) 

𝑚𝑠  Mass of air in the cavern (kg) 
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𝑝𝑠  Pressure of air in the cavern (bar) 

𝑝𝑠,(xx)
(𝑡+1)

  Pressure after a (xx) process, where (xx) can be ‘ch’, 

‘dch’, and ‘idl’, which represent charging, 

discharging, and idle, respectively (bar) 

𝑇𝑠  Temperature of air in the cavern (K) 

𝑇𝑠,(xx)
(𝑡+1)

  Temperature after a (xx) process, where (xx) can be 

‘ch’, ‘dch’, and ‘idl’, which represent charging, 

discharging, and idle, respectively (K) 
𝑃ch

𝑡 ,𝑃dch
𝑡  Charging and discharging power, respectively (MW) 

𝛼𝑡, 𝛽𝑡 Binary variable indicating the charging and 

discharging processes, respectively 

I. INTRODUCTION 

Energy storage technologies are critical to electric power 

systems, especially considering that the penetration of 

renewable generation is growing rapidly, e.g., the share of wind 

power in global electricity generation will increase from 4% in 

2015 to 25-28% in 2050 [1]. Energy storage can provide various 

kinds of services [2], [3], e.g., electric energy time-shift, electric 

supply capacity, regulation, power reliability, etc. The current 

global installed energy storage capacity is approximately 141 

GW, and an estimated 310 GW of additional capacity is needed 

in the United States, Europe, China, and India [4] to support the 

massive increase of renewable generation in the future. Two 

types of large-scale energy storage currently exist, i.e., pumped-

hydro power storage and compressed air energy storage 

(CAES), which can be cost-effectively installed at the 

electricity grid scale. Hydropower technologies are mature, and 

many sites that were feasible for constructing pumped-storage 

hydropower already have hydropower plants in place [5]. 

Therefore, this paper focuses on CAES technology.  

A CAES plant consists of compressors, turbines, a 

motor/generator set, and large repositories, e.g., underground 

salt caverns. Fig. 1 shows a schematic of the Huntorf CAES 

plant to depict the main components of CAES [6]. CAES 

operates in one of three modes, i.e., charging, discharging, and 

idle. When charging, the motor/generator set acts as a motor 

that is connected to the compressors via a clutch, as shown in 

the ‘Charging circuit’ part of Fig. 1. Low-cost electricity (e.g., 

off-peak electricity or wind power) is usually used by the motor 

to compress air to high pressure for storage in a large repository. 

When discharging, the motor/generator set acts as a generator 

that is connected to the turbines via another clutch, as shown in 

the ‘Discharging circuit’ part of Fig. 1. The compressed air is 

released from the repository and then combusted with fuel (e.g., 

natural gas) to drive the turbines. When idling, no air is injected 

into or released from the repository. Multiple stages of 

compressors (turbines) are typically used instead of a single 

stage to increase the efficiency, e.g., low- and high-pressure 

compressors (turbines) are used in the Huntorf CAES plant as 

shown in Fig. 1. 

CAES is a high power and high energy storage technology 

and has relatively low capital, operational, and maintenance 

costs [3]. The power rating of a large-scale CAES plant can 

reach 300 or even 1000 MW and the rated energy capacity can 

reach 1000 or even 2860 MWh [3]. Different definitions of 

efficiencies for CAES are discussed in [7], e.g., the round-trip 

efficiency of the CAES typically ranges from 66 to 82%. 

According to the Electric Power Research Institute (EPRI), 

about 75% of the continental U.S. has geologic sites suitable for 

CAES [7], [8]. Northern Europe is also replete with suitable salt 

deposits. For example, nearly 500 salt caverns are currently 

being used for natural gas storage. That is, it is feasible to install 

CAES in many different locations, which makes it a promising 

large-scale energy storage technology. 
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Fig. 1. Schematic of the Huntorf compressed air energy storage plant. 

Two commercialized CAES plants are currently in operation. 

The world’s first CAES plant was installed in Huntorf, 

Germany in 1978 [6]. The power ratings of its charging and 

discharging processes are 60 and 290 MW, respectively. The 

second commercialized CAES plant is the McIntosh plant in 

McIntosh, Alabama, U.S. [9], which became operational in 

1991. The power rating of its charging process is 50 MW and it 

can produce an output of 110 MW electricity for up to 26 hours.  

Due to several benefits offered by CAES, a number of CAES 

plants are being constructed for efficient utilization of 

renewable energy sources. For example, a feasibility study for 

a 160 MW CAES plant near the Saskatchewan-Alberta border 

in Canada [10] was finished in late 2018. This proposed CAES 

plant is expected to be combined with the interconnection 

between the Saskatchewan and Alberta power grids. From 2009 

to 2013, Pacific Gas & Electric received US$50 million in 

funding for a demonstration project to validate the design, 

performance, and reliability of a 300 MW CAES plant in Kern 

County, California [11]. Several further examples are provided 

in [11], [12]. 

The two existing CAES plants in Huntorf and Alabama are 

diabatic CAES (D-CAES), and also referred to as the first 

generation CAES. Second generation CAES include adiabatic 

CAES (A-CAES) [13] [14], [15], [16] [17], [18], [19], 

isothermal CAES (I-CAES) [20], [21], and hybrid CAES [22], 

[23]. In the D-CAES, the heat generated in the compression 

process is wasted and an external heat source is required in the 

expansion process. In A-CAES, the heat generated in the 

compression process is captured, stored, and then used in the 

expansion process. I-CAES prevents the temperature from 

changing in the compression and expansion devices. Pacific 

Northwest National Laboratory (PNNL) and EPRI consider A-

CAES and hybrid CAES to be the most suitable and promising 

CAES technologies [11]. For a complete review of CAES 

technologies, readers are referred to [11], which provides a 

comprehensive classification and comparison of different 

http://www.epri.com/
http://www.pge.com/
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CAES technologies as well as several challenging issues 

relevant for CAES research and development. 

Air reservoir is a fundamental part of the CAES as it 

significantly affects the power and energy rating as well as the 

total construction and operation costs [12]. The reservoirs can 

be above-ground containers or underground caverns, including 

salt, hard rock, and porous rock layer caverns [12], [24]. The 

existing commercial CAES plants mentioned above both use 

underground salt caverns for air storage. The proposed cavern 

model is general and can be applied to the different kinds of 

reservoirs mentioned above. 

Some research has been conducted to model compressors and 

turbines [25], [26], [27]. However, the CAES cavern models 

available in the literature [12], [28], [29], [30], [31] are either 

too complicated or inaccurate and, as such, are not suitable for 

real applications. Therefore, this paper focuses on the cavern 

modeling of CAES, i.e., modeling the temperature and pressure 

variations of cavern air. Thermodynamic properties, such as 

variations of temperature and pressure in the caverns and the 

heat transfer between caverns and their surroundings, are 

important factors that affect the overall plant operation and 

performance [28], [29], [30]. Two kinds of cavern models for 

CAES are currently described in the literature. 

The first kind is models that are accurate but highly nonlinear 

[28], [29], [30]. In [28], complex and simplified real gas models 

are developed for an adiabatic cavern for CAES, both of which 

adequately represent the thermodynamic properties of the air. 

Reference [29] developed an accurate dynamic simulation 

model for a CAES cavern that incorporates an accurate heat 

transfer model; the heat transfer is shown to play an important 

role in the thermodynamic behavior of the cavern and therefore 

the model in [29] can accurately simulate the actual cavern 

behavior. In [30], a simplified and unified analytical solution 

considering heat transfer is proposed for temperature and 

pressure variations in CAES caverns. This model is validated 

using data from the Huntorf plant trial tests and the results 

calculated from the models in [28] and [29], demonstrating that 

the solution in [30] is capable of adequately calculating the 

thermodynamic behavior of CAES caverns. Note that the 

models described in [28], [29], and [30] are accurate but highly 

nonlinear.  

The second kind of cavern model assumes that the air 

temperature in the cavern is constant. This kind of model has 

been adopted in different power system operation problems, 

e.g., transmission congestion relief [32], bidding and offering 

strategy [33], and unit commitment [34]. An overview of 

different applications of technologies relevant to CAES is 

available in [35]. The constant-temperature model is linear but 

inaccurate, which can result in non-optimal or even infeasible 

solutions in practice.  

Therefore, all existing CAES applications use simple but 

inaccurate cavern models. To achieve a balance between 

accuracy and complexity, this paper proposes an original and 

novel bilinear cavern model. The charging (discharging) 

process is divided into four (two) real/virtual states. The ideal 

gas law and the first law of thermodynamics [36] are used to 

model the pressure/temperature relationships between different 

charging/discharging states. The heat transfer between the 

cavern air and the cavern wall is also considered. A bilinear 

cavern model is then obtained by ignoring some very-small-

value terms and using several linearization methods such as 

Newton’s generalized binomial theorem and the first-order 

Taylor series approximation [37]. This original bilinear model 

is derived step-by-step in this paper. The advantages of the 

bilinear model over the existing model types mentioned above 

are twofold: 1) it is accurate, as will be verified in this paper, 

and 2) it is suitable for integration in power system optimization 

problems as explained in the following two paragraphs.  

To consider CAES in an optimization problem, binary 

variables are required to indicate the charging, discharging, or 

idle status. That is, an optimization problem considering CAES 

is a mixed-integer programming problem. If the nonlinear 

cavern models given in [28], [29], [30] are used for CAES, an 

optimization problem considering CAES becomes a mixed-

integer nonlinear programming (MINLP) problem. MINLP 

problems are usually difficult to be accurately solved in an 

acceptable computational time [38], [39], and therefore 

nonlinear cavern models such as those given in [28], [29], [30] 

are not suitable to be employed in an optimization problem. If 

the proposed bilinear cavern model is used for CAES, an 

optimization problem considering CAES becomes a mixed-

integer bilinear programming (MIBLP) problem, which can 

easily be converted into a mixed-integer linear programming 

(MILP) problem [40], [41]. MILP problems are relatively easier 

to solve than MINLP problems [38], [42]. MILP problems can 

also be efficiently solved by several mature, off-the-shelf 

commercial solvers, e.g., CPLEX [43] and Gurobi [44]. 

Therefore, the bilinear cavern model is more suitable for 

integration into an optimization problem compared to the 

highly nonlinear cavern models given in [28], [29], [30]. The 

above discussion serves as the main motivation to propose the 

bilinear model. 

A typical example of the previously mentioned optimization 

problem is as follows. A CAES plant can act as an independent 

participator in electricity markets. In this case, the self-

scheduling of a CAES plant is an important optimization 

problem that needs to be solved to maximize its arbitrage 

revenue obtained from selling electricity to and buying 

electricity from the market [35], [45], [46]. In this paper, the 

day-ahead self-scheduling problem (SSP) of CAES is used to 

demonstrate the advantage of using the proposed bilinear model 

in an optimization problem compared to the highly nonlinear 

cavern models given in [30]. For the sake of comparison, both 

the proposed bilinear cavern model and the nonlinear cavern 

model in [30] are integrated into the SSP of CAES; both SSPs 

are MINLP problems and can be solved by an MINLP solver, 

e.g., BARON [47] (note that MIBLP is a kind of MINLP). 

Furthermore, the SSP of CAES using the proposed bilinear 

model is an MIBLP model; the MIBLP model is converted into 

an MILP model, which is then solved by an MILP solver, e.g., 

CPLEX.  

In summary, the contributions of this paper include 1) 

proposing a novel accurate bilinear cavern model of CAES that 

is superior to existing linear but inaccurate or accurate but 

highly nonlinear cavern models from an optimization point of 

view, 2) verifying the accuracy of the proposed bilinear cavern 

model via comparison with both an accurate model and field-

measured data, and 3) using the SSP of CAES to verify the 

superiority of using the bilinear cavern model compared to a 

highly nonlinear cavern model in the optimization problem.  
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The reminder of this paper is organized as follows. Section 

II details the deduction of the accurate bilinear cavern model. 

Section III presents the SSP of CAES and flowcharts for using 

the bilinear cavern model. Section IV verifies the effectiveness 

of the bilinear cavern model. Section V presents the conclusions 

drawn from the results. 

II. ACCURATE BILINEAR CAVERN MODEL FOR COMPRESSED 

AIR ENERGY STORAGE 

The cavern of a CAES plant can operate in either constant-

volume or constant-pressure mode. In this paper, constant-

volume caverns are considered as they are used in existing 

CAES plants [11].  

A. Charging Process 

In the charging process, a certain amount of air is injected by 

compressors into a cavern, as shown in Fig. 1. To facilitate the 

model deduction given in Sections II-A1 to II-A3, the charging 

process is divided into four states and the air is assumed to be 

stored in the (virtual) containers as shown in Fig. 2, where the 

five containers are indexed by the numbers in heptagons. The 

characteristics of the air in each container, including the 

pressure, volume, temperature, and mass, are shown in each 

container in Fig. 2. The values of the underlined notations, i.e., 

the pressure and temperature in containers 2, 4, and 5, are 

unknown while the values of the other notations are known 

from the actual CAES operation. 

Containers 1, 2, and 4 are virtual while containers 3 and 5 

represent the cavern before and after the air from the 

compressors is injected into it, respectively. 

 

 
Fig. 2. Four states and five containers used for model deduction in the charging 

process. 

The air coming out of the compressors is assumed to be 

stored in a virtual container, i.e., cylinder 8 in Fig. 1 and 

container 1 in Fig. 2. The conditions of container 1 represent 

the thermodynamic properties of air at the outlet of the 

compressors. First, let the air in virtual container 1 go into 

virtual container 2. The volume of container 2 is set such that 

the ratio of the volume of containers 2 to 3 is equal to the ratio 

of the mass of air in containers 2 to 3, i.e., 

𝑉𝑖𝑛1/𝑉𝑠 = 𝑚̇𝑖𝑛Δ𝑡/𝑚𝑠                              (1) 

where 𝑉𝑖𝑛1 and 𝑉𝑠 represent the volumes of containers 2 and 3, 

respectively; 𝑚𝑠 represents the mass of air in container 3; and 

𝑚̇𝑖𝑛 represents the flow rate of mass charged into the cavern, 

which is assumed to be constant during a period of time, Δ𝑡. 

The mass of air coming out of the compressor during that period 

of time, denoted as 𝑚𝑖𝑛, can be expressed as 𝑚𝑖𝑛 = 𝑚̇𝑖𝑛Δ𝑡. The 

mass of air injected into the cavern is assumed to be equal to 

𝑚𝑖𝑛, i.e., there is no air leakage. 𝑚𝑖𝑛 is also the mass of air in 

both containers 1 and 2. 

Then, let the air in both containers 2 and 3 go into container 

4. The volume of (mass of air in) container 4 is set to the sum 

of the volumes of (masses of air in) containers 2 and 3, i.e., 

container 4 can be seen as a combination of containers 2 and 3. 

Note that the purpose of using virtual containers 2 and 4 is to 

let the work be zero during the process of merging the air in 

containers 2 and 3 into container 4. 

Last, let the air in container 4 go into container 5, which is an 

adiabatic compression process as the mass of air does not 

change and the volume decreases. The rest of this subsection 

details the deduction of the model for the charging process. 

1) State 1→ State 2 

The transfer of air from containers 1 to 2 is an adiabatic 

process and the mass of air does not change. According to the 

ideal gas law [36] for the air in container 2, one can obtain 

𝑝𝑖𝑛1𝑉𝑖𝑛1 = 𝑚̇𝑖𝑛Δ𝑡𝑅𝑇𝑖𝑛1.                          (2) 

According to the temperature-pressure relationship for an 

adiabatic process, the term 𝑇
𝑘

𝑘−1/𝑝 is constant from containers 

1 to 2 [48] and therefore one can obtain 

(𝑇𝑖𝑛)
𝑘

𝑘−1

𝑝𝑖𝑛
=

(𝑇𝑖𝑛1)
𝑘

𝑘−1

𝑝𝑖𝑛1
 .                           (3) 

Let 𝑐0 represent the left-hand side of (3), i.e., 𝑐0 = 𝑇
𝑖𝑛

𝑘

𝑘−1/𝑝𝑖𝑛. 

Note that the constant 𝑐0  is known. 𝑉𝑖𝑛1  can be determined 

from (1), i.e., 𝑉𝑖𝑛1 = 𝑉𝑠𝑚̇𝑖𝑛Δ𝑡/𝑚𝑠 . This leaves only two 

unknown variables in (2) and (3), i.e., 𝑝𝑖𝑛1 and 𝑇𝑖𝑛1. Therefore, 

𝑝𝑖𝑛1 and 𝑇𝑖𝑛1 can be obtained from (2) and (3): 

𝑝𝑖𝑛1 = (𝑐0)𝑘−1𝑅𝑘𝑚𝑠
𝑘/𝑉𝑠

𝑘                     (4) 

𝑇𝑖𝑛1 = (𝑐0𝑅𝑚𝑠/𝑉𝑠)𝑘−1.                       (5) 

2) State 2→ State 3 

Now we consider the process of the air in both containers 2 

and 3 going into container 4. The volume of container 4 is equal 

to the sum of the volumes of containers 2 and 3. In this process, 

the work is zero and the total internal energy [36] does not 

change. The change of the internal energy in containers 2 and 3 

is 𝑚𝑖𝑛𝑐𝑣(𝑇𝑖𝑛2 − 𝑇𝑖𝑛1)  and 𝑚𝑠𝑐𝑣(𝑇𝑖𝑛2 − 𝑇𝑠) , respectively. 

According to the first law of thermodynamics, i.e., 𝑄 = Δ𝑈 +
𝑊, one can obtain 

𝑚𝑖𝑛𝑐𝑣(𝑇𝑖𝑛2 − 𝑇𝑖𝑛1) + 𝑚𝑠𝑐𝑣(𝑇𝑖𝑛2 − 𝑇𝑠) = 0.          (6) 

Note that 𝑇𝑖𝑛1 can be obtained from (5). 𝑇𝑖𝑛2 is then the only 

unknown variable in (6) and can be expressed as 

𝑇𝑖𝑛2 = (𝑚𝑖𝑛𝑇𝑖𝑛1 + 𝑚𝑠𝑇𝑠)/(𝑚𝑖𝑛 + 𝑚𝑠).                 (7) 

According to the ideal gas law for the air in container 4 in 

Fig. 2, one can obtain 

𝑝𝑖𝑛2(𝑉𝑠 + 𝑉𝑖𝑛1) = (𝑚𝑖𝑛 + 𝑚𝑠)𝑅𝑇𝑖𝑛2.                   (8) 

By substituting (7) into (8), one can then obtain 

𝑝𝑖𝑛2 =
(𝑚𝑖𝑛+𝑚𝑠)𝑅𝑇𝑖𝑛2

𝑉𝑠+𝑉𝑖𝑛1
=

(𝑚𝑖𝑛𝑇𝑖𝑛1+𝑚𝑠𝑇𝑠)𝑅

𝑉𝑠+𝑉𝑖𝑛1
.               (9) 

Now 𝑝𝑖𝑛2 and 𝑇𝑖𝑛2 in container 4 have been obtained.  
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3) State 3→ State 4 

From containers 4 to 5, the mass of air does not change and 

the volume reduces from (𝑉𝑠 + 𝑉𝑖𝑛1) to 𝑉𝑠. This is an adiabatic 

compression process. Thus, 𝑇
𝑘

𝑘−1/𝑝 is constant from containers 

4 to 5 [48], i.e., 

(𝑇𝑖𝑛2)
𝑘

𝑘−1

𝑝𝑖𝑛2
=

(𝑇𝑠2)
𝑘

𝑘−1

𝑝𝑠2
                             (10) 

According to the ideal gas law for the air in container 5 in 

Fig. 2, one has 

𝑝𝑠2𝑉𝑠 = (𝑚̇𝑖𝑛Δ𝑡 + 𝑚𝑠)𝑅𝑇𝑠2                         (11) 

Let 𝑐1  represent the left-hand side of (10), i.e., 𝑐1 =

(𝑇𝑖𝑛2)
𝑘

𝑘−1/𝑝𝑖𝑛2. Only two variables are unknown in (10) and 

(11), i.e., 𝑝𝑠2 and 𝑇𝑠2. Therefore, 𝑝𝑠2 and 𝑇𝑠2 can be obtained 

from (10) and (11): 

𝑝𝑠2 = (𝑚̇𝑖𝑛Δ𝑡 + 𝑚𝑠)𝑘𝑅𝑘(𝑐1)𝑘−1/𝑉𝑠
𝑘                 (12) 

𝑇𝑠2 = (𝑐1𝑝𝑠2)1−
1

𝑘 .                              (13) 

Now 𝑝𝑠2  and 𝑇𝑠2  for container 5 have been obtained. By 

substituting 𝑐1 (𝑐0, (5), (7), and (9) are needed to calculate 𝑐1) 

into (12) and (13), these two equations can be rewritten as: 

𝑝𝑠2 = 𝑝𝑠 (1 +
𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
)

𝑘−1

+ 𝑎2(𝑚̇𝑖𝑛Δ𝑡 + 𝑚𝑠)𝑘−1𝑚̇𝑖𝑛Δ𝑡    (14) 

𝑇𝑠2 = 𝑇𝑠 (1 +
𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
)

𝑘−2

+ 𝑎3(𝑚̇𝑖𝑛Δ𝑡 + 𝑚𝑠)𝑘−2𝑚̇𝑖𝑛Δ𝑡    (15) 

where 𝑎2 =
𝑅𝑘𝑇𝑖𝑛

𝑘

𝑉𝑠
𝑘𝑝𝑖𝑛

𝑘−1 and 𝑎3 =
𝑅𝑘−1𝑇𝑖𝑛

𝑘

𝑉𝑠
𝑘−1𝑝𝑖𝑛

𝑘−1. 

Equations (14) and (15) show that 𝑝𝑠2 and 𝑇𝑠2 are nonlinear 

functions of 𝑚̇𝑖𝑛, which are linearized as follows. According to 

Newton’s generalized binomial theorem [37], one has 

(1 + 𝑥)𝑟 = ∑ (
𝑟
𝑗) 𝑥𝑗∞

𝑗=0 = 1 + 𝑟𝑥 +
𝑟(𝑟−1)

2!
𝑥2 + ⋯     (16) 

where (
𝑟
𝑗) =

𝑟(𝑟−1) ⋯ (𝑟−𝑗+1)

𝑗!
, 𝑟 can be any real number, and 𝑗 is 

an integer. That is, (1 +
𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
)

𝑘−1

 in (14) can be expressed as 

(1 + (𝑘 − 1)
𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
+

(𝑘−1)(𝑘−2)

2!
(

𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
)

2

+ ⋯ ) . Considering 

that 𝑚̇𝑖𝑛Δ𝑡  is much smaller than 𝑚𝑠 , the second and higher 

orders terms of (𝑚̇𝑖𝑛Δ𝑡/𝑚𝑠) can be ignored. Then, (14) can be 

reformed as 

𝑝𝑠2 = 𝑝𝑠 (1 + (𝑘 − 1)
𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
) + 𝑎2(𝑚𝑠)𝑘−1𝑚̇𝑖𝑛Δ𝑡     (17) 

Note that the second term in (14) is replaced by 

𝑎2(𝑚𝑠)𝑘−1𝑚̇𝑖𝑛Δ𝑡 , which has negligible error as 𝑎2  is much 

smaller than 𝑝𝑠 (e.g., 𝑝𝑠 =46~66× 105 Pascals and 𝑎2 =1.04×
10−3 for the Huntorf CAES plant) and 𝑚̇𝑖𝑛Δ𝑡 is much smaller 

than 𝑚𝑠. Similarly, (15) can be reformed as 

𝑇𝑠2 = 𝑇𝑠 (1 + (𝑘 − 2)
𝑚̇𝑖𝑛Δ𝑡

𝑚𝑠
) + 𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛Δ𝑡    (18) 

When (17) and (18) are used in a single-time-step 

optimization problem, 𝑝𝑠2  is a linear function of 𝑚̇𝑖𝑛  in (17) 

and 𝑇𝑠2 is a linear function of 𝑚̇𝑖𝑛 in (18) as 𝑝𝑠 and 𝑇𝑠 have a 

known initial status. When used in a multi-time-step 

optimization problem, (17) and (18) are bilinear equations as 𝑝𝑠 

and 𝑇𝑠 become decision variables. 

B. Discharging Process 

In the discharging process, the air is released from the cavern, 

as shown in Fig. 1. To facilitate the model deduction given in 

the rest of this subsection, the cavern before discharging is 

divided into two containers, i.e., containers 1 and 2, while the 

cavern after discharging (cylinder 7 in Fig. 1) is represented as 

container 3 in Fig. 3. The three containers in Fig. 3 are indexed 

by the numbers in heptagons. The characteristics of the air in 

each container, including the pressure, volume, temperature, 

and mass, are shown in each container in Fig. 3. The values of 

the underlined notations, i.e., the pressure and temperature in 

container 3, are not known while the values of the other 

notations are known. 

The discharging process can be divided into two virtual steps. 

First, the air in container 2 is taken out of the cavern. Then, the 

air in container 1 expands to the whole cavern, i.e., air goes 

from containers 1 to 3. The deduction of the model for the 

second step is given in the rest of this subsection.  

 

 
Fig. 3. Three containers used for model deduction in the discharging process. 

The volume of container 2 is set such that the ratio of the 

volume of container 2 to that of container 1 is equal to the ratio 

of the mass of air in container 2 to that of container 1, i.e., 

𝑉𝑜/(𝑉𝑠 − 𝑉𝑜) = 𝑚𝑜/(𝑚𝑠 − 𝑚𝑜).                      (19) 

Note that the purpose of using virtual container 2 is to let the 

temperature and pressure of the air in container 1 be the same 

as the air in the cavern before discharging and to let air go from 

containers 1 to 3. This means that step 2 is an adiabatic 

expansion process. 

Let 𝑚̇𝑜𝑢𝑡 represent the flow rate of mass discharged from the 

cavern, which is assumed to be constant during a period of time, 

Δ𝑡. Then, the mass of air discharged from the cavern, denoted 

as 𝑚𝑜 , during that period of time can be expressed as 𝑚𝑜 =
𝑚̇𝑜𝑢𝑡Δ𝑡.  

The air expansion from containers 1 to 3 is an adiabatic 

process. Then, 𝑇
𝑘

𝑘−1/𝑝 is constant from containers 1 to 3: 

(𝑇𝑠)
𝑘

𝑘−1 𝑝𝑠⁄ = (𝑇𝑠3)
𝑘

𝑘−1 𝑝𝑠3⁄ .                        (20) 

According to the ideal gas law for the air in container 3 in 

Fig. 3, one has 

𝑝𝑠3𝑉𝑠 = (𝑚𝑠 − 𝑚𝑜)𝑅𝑇𝑠3.                        (21) 

There are only two variables unknown in (20) and (21), i.e., 

𝑝𝑠3 and 𝑇𝑠3. Therefore, 𝑝𝑠3 and 𝑇𝑠3 can be obtained from (20) 

and (21): 

𝑝𝑠3 = (1 − 𝑚̇𝑜𝑢𝑡Δ𝑡/𝑚𝑠)𝑘𝑝𝑠                        (22) 

𝑇𝑠3 = (1 − 𝑚̇𝑜𝑢𝑡Δ𝑡/𝑚𝑠)𝑘−1𝑇𝑠.                    (23) 
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Similar to the charging process, the above nonlinear 

equations are linearized. According to Newton’s generalized 

binomial theorem, when 𝑚̇𝑜𝑢𝑡Δ𝑡 is much smaller than 𝑚𝑠, (22) 

and (23) can be respectively reformulated as 

𝑝𝑠3 = (1 − 𝑘𝑚̇𝑜𝑢𝑡Δ𝑡/𝑚𝑠)𝑝𝑠                             (24) 

𝑇𝑠3 = (1 − (𝑘 − 1)𝑚̇𝑜𝑢𝑡Δ𝑡/𝑚𝑠)𝑇𝑠.                  (25) 

Similar to (17) and (18), (24) and (25) are linear (bilinear) 

equations when used in a one-step (multi-step) optimization 

problem.  

C. Charging Process Considering Heat Transfer 

In Sections II-A and II-B, the heat transfer between the 

cavern air and the cavern wall is not considered. However, the 

heat transfer plays an important role in the variation of the air 

temperature/pressure in the cavern [29]. Therefore, the heat 

transfer is considered in this subsection and the following two 

subsections. In this subsection, the temperature as a function of 

time is first deduced. The pressure as a function of time is then 

obtained via the ideal gas law. Last, the temperature/pressure as 

a function of time is linearized to obtain a bilinear model.  

According to [29], [30], the air density (𝜌𝑎𝑣) in the cavern 

and the cavern wall temperature (𝑇𝑅𝑊) can be assumed to be 

constant and the heat transfer between the cavern air and the 

cavern wall can be modelled as 

𝑑𝑇

𝑑𝑡
=

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
(𝑇𝑅𝑊 − 𝑇)                                 (26) 

where  

ℎ𝑒𝑓𝑓 = ℎ𝑎 + ℎ𝑏|𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡|0.8                  (27) 

According to [29], ℎ𝑎 and ℎ𝑏 can be set to 0.2356 and 0.0149, 

respectively. Equation (26) can be reformed as 

𝑇(𝑡) = ∫
ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
(𝑇𝑅𝑊 − 𝑇)𝑑𝑡                       (28) 

Equation (18) can be written as 

𝑇𝑠2(𝑡) = 𝑇𝑠 (1 + (𝑘 − 2)
𝑚̇𝑖𝑛 𝑡

𝑚𝑠
) + 𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛 𝑡.   (29) 

By substituting (29) into (28), i.e., replacing 𝑇 on the right-

hand side of (28) by the right-hand side of (29), one can obtain 

𝑇𝑠2
ht(𝑡) = ∫

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
(𝑇𝑅𝑊 − 𝑇𝑠 (1 + (𝑘 − 2)

𝑚̇𝑖𝑛 𝑡

𝑚𝑠
) −

𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛 𝑡) 𝑑𝑡      (30) 

where superscript ‘ht’ represents ‘heat transfer’. By solving the 

integral equation (30), one can obtain 

𝑇𝑠2
ℎ𝑡(𝑡) =

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
(𝑇𝑅𝑊 𝑡 − 𝑇𝑠 (𝑡 + (𝑘 − 2)

𝑚̇𝑖𝑛 𝑡2

2𝑚𝑠
) −

𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛 𝑡2/2).                (31) 

Adding (29) and (31) together gives 

𝑇𝑠2
a,ht(𝑡) = 𝑇𝑠 (1 + (𝑘 − 2)

𝑚̇𝑖𝑛 𝑡

𝑚𝑠
) + 𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛 𝑡 +

 
1

𝜌𝑎𝑣𝑐𝑣
(ℎ𝑎 + ℎ𝑏𝑚̇𝑖𝑛

0.8) (𝑇𝑅𝑊 𝑡 − 𝑇𝑠 (𝑡 + (𝑘 − 2)
𝑚̇𝑖𝑛 𝑡2

2𝑚𝑠
) −

𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛
𝑡2

2
)  (32) 

where superscript ‘a,ht’ indicates that both the adiabatic process 

and heat transfer are considered. 

According to the first-order Taylor series approximation [37], 

i.e., 𝑓(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) × (𝑥 − 𝑥0) , one can linearize 

(𝑚𝑠)𝑘−1 and (𝑚𝑠)𝑘−2 at 𝑚𝑎𝑣0 as 

(𝑚𝑠)𝑘−1 = (𝑚𝑎𝑣0)𝑘−1 + (𝑘 − 1)(𝑚𝑎𝑣0)𝑘−2(𝑚𝑠 − 𝑚𝑎𝑣0) (33) 

(𝑚𝑠)𝑘−2 = (𝑚𝑎𝑣0)𝑘−2 + (𝑘 − 2)(𝑚𝑎𝑣0)𝑘−3(𝑚𝑠 − 𝑚𝑎𝑣0) (34) 

where 𝑚𝑎𝑣0  is a fixed value, i.e., 𝑚𝑎𝑣0 = 𝜌𝑎𝑣𝑉𝑠 . The 𝑚̇𝑖𝑛
0.8 

and 𝑚̇𝑖𝑛
1.8 in (32) can be linearized using 

𝑚̇𝑖𝑛
0.8 = 𝑚̇𝑖𝑛0

0.8 + 𝑙1(𝑚̇𝑖𝑛 − 𝑚̇𝑖𝑛0)          (35) 

𝑚̇𝑖𝑛
1.8 = 𝑚̇𝑖𝑛0

1.8 + 𝑙2(𝑚̇𝑖𝑛 − 𝑚̇𝑖𝑛0)          (36) 

where 𝑙1 =
𝑚̇𝑖𝑛1

0.8−𝑚̇𝑖𝑛0
0.8

𝑚̇𝑖𝑛1−𝑚̇𝑖𝑛0
, 𝑙2 =

𝑚̇𝑖𝑛1
1.8−𝑚̇𝑖𝑛0

1.8

𝑚̇𝑖𝑛1−𝑚̇𝑖𝑛0
, and the setting 

of 𝑚̇𝑖𝑛1 and 𝑚̇𝑖𝑛0 will be given in the beginning of Section IV. 

By using (33)-(36), equation (32) can then be converted to be a 

bilinear form, i.e., (37). 

𝑚𝑠𝑇𝑠2
a,ht(𝑡) = 𝑇𝑠𝑚𝑠 + 𝑐2𝑇𝑠𝑚̇𝑖𝑛 + 𝑐3𝑚𝑠𝑚̇𝑖𝑛 + c4𝑚̇𝑖𝑛 + 𝑐5𝑇𝑠 +

c6𝑚𝑠 + 𝑐7  (37) 

where 𝑐2-𝑐7 are constant coefficients given in the Appendix. 

Equation (37) involves four variables, i.e., 𝑚𝑠, 𝑚̇𝑖𝑛, 𝑇𝑠2
a,ht(𝑡), 

and 𝑇𝑠 and the first four terms are bilinear terms. 

Equation (37) represents the change of the temperature 

during the charging process as a function of time and the 

charging mass flow rate 𝑚̇𝑖𝑛, where both the adiabatic process 

and the heat transfer process are considered. 

According to the ideal gas law, one can obtain  

𝑝𝑠2
a,ht(𝑡) = (𝑚𝑠 + 𝑚̇𝑖𝑛𝑡)𝑅𝑇𝑠2

a,ht(𝑡)/𝑉𝑠              (38) 

which can be expanded to (39) by substituting (32) therein.  

𝑝𝑠2
a,ht(𝑡) =

(𝑚𝑠+𝑚̇𝑖𝑛𝑡)𝑅𝑇𝑠

𝑉𝑠
(1 + (𝑘 − 2)

𝑚̇𝑖𝑛 𝑡

𝑚𝑠
)  

+
(𝑚𝑠+𝑚̇𝑖𝑛𝑡)𝑅

𝑉𝑠
𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛 𝑡  

+
(𝑚𝑠+𝑚̇𝑖𝑛𝑡)𝑅

𝑉𝑠𝜌𝑎𝑣𝑐𝑣
 (ℎ𝑎 + ℎ𝑏𝑚̇𝑖𝑛

0.8) (𝑇𝑅𝑊 𝑡 − 𝑇𝑠𝑡 − 𝑇𝑠(𝑘 − 2)
𝑚̇𝑖𝑛 𝑡2

2𝑚𝑠
)  

−
(𝑚𝑠+𝑚̇𝑖𝑛𝑡)𝑅

𝑉𝑠𝜌𝑎𝑣𝑐𝑣
(ℎ𝑎 + ℎ𝑏𝑚̇𝑖𝑛

0.8) (𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛
𝑡2

2
)     (39) 

The four terms in (39) are each on a separate line. The second 

term of (39) can be replaced by 𝑚𝑠𝑅𝑎3(𝑚𝑠)𝑘−2𝑚̇𝑖𝑛 𝑡/𝑉𝑠 

because 𝑅𝑎3/𝑉𝑠  is small and 𝑚̇𝑖𝑛𝑡  is much smaller than 𝑚𝑠 . 

The last term of (39) can be ignored because the values of both 

(ℎ𝑎 + ℎ𝑏𝑚̇𝑖𝑛
0.8)/𝜌𝑎𝑣𝑐𝑣 and 𝑅𝑎3/𝑉𝑠 are small.  

Again, according to the first-order Taylor series 

approximation [37], i.e., 𝑓(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) × (𝑥 − 𝑥0), 

one can linearize 𝑚𝑠
𝑘 at 𝑚𝑎𝑣0: 

𝑚𝑠
𝑘 = 𝑚𝑎𝑣0

𝑘 + 𝑘𝑚𝑎𝑣0
𝑘−1(𝑚𝑠 − 𝑚𝑎𝑣0)               (40) 

Now, by using (40), (39) can be reformed into a bilinear 

form: 

𝑚𝑠𝑝𝑠2
a,ht(𝑡) = 𝑝𝑠𝑚𝑠 + 𝑐8𝑝𝑠𝑚̇𝑖𝑛 + c9𝑚𝑠𝑚̇𝑖𝑛 + 𝑐10𝑚̇𝑖𝑛 +

𝑐11𝑚𝑠 + 𝑐12𝑝𝑠 + 𝑐13          (41) 
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where 𝑐8-𝑐13 are constant coefficients as given in the Appendix. 

Equation (41) involves four variables, i.e., 𝑚𝑠, 𝑚̇𝑖𝑛, 𝑝𝑠2
a,ht(𝑡), 

and 𝑝𝑠, and the first four terms are bilinear terms. 

D. Discharging Process Considering Heat Transfer 

In this subsection, the temperature as a function of time is 

first deduced. The pressure as a function of time is then obtained 

via the ideal gas law. Last, the temperature/pressure as a 

function of time is linearized to obtain a bilinear model. 

Equation (25) can be written as  

𝑇(𝑡) = 𝑇𝑠 − (𝑘 − 1)𝑇𝑠
𝑚̇𝑜𝑢𝑡 

𝑚𝑠
𝑡.                       (42) 

By substituting (42) into (28), i.e., replacing 𝑇 on the right-

hand side of (28) by the right-hand side of (42), one can obtain 

𝑇𝑠3
ℎ𝑡(𝑡) = ∫

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
(𝑇𝑅𝑊 − 𝑇𝑠 + (𝑘 − 1)𝑇𝑠

𝑚̇𝑜𝑢𝑡 

𝑚𝑠
𝑡) d𝑡.    (43) 

By solving the integral equation (43), one can obtain 

𝑇𝑠3
ℎ𝑡(𝑡) =

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
((𝑇𝑅𝑊 − 𝑇𝑠)𝑡 + (𝑘 − 1)𝑇𝑠

𝑚̇𝑜𝑢𝑡 

2𝑚𝑠
𝑡2).     (44) 

Adding (42) and (44) together gives 

𝑇𝑠3
a,ht(𝑡) = 𝑇𝑠 − (𝑘 − 1)𝑇𝑠

𝑚̇𝑜𝑢𝑡 

𝑚𝑠
𝑡 +

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
((𝑇𝑅𝑊 − 𝑇𝑠)𝑡 + (𝑘

− 1)𝑇𝑠
𝑚̇𝑜𝑢𝑡 

2𝑚𝑠
𝑡2).       (45) 

Equation (45) represents the change in temperature during 

the discharging process as a function of time and discharging 

mass flow rate 𝑚̇𝑜𝑢𝑡, where both the adiabatic process and the 

heat transfer process are considered. Equation (45) can be 

rewritten as  

𝑚𝑠𝑇𝑠3
a,ht(𝑡) = 𝑚𝑠𝑇𝑠 − (𝑘 − 1)𝑇𝑠𝑚̇𝑜𝑢𝑡𝑡 +

𝑉𝑠

𝑐𝑣
(𝑇𝑅𝑊 − 𝑇𝑠)𝑡

(ℎ𝑎 + ℎ𝑏𝑚̇𝑜𝑢𝑡
0.8) +

1

2𝜌𝑎𝑣𝑐𝑣
(𝑘 − 1)𝑇𝑠𝑡2(ℎ𝑎𝑚̇𝑜𝑢𝑡 + ℎ𝑏𝑚̇𝑜𝑢𝑡

1.8)

  (46) 

Similarly, 𝑚̇𝑜𝑢𝑡
0.8 and 𝑚̇𝑜𝑢𝑡

1.8 can be linearized using 

𝑚̇𝑜𝑢𝑡
0.8 = 𝑚̇𝑜𝑢𝑡0

0.8 + 𝑙3(𝑚̇𝑜𝑢𝑡 − 𝑚̇𝑜𝑢𝑡0)    (47) 

𝑚̇𝑜𝑢𝑡
1.8 = 𝑚̇𝑜𝑢𝑡0

1.8 + 𝑙4(𝑚̇𝑜𝑢𝑡 − 𝑚̇𝑜𝑢𝑡0)    (48) 

where 𝑙3 =
𝑚̇𝑜𝑢𝑡1

0.8−𝑚̇𝑜𝑢𝑡0
0.8

𝑚̇𝑜𝑢𝑡1−𝑚̇𝑜𝑢𝑡0
, 𝑙4 =

𝑚̇𝑜𝑢𝑡1
1.8−𝑚̇𝑜𝑢𝑡0

1.8

𝑚̇𝑜𝑢𝑡1−𝑚̇𝑜𝑢𝑡0
, and the 

setting of 𝑚̇𝑜𝑢𝑡1 and 𝑚̇𝑜𝑢𝑡0 will be given at the beginning of 

Section IV. Now, (46) can be reformulated into a bilinear form: 

𝑚𝑠𝑇𝑠3
a,ht(𝑡) = 𝑚𝑠𝑇𝑠 + 𝑐14𝑇𝑠𝑚̇𝑜𝑢𝑡 + c15𝑚̇𝑜𝑢𝑡 + 𝑐16𝑇𝑠 + 𝑐17     

(49) 

where 𝑐14 - 𝑐17  are constant coefficients as given in the 

Appendix. Equation (49) involves four variables, i.e., 𝑚𝑠, 𝑚̇𝑜𝑢𝑡, 

𝑇𝑠3
a,ht(𝑡), and 𝑇𝑠, and the first three terms in the equation are 

bilinear terms. According to the ideal gas law, one can obtain  

𝑝𝑠3
a,ht(𝑡) = (𝑚𝑠 − 𝑚̇𝑜𝑢𝑡𝑡)𝑅𝑇𝑠3

a,ht(𝑡)/𝑉𝑠                  (50) 

which can be expanded as follows by substituting (45) therein:  

𝑝𝑠3
a,ht(𝑡) =

(𝑚𝑠−𝑚̇𝑜𝑢𝑡𝑡)𝑅𝑇𝑠

𝑉𝑠
−

(𝑚𝑠−𝑚̇𝑜𝑢𝑡𝑡)𝑅

𝑉𝑠
(𝑘 − 1)𝑇𝑠

𝑚̇𝑜𝑢𝑡 

𝑚𝑠
𝑡 +

ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
(

(𝑚𝑠−𝑚̇𝑜𝑢𝑡𝑡)𝑅

𝑉𝑠
(𝑇𝑅𝑊 − 𝑇𝑠)𝑡 +

(𝑚𝑠−𝑚̇𝑜𝑢𝑡𝑡)𝑅

𝑉𝑠
(𝑘 −

1)𝑇𝑠
𝑚̇𝑜𝑢𝑡 

2𝑚𝑠
𝑡2) (51) 

Note that (𝑚𝑠 − 𝑚̇𝑜𝑢𝑡𝑡)
𝑚̇𝑜𝑢𝑡 

𝑚𝑠
 in the third term of (51) can be 

replaced by 𝑚𝑠
𝑚̇𝑜𝑢𝑡 

𝑚𝑠
 because 𝑚̇𝑜𝑢𝑡𝑡 is much smaller than 𝑚𝑠. 

Equation (51) can then be reformed as 

𝑚𝑠𝑝𝑠3
a,ht(𝑡) = (𝑚𝑠 − 𝑘𝑚̇𝑜𝑢𝑡𝑡)𝑝𝑠                                             

+ 
ℎ𝑒𝑓𝑓𝑅

𝑐𝑣
((𝑚𝑠 −

𝑚̇𝑜𝑢𝑡𝑡

2
)(𝑇𝑅𝑊 − 𝑇𝑠)𝑡 + 0.5(𝑘 − 1)𝑇𝑠𝑚̇𝑜𝑢𝑡𝑡2)   

(52) 

Comparing (52) with (24), we know that the term 
(𝑚𝑠 − 𝑘𝑚̇𝑜𝑢𝑡𝑡)𝑝𝑠  in (52) represents the adiabatic process 

inside the cavern and the terms in the second line of (52) are 

associated with the heat transfer between the cavern air and the 

cavern wall. Equation (52) can be further reformulated into the 

following bilinear form: 

𝑚𝑠𝑝𝑠3
a,ht(𝑡) = 𝑝𝑠𝑚𝑠 + 𝑐18𝑝𝑠𝑚̇𝑜𝑢𝑡 + 𝑐19𝑇𝑠𝑚𝑠 + 𝑐20𝑇𝑠𝑚̇𝑜𝑢𝑡 +

𝑐21𝑚̇𝑜𝑢𝑡𝑚̇𝑜𝑢𝑡 + 𝑐22𝑚𝑠𝑚̇𝑜𝑢𝑡 + 𝑐23𝑚̇𝑜𝑢𝑡 + 𝑐24𝑚𝑠 + 𝑐25𝑝𝑠 +

𝑐26𝑇𝑠   (53) 

where 𝑐18 - 𝑐26  are constant coefficients as given in the 

Appendix. Equation (53) involves five variables, i.e., 𝑚𝑠, 𝑚̇𝑜𝑢𝑡, 

𝑝𝑠3
a,ht(𝑡), 𝑝𝑠, and 𝑇𝑠 and the first seven terms are bilinear terms. 

E. Idle Process Considering Heat Transfer 

When idling, i.e., when neither charging nor discharging, 

heat transfer occurs between the cavern air and the cavern wall 

if a temperature difference exists. By solving the integral 

equation (28), the change of air temperature in the cavern in the 

idle process can be expressed as 

𝑇𝑠4
ht(𝑡) = (𝑇𝑠 − 𝑇𝑅𝑊)𝑒

−
ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
𝑡

+ 𝑇𝑅𝑊               (54) 

where 𝑇𝑠 is the initial air temperature of the cavern in the idle 

process. According to the ideal gas law, one can obtain  

𝑝𝑠4
ht(𝑡) = 𝑚𝑠𝑅𝑇𝑠4

ht(𝑡)/𝑉𝑠                            (55) 

which can be expanded into (56) by substituting (54) therein:  

𝑝𝑠4
ht(𝑡) = 𝑚𝑠𝑅(𝑇𝑠 − 𝑇𝑅𝑊)𝑒

−
ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
𝑡
/𝑉𝑠 + 𝑚𝑠𝑅𝑇𝑅𝑊/𝑉𝑠   (56) 

Equation (56) can be reformed as 

𝑝𝑠4
ht(𝑡) = 𝑝𝑠𝑒

−
ℎ𝑒𝑓𝑓

𝜌𝑎𝑣𝑐𝑣
𝑡

+ 𝑚𝑠𝑅𝑇𝑅𝑊(1 − 𝑒
−

ℎ𝑒𝑓𝑓
𝜌𝑎𝑣𝑐𝑣

𝑡
)/𝑉𝑠     (57) 

The 𝑒
−

ℎ𝑒𝑓𝑓
𝜌𝑎𝑣𝑐𝑣

𝑡
 in (57) can be expressed as 𝑒

−
ℎ𝑒𝑓𝑓𝑉𝑠

𝑚𝑎𝑣𝑐𝑣
𝑡
, which 

can be linearized as follows: 

𝑒
−

ℎ𝑐𝐴𝑐
𝑚𝑎𝑣𝑐𝑣

𝑡
= 𝑒−𝑎4 +

𝑎4

𝑚𝑎𝑣0
𝑒−𝑎4(𝑚𝑠 − 𝑚𝑎𝑣0)          (58) 

where 𝑎4 =
ℎ𝑒𝑓𝑓𝑉𝑠𝑡

𝑚𝑎𝑣0𝑐𝑣
. By substituting (58) into (54) and (57), 

one can obtain  
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𝑇𝑠4
ht(𝑡) = (𝑇𝑠 − 𝑇𝑅𝑊)(𝑒−𝑎4 + 𝑎4𝑒−𝑎4(𝑚𝑠 − 𝑚𝑎𝑣0)/𝑚𝑎𝑣0) +

𝑇𝑅𝑊  (59) 

𝑝𝑠4
ht(𝑡) = 𝑝𝑠(𝑒−𝑎4 + 𝑎4𝑒−𝑎4(𝑚𝑠 − 𝑚𝑎𝑣0)/𝑚𝑎𝑣0)                    

+
𝑚𝑠𝑅𝑇𝑅𝑊

𝑉𝑠
(1 − 𝑒−𝑎4 −

𝑎4

𝑚𝑎𝑣0
𝑒−𝑎4(𝑚𝑠 − 𝑚𝑎𝑣0))    (60) 

Equations (59) and (60) can be reformulated into the 

following bilinear forms: 

𝑇𝑠4
ht(𝑡) = 𝑐27𝑚𝑠𝑇𝑠 + 𝑐28𝑇𝑠 + 𝑐29𝑚𝑠 + 𝑐30                  (61) 

𝑝𝑠4
ht(𝑡) = 𝑐27𝑝𝑠𝑚𝑠 + 𝑐31𝑚𝑠𝑚𝑠 + 𝑐28𝑝𝑠 + 𝑐32𝑚𝑠       (62) 

where 𝑐27 - 𝑐32  are constant coefficients as given in the 

Appendix. Equation (61) involves three variables, i.e., 𝑚𝑠 , 

𝑇𝑠4
ht(𝑡) , and 𝑇𝑠 , and the 2nd term is the only bilinear term. 

Equation (62) involves three variables, i.e., 𝑚𝑠, 𝑝𝑠4
ht(𝑡), and 𝑝𝑠, 

and the 2nd and 3rd terms are bilinear. 

This completes the deduction of the bilinear cavern model. 

In summary, the bilinear cavern model includes (37) and (41) 

for the charging process, (49) and (53) for the discharging 

process, and (61)  and (62) for the idle process. 

III. SELF-SCHEDULING OF COMPRESSED AIR ENERGY 

STORAGE IN THE DAY-AHEAD ELECTRICITY MARKET 

A. Self-scheduling Problem Using the Bilinear Cavern Model 

In the SSP of CAES, the day-ahead electricity market is 

considered and the CAES plant is assumed to be a price taker 

(i.e., the CAES plant does not affect the electricity market price). 

The objective of SSP is to maximize the arbitrage revenue 

obtained from selling electricity to and buying electricity from 

the day-ahead electricity market, i.e., selling electricity (in the 

discharging process) to the market in high-electricity-price 

periods and buying electricity (in the charging process) from 

the market in lower-electricity-price periods. This implies that 

the aim of SSP is to decide when to charge and discharge 

subjected to physical constraints of the CAES plant, including 

the minimum/maximum pressure range of the cavern air.  

The objective function of the SSP can be expressed by (63), 

which represents the net profit obtained by the CAES plant 

from the electricity market. Note that the operational costs of 

charging and discharging power in the CAES are considered in 

(63). Equation (64) represents the relationship between the 

mass flow rate in (𝑚̇in
𝑡 ) and charging power (𝑃ch

𝑡 ) and (65) 

represents the relationship between the mass flow rate out (𝑚̇out
𝑡 ) 

and discharging power (𝑃dch
𝑡 ) [27]. Equation (66) represents the 

lower and upper bounds of the air pressure in the cavern. 

Equation (67) ensures that the charging and discharging 

processes do not occur at the same time. Equations (68) and 

(69) describe the ranges of charging and discharging power and 

their relationships with the charging and discharging status 

indicators, i.e., 𝛼𝑡 and 𝛽𝑡, respectively.  

maximize:  𝑓obj = ∑ ((𝜏𝑡 − 𝐶dch
𝑡 )𝑃dch

𝑡 − (𝜏𝑡 +𝑡∈Ω𝑇1

𝐶ch
𝑡 )𝑃ch

𝑡 )
Δ𝑡

3600
    (63) 

𝑚̇in
𝑡 = 𝑐Ain𝑃ch

𝑡 ,     ∀𝑡 ∈Ω𝑇1                    (64) 

𝑚̇out
𝑡 = 𝑐Aout𝑃dch

𝑡 ,    ∀𝑡 ∈Ω𝑇1                  (65) 

𝑝min  ≤ 𝑝𝑠
𝑡 ≤ 𝑝max,     ∀𝑡 ∈Ω𝑇1                 (66) 

𝛼𝑡 + 𝛽𝑡 ≤ 1,    ∀𝑡 ∈Ω𝑇1                (67) 

𝛼𝑡𝑃ch
min ≤ 𝑃ch

𝑡 ≤ 𝛼𝑡𝑃ch
max, ∀𝑡 ∈Ω𝑇1               (68) 

𝛽𝑡𝑃dch
min ≤ 𝑃dch

𝑡 ≤ 𝛽𝑡𝑃dch
 max, ∀𝑡 ∈Ω𝑇1             (69) 

where the values of the coefficients 𝑐Ain  and 𝑐Aout  are adopted 

from [27]. 

The bilinear cavern model presented in the previous section, 

i.e., (37), (41), (49), (53), (61) and (62), is re-written below 

using superscript 𝑡 and (𝑡+1) to represent the indices of time 

steps. 

𝑚𝑠
𝑡𝑇𝑠,ch

(𝑡+1)
= 𝑇𝑠

𝑡𝑚𝑠
𝑡 + 𝑐2𝑇𝑠

𝑡𝑚̇in
(𝑡+1)

+ 𝑐3𝑚𝑠
𝑡𝑚̇in

(𝑡+1)
+ c4𝑚̇in

(𝑡+1)
+

𝑐5𝑇𝑠
𝑡 + c6𝑚𝑠

𝑡 + 𝑐7,     ∀𝑡 ∈Ω𝑇0       (70) 

𝑚𝑠
𝑡𝑝𝑠,ch

(𝑡+1)
= 𝑝𝑠

𝑡𝑚𝑠
𝑡 + 𝑐8𝑝𝑠

𝑡𝑚̇in
(𝑡+1)

+ c9𝑚𝑠
𝑡𝑚̇in

(𝑡+1)
+ 𝑐10𝑚̇in

(𝑡+1)
+

𝑐11𝑚𝑠
𝑡 + 𝑐12𝑝𝑠

𝑡 + 𝑐13,    ∀𝑡 ∈Ω𝑇0      (71) 

𝑚𝑠
𝑡𝑇𝑠,dch

(𝑡+1)
= 𝑚𝑠

𝑡𝑇𝑠
𝑡 + 𝑐14𝑇𝑠

𝑡𝑚̇out
(𝑡+1)

+ c15𝑚̇out
(𝑡+1)

+ 𝑐16𝑇𝑠
𝑡 + 𝑐17,  

           ∀𝑡 ∈Ω𝑇0     (72) 

𝑚𝑠
𝑡𝑝𝑠,dch

(𝑡+1)
= 𝑝𝑠

𝑡𝑚𝑠
𝑡 + 𝑐18𝑝𝑠

𝑡𝑚̇out
(𝑡+1)

+ 𝑐19𝑇𝑠
𝑡𝑚𝑠

𝑡 + 𝑐20𝑇𝑠
𝑡𝑚̇out

(𝑡+1)
+

𝑐21𝑚̇out
(𝑡+1)

𝑚̇out
(𝑡+1)

+ 𝑐22𝑚𝑠
𝑡𝑚̇out

(𝑡+1)
+ 𝑐23𝑚̇out

(𝑡+1)
+ 𝑐24𝑚𝑠

𝑡 +

𝑐25𝑝𝑠
𝑡 + 𝑐26𝑇𝑠

𝑡,    ∀𝑡 ∈Ω𝑇0     (73) 

𝑇𝑠,idl
(𝑡+1)

= 𝑐27𝑚𝑠
𝑡𝑇𝑠

𝑡 + 𝑐28𝑇𝑠
𝑡 + 𝑐29𝑚𝑠

𝑡 + 𝑐30,    ∀𝑡 ∈Ω𝑇0     (74) 

𝑝𝑠,idl
(𝑡+1)

= 𝑐27𝑝𝑠
𝑡𝑚𝑠

𝑡 + 𝑐31𝑚𝑠
𝑡𝑚𝑠

𝑡 + 𝑐28𝑝𝑠
𝑡 + 𝑐32𝑚𝑠

𝑡 ,    ∀𝑡 ∈Ω𝑇0  

(75) 

The 𝑇𝑠,ch
(𝑡+1)

 (𝑇𝑠,dch
(𝑡+1)

, 𝑇𝑠,idl
(𝑡+1)

) represents the temperature of the 

cavern air if the 𝑡th step is a charging (discharging, idle) process. 

The temperature at the beginning of the (𝑡+1)th step, i.e., 𝑇𝑠
(𝑡+1)

, 

is equal to one of 𝑇𝑠,ch
(𝑡+1)

, 𝑇𝑠,dch
(𝑡+1)

, and 𝑇𝑠,idl
(𝑡+1)

 according to the 

values of 𝛼(𝑡+1)  and 𝛽(𝑡+1) , which is modelled in (76). The 

relationship between the pressure at the beginning of the 

(𝑡+1)th step, i.e., 𝑝𝑠
(𝑡+1)

, and 𝑝𝑠,ch
(𝑡+1)

, 𝑝𝑠,dch
(𝑡+1)

, and 𝑝𝑠,idl
(𝑡+1)

 can be 

similarly modeled as (77). The relationship among the mass of 

air at two consecutive steps ( 𝑚𝑠
𝑡  and 𝑚𝑠

(𝑡+1)
) and the 

charging/discharging status indicators (𝛼(𝑡+1) and 𝛽(𝑡+1)) can 

be expressed as (78). 

𝑇𝑠
(𝑡+1)

= 𝛼(𝑡+1)𝑇𝑠,ch
(𝑡+1)

+ 𝛽(𝑡+1)𝑇𝑠,dch
(𝑡+1)

+ (1 − 𝛼(𝑡+1) −

𝛽(𝑡+1))𝑇𝑠,idl
(𝑡+1)

,    ∀𝑡 ∈Ω𝑇0    (76) 

𝑝𝑠
(𝑡+1)

= 𝛼(𝑡+1)𝑝𝑠,ch
(𝑡+1)

+ 𝛽(𝑡+1)𝑝𝑠,dch
(𝑡+1)

+ (1 − 𝛼(𝑡+1) −

𝛽(𝑡+1))𝑝𝑠,idl
(𝑡+1)

,    ∀𝑡 ∈Ω𝑇0    (77) 

𝑚𝑠
(𝑡+1)

= 𝑚𝑠
𝑡 + 𝛼(𝑡+1)𝑚̇in

(𝑡+1)
Δ𝑡 − 𝛽(𝑡+1)𝑚̇out

(𝑡+1)
Δ𝑡,   ∀𝑡 ∈

Ω𝑇0  (78) 

The SSP of CAES using the bilinear model, i.e., (63)-(78), is 
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referred to as Model 1, which is an MIBLP model. The bilinear 

terms in Model 1 can be expressed as 𝑥𝑦, which is equal to 
(𝑥 + 𝑦)2/4 − (𝑥 − 𝑦)2/4 . Then, (𝑥 + 𝑦)2  and (𝑥 − 𝑦)2  can 

be piecewise linearized. The detailed procedure of this 

linearization is available in Section IV-C of [41]. The resulting 

MILP model is referred to as Model 2. 

B. Flowcharts for Using the Bilinear Cavern Model 

The flowcharts for using the bilinear model, i.e., (70)-(78), to 

calculate the temperature, pressure, and mass of air in the 

charging, discharging, and idle processes are given in Figs. 4a, 

4b, and 4c, respectively. The calculation procedures given in 

Figs. 4a, 4b, and 4c are recursive but consume very little time 

because equations (70)-(75) each only have one variable per 

step that can simply be calculated from the other known values. 

For example, 𝑇𝑠,ch
𝑡+1 is the only variable in (70) and all the other 

notations in (70) are known. Flowcharts given in Figs. 4a, 4b, 

and 4c are used in Sections IV-A to IV-C. 

The flowchart for using the bilinear cavern model for an 

optimization problem is given in Fig. 4d, i.e., using (70)-(78) in 

an optimization problem. The bilinear cavern model part, i.e., 

(70)-(78), in an optimization model has 11 𝑛𝑡  continuous 

variables (i.e., 𝑇𝑠
𝑡 , 𝑝𝑠

𝑡 , and 𝑚𝑠
𝑡  for 𝑡 = 1,2, ⋯ , 𝑛𝑡  and 𝑇𝑠,ch

𝑡+1 , 

𝑝𝑠,ch
𝑡+1 , 𝑇𝑠,dch

𝑡+1 , 𝑝𝑠,dch
𝑡+1 , 𝑇𝑠,idl

𝑡+1 , 𝑝𝑠,idl
𝑡+1 , 𝑚̇in

𝑡+1 , and 𝑚̇out
𝑡+1  for 𝑡 =

0,1,2, ⋯ , (𝑛𝑡 − 1) ) and 2 𝑛𝑡  binary variables (i.e., 𝛼𝑡+1  and 

𝛽𝑡+1 for 𝑡 = 0,1,2, ⋯ , (𝑛𝑡 − 1)). The flowchart given in Fig. 

4d is used in Sections IV-D and IV-E. Equations (70)-(78) 

together with the objective and other constraints, e.g., (63)-(69), 

form an optimization problem that can be solved by an MINLP 

solver, further details of which are given in Section IV-D.  
 

 
    (a)                                               (b) 

 

 
(c)                                                  (d) 

Fig. 4. Flowchart for calculating the temperature, pressure, and mass of air 

using the bilinear model: (a) in the charging process, (b) in the discharging 

process, (c) in the idle process; (d) flowchart for using the proposed bilinear 

model in an optimization model. 

C. Self-scheduling Problem Using Nonlinear and Constant-

temperature Cavern Models 

For the sake of completeness, the nonlinear cavern model 

given in [30] is rewritten here, i.e., (79)-(82). The SSP of CAES 

using the nonlinear cavern model given in [30] consists of (63)-

(69), (76), and (78)-(82), and is referred to as Model 3. 

𝑇𝑠,ch
(𝑡+1)

= (𝑇𝑠
𝑡 +

𝑚̇in
(𝑡+1)

𝑐𝑝𝑇𝑠
𝑡+ℎ𝑐𝐴𝑐𝑇𝑅𝑊

𝑚̇in
(𝑡+1)

(𝑅−𝑐𝑝)−ℎ𝑐𝐴𝑐

) 𝑒
𝑚̇

in
(𝑡+1)

(𝑅−𝑐𝑝)−ℎ𝑐𝐴𝑐

𝑉𝑠𝜌𝑎𝑣𝑐𝑣
Δ𝑡 

−

𝑚̇in
(𝑡+1)

𝑐𝑝𝑇𝑠
𝑡+ℎ𝑐𝐴𝑐𝑇𝑅𝑊

𝑚̇in
(𝑡+1)

(𝑅−𝑐𝑝)−ℎ𝑐𝐴𝑐

       (79) 

𝑇𝑠,dch
(𝑡+1)

= (𝑇𝑠
𝑡 +

ℎ𝑐𝐴𝑐𝑇𝑅𝑊

𝑚̇out
(𝑡+1)

𝑅−ℎ𝑐𝐴𝑐

) 𝑒
𝑚̇out

(𝑡+1)
𝑅−ℎ𝑐𝐴𝑐

𝑉𝑠𝜌𝑎𝑣𝑐𝑣
Δ𝑡 

−

ℎ𝑐𝐴𝑐𝑇𝑅𝑊

𝑚̇out
(𝑡+1)

𝑅−ℎ𝑐𝐴𝑐

       (80) 

𝑇𝑠,idl
(𝑡+1)

= (𝑇𝑠
𝑡 − 𝑇𝑅𝑊)𝑒

−ℎ𝑐𝐴𝑐
𝑉𝑠𝜌𝑎𝑣𝑐𝑣

Δ𝑡 
+ 𝑇𝑅𝑊       (81) 

𝑝𝑠
(𝑡+1)

= 𝑇𝑠
(𝑡+1)

𝑚𝑠
(𝑡+1)

𝑅/𝑉𝑠         (82) 

For the sake of comparison, the constant-temperature cavern 

model is also provided here, i.e., (83). The SSP of CAES using 

the constant-temperature model consists of (63)-(69), (76), and 

(83), which is referred to as Model 4. Models 1-4 will be 

compared in Section IV-E. 

𝑇𝑠
(𝑡+1)

= 𝑇𝑠
𝑡                                (83) 

IV. SIMULATION 

In this paper, the parameters for the Huntorf CAES plant are 

used for the calculations. The Huntorf CAES plant features two 

caverns with volumes of 141,000 and 169,000 m3, respectively. 

Note that the maximum mass flow rate in the charging process 

(𝑚̇𝑖𝑛) is 108 kg/s for the whole plant and 49.12 kg/s for the first 

cavern, which is calculated from 108×
141000

141000+169000
. Similarly, 

the maximum mass flow rate in the discharging process (𝑚̇𝑜𝑢𝑡) 

Input , , , and at 

time step 

Calculate and via 

(70) and (71), respectively

, , and ( + ) 

are respectively used as , 

, and for the next 

step in the charging process

Input , , , and at 

time step 

Calculate and via 

(72) and (73), respectively

, , and ( ) 

are respectively used as , 

, and for the next 

step in the charging process

? ? endend
Y Y

N N
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is 417 kg/s for the whole plant and 189.67 kg/s for the first 

cavern, which is calculated from 417×
141000

141000+169000
. In this 

paper, the first cavern is used for calculations. The 𝑚̇𝑖𝑛1 and 

𝑚̇𝑖𝑛0  used in (35) and (36) are set to 49.12 and 22.74 kg/s, 

respectively. The 𝑚̇𝑜𝑢𝑡1 and 𝑚̇𝑜𝑢𝑡0 used in (47) and (48) are set 

to 189.67 and 90.97 kg/s, respectively. The temperature at the 

outlet of high-pressure compressor is high (about 230 °C), but 

drops to 50 °C after going through an aftercooler that is located 

between the high-pressure compressor and the cavern, i.e., the 

temperature of air injected into the caverns is equal to 50 °C. 

The other parameters for the Huntorf CAES plant are given in 

Table I [29], [30]. 

TABLE I 

PARAMETERS FOR THE HUNTORF CAES PLANT. 
𝐴𝑐 𝑐𝑣 𝑘 𝑝in 𝐶ch

𝑡  

25,000 m2 718.3 J/(kg K) 1.4 66 bar 3 $/MWh 

𝑅 𝑉𝑠 𝑇𝑅𝑊 𝑇in 𝐶dch
𝑡  

286.7 J/(kg K) 141,000 m3 40 °C 50 °C 3 $/MWh 

 

Three specific processes are defined as follows and used to 

verify the accuracy of the proposed bilinear model: 

• Charging process: Set the initial pressure (temperature) of 

the air in the cavern to 46 bar (20 °C). Charge the first 

cavern (141,000 m3) continuously for 16 hours at the 

maximum mass flow rate, i.e., 𝑚̇𝑖𝑛 =49.12 kg/s. 

• Discharging process: Set the initial pressure (temperature) 

of the air in the cavern to 66 bar (40 °C). Discharge the 

cavern continuously for 4 hours at the maximum mass 

flow rate, i.e., 𝑚̇𝑜𝑢𝑡 =189.67 kg/s. 

• Idle process: Set the initial pressure (temperature) of the 

air in the cavern to 60 bar (45 °C). Let the cavern be in the 

idle process for 16 hours. 

Reference [30] compares several existing CAES models with 

the measured data from the Huntorf CAES plant. The analytical 

model in [30] is accurate and simpler than other existing 

analytical models. Thus, the analytical model in [30] is used as 

a benchmark model in this section to verify the accuracy of the 

proposed bilinear cavern model. 

A. Model Verification - Comparison With Accurate Model 

In this subsection, the time interval is set to 1 second, i.e., Δ𝑡 

is equal to 1 second in (70)-(75). The pressure and temperature 

for each time interval of the charging (discharging, idle) process 

obtained from both the proposed bilinear model and the 

analytical model in [30] are plotted in Fig. 5 (Fig. 6, Fig. 7). 

Note that the difference between the results of the two models 

would be difficult to observe if the results for each second were 

shown in Figs. 5-7; therefore, the results for every 1000 (250, 

1000) seconds are shown in Fig. 5 (Fig. 6, Fig. 7). Figs. 5-7 

show that the pressure/temperature results obtained from the 

proposed bilinear model and the analytical model are quite 

close to one another. 

The mean absolute percentage errors (MAPEs) between the 

results, in terms of both pressure and temperature, obtained 

from the bilinear model and the analytical model during the 

charging, discharging, and idle processes are tabulated in Table 

II. The last column of Table II shows that the idle part of the 

bilinear model, i.e., (74) and (75), is almost as accurate as the 

analytical model. The 2nd and 3rd columns of Table II show that 

the inaccuracy of the charging/discharging parts of the bilinear 

model, i.e., (70)-(73), is around 0.11%, which is quite small. 

This verifies the accuracy of the bilinear model for the given 

initial temperature/pressure and mass flow rate. 

TABLE II 

THE MAPE BETWEEN THE RESULTS OBTAINED BY THE BILINEAR MODEL AND 

THE ANALYTICAL MODEL GIVEN IN [30] IN EACH OF THE THREE PROCESSES. 

 Charging process Discharging process Idle process 

Pressure 0.0011 0.0011 1.12× 10−5 

Temperature 0.0011 0.0011 1.12× 10−5 

 

 
(a)                                                      (b)                         

Fig. 5. Results obtained by the proposed bilinear model and the analytical model 

in [30] during the charging process: a) pressure, b) temperature.  

 
(a)                                                           (b)                         

Fig. 6. Results obtained by the proposed bilinear model and the analytical model 

in [30] during the discharging process: a) pressure, b) temperature. 

 
(a)                                                      (b)                           

Fig. 7. Results obtained by the proposed bilinear model and the analytical model 

in [30] during the idle process: a) pressure, b) temperature.  

To comprehensively evaluate the accuracy of the bilinear 

model, different settings of initial temperatures/pressures and 

mass flow rates are used in the charging/discharging/idle 

process. Different settings for the charging (discharging, idle) 

process are shown in rows C1-C6 (D1-D7, I1-I4) of Table III. 

When the pressure is larger (smaller) than 46 bar, the CAES is 
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in normal (emergency) operating mode. Fig. 5 (Fig. 6) shows 

that the cavern temperature is relatively high (low) when the 

pressure is high (low). Therefore, the initial temperatures are set 

to 20 and 35 °C (50 and 35 °C) in the different settings for the 

charging (discharging) process as its initial pressure is 

relatively low (high). Both large and small mass flow rates are 

investigated in the normal operating mode as given in C1-C4 

and D1-D4 where the large and small values are set to the 

maximum mass flow rate and one tenth of it, respectively. To 

avoid a lengthy table, 1) only results that tend to have a large 

error in the emergency model are listed in Table III, i.e., low 

mass flow rate (associated with low charging power) and low 

initial temperature as indicated by setting C1-C4, and low mass 

flow rate (associated with low discharging power) and high 

initial temperature as indicated by settings D1-D4; and 2) not 

all the results of different settings for the idle process are listed 

because all of the different settings have very small errors, i.e., 

the MAPE is less than 5E-5. Note that ‘E-n’ and ‘E+n’ are used 

in this paper to represent ‘× 10−n’ and ‘× 10n’, respectively.  

For each setting, the MAPE and mean absolute error (MAE) 

between the results (including both pressure and temperature) 

obtained by the bilinear and the analytical models is given in 

the last four columns of Table III. The largest error in different 

settings for the charging process occurs at C2 with low initial 

temperature and low mass flow rate; the MAPE and MAE for 

pressure (temperature) are 0.77% and 0.38 bar (0.77% and 

2.38 °C), respectively. The largest error in different settings for 

the discharging process occurs at D5 with high initial 

temperature and low mass flow rate; the MAPE and MAE for 

pressure (temperature) are 0.82% and 0.36 bar (0.82% and 

2.58 °C), respectively. Note that the MAPE and MAE are 

usually less than the worst-case values given above. The errors 

in different settings for the idle process are very small; the 

MAPE for both pressure and temperature is less than 5E-5. This 

indicates that the error between the proposed bilinear cavern 

model and the accurate analytical model is small under a variety 

of circumstances. 

 
 

TABLE III 

DIFFERENT SETTINGS OF INITIAL PRESSURES AND TEMPERATURES AND CHARGING/DISCHARGING POWER AND THE CORRESPONDING MAPE AND MAE 

BETWEEN RESULTS OBTAINED BY THE BILINEAR CAVERN MODEL AND THE ANALYTICAL MODEL GIVEN IN [30] IN EACH OF THE THREE PROCESSES 

Setting Initial pressure (bar) Initial temperature (°C) Mass flow rate (kg/s) 
Pressure Temperature 

MAPE MAE (bar) MAPE MAE (°C) 

C1 46 20               49.12   0.0011 0.07 0.0011 0.35 

C2 46 20                 4.912 0.0077 0.38 0.0077 2.38 

C3 46 35               49.12 0.0021 0.11 0.0020 0.64 

C4 46 35                 4.912 0.0017 0.08 0.0017 0.53 

C5 30 20                 4.912 0.0060 0.19 0.0060 1.84 

C6 5 20                 4.912 0.0047 0.03 0.0047 1.46 

D1 66 50             189.67 0.0018 0.10 0.0018 0.57 

D2 66 50               18.967 0.0078 0.50 0.0078 2.47 

D3 66 35             189.67 0.0008 0.04 0.0008 0.24 

D4 66 35               18.967 0.0056 0.37 0.0056 1.75 

D5 46 50               18.967 0.0082 0.36 0.0082 2.58 

D6 30 50               18.967 0.0071 0.20 0.0071 2.22 

D7 5 50               18.967 0.012 0.047 0.012 3.82 

I1 46 20               ---- 3.9E-5 1.8E-3 3.9E-5 1.2E-2 

I2 5 20               ---- 4.2E-6 2.2E-5 4.2E-6 1.3E-3 

I3 66 50               ---- 2.4E-5 1.6E-3 2.4E-5 7.7E-3 

I4 5 50               ---- 1.8E-6 9.1E-6 1.8E-6 5.9E-4 

 

 

B. Model Verification - Comparison With Field-Measured 

Data  

To further verify the accuracy of the proposed bilinear model, 

field-measured pressure and temperature data during a 

discharging process from [29] and a 10-stage 

charging/discharging/idle process from [30] are used and 

referred to as field-measured data I and II, respectively. The 

pressure and temperature results from both the proposed 

bilinear model and field-measured data I are plotted in Figs. 8b 

and 8c, respectively. These figures show the 

pressures/temperatures obtained from the proposed bilinear 

model are close to field-measured data I. Figs. 8b and 8c are 

both divided by a dashed line into two parts: the left-hand 

(right-hand) part corresponds to pressure being higher (lower) 

than 46 bar. For the left-hand (right-hand) part, the MAPE and 

MAE between the results obtained by the bilinear model and 

field-measured data I are 0.47% and 0.27 bar (5.85% and 1.94 

bar) for the pressure and 0.19% and 0.56 °C (0.23% and 0.64 °C) 

for the temperature, where the unit of temperature is set to 

Kelvin when calculating the MAPE (Kelvin is the unit of 

temperature for all calculations involved in the bilinear cavern 

model). Note that the cavern pressure being higher (lower) than 

46 bar indicates normal (emergency) operating mode; the 

CAES usually runs in normal operating mode. Therefore, the 

proposed bilinear model is quite accurate when compared to 

field-measured data I in the normal operating mode of CAES. 

For field-measured data II, the air mass flow rates in the 10 

stages are given in Fig. 9a where negative (positive) values 

represent the discharging (charging) process and the zero value 

represents the idle process. In Fig. 9a, the 10 stages are divided 

by nine vertical dashed lines. In stage 1, the air mass flow rate 

linearly decreases from -125 to -175 kg/s and then increases to 

-125 kg/s. In stage 5, the CAES is discharging at a fixed air 

mass flow rate of -175 kg/s. In stages 3, 7, and 9, the CAES is 

charging at a fixed air mass flow rate of 50 kg/s. In stages 2, 4, 

6, 8, and 10, the CAES is in the idle stage, i.e., the air mass flow 

rate is zero. The pressures (temperatures) at each stage obtained 

from the bilinear model, analytical model, and field-measured 

data II are plotted in Fig. 9b (Fig. 9c). Fig. 9b shows the 
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pressures obtained from both the bilinear model and the 

analytical model are quite close to field-measured data II except 

for stage 2. The MAPE and MAE between the pressure obtained 

by the bilinear (analytical) model and field-measured data II are 

1.01% and 0.54 bar (0.97% and 0.51 bar), respectively. In Fig. 

9c, the temperature obtained from the bilinear model is closer 

to field-measured data II than the analytical model. The MAPE 

and MAE between the temperature obtained by the bilinear 

(analytical) model and field-measured data II are 3.16% and 

1.18 °C (3.88% and 1.47 °C), respectively.  

In summary, the pressure (temperature) result obtained from 

the bilinear cavern model can well match the pressure 

(temperature) from both field-measured data I and II with a 

relative error of 0.47 and 1.01% (0.19 and 3.16%), respectively, 

in the normal operating mode of CAES. This comparison with 

both an accurate model and two sets of field-measured data 

verifies the accuracy of the proposed bilinear cavern model. 

  

 
Fig. 8. Mass flow rate out of cavern (a) and comparison between the results 

obtained by the bilinear cavern model and field-measured data I from [29] for 

pressure (b) and temperature (c). 

 

 

 

 

 
Fig. 9. Mass flow rate into cavern (a) and comparison between the results 

obtained by the bilinear cavern model, analytical cavern model, and field-

measured data II obtained from [30] for pressure (b) and temperature (c). 

 

C. Impact of Heat Transfer and Temperature 

To observe the impact of heat transfer, the results obtained 

from the bilinear model with and without considering heat 

transfer in the charging (discharging) process are plotted in Fig. 

10 (Fig. 11). In Fig. 10b, the slope of the left-hand part and the 

right-hand part of the dotted line (results of the model with heat 

transfer) is higher and lower, respectively, than the circled line 

(results of the model without heat transfer). The reason is that 

when the cavern air temperature is lower (higher) than the 

cavern wall temperature, i.e., 40 °C, the heat transfer provides 

heat to (absorbs heat from) the cavern air and therefore the 

temperature obtained by the model with heat transfer increases 

faster (slower) than the model without heat transfer. According 

to the ideal gas law, i.e., 𝑝𝑉 = 𝑚𝑅𝑇, for the same 𝑉, 𝑚, and 𝑅, 

higher (lower) temperature corresponds to higher (lower) 

pressure and therefore the relationship between the dotted and 

circled lines in Fig. 10a is similar to Fig. 10b. In Fig. 11, the 

dotted line has a smaller slope than the circled line. The reason 

is that the heat transfer provides heat to the cavern air and 

therefore the temperature decrease associated with the model 

with heat transfer is smaller than the model without heat 

transfer. Therefore, heat transfer clearly has a significant impact 

on the temperature and pressure variation and, consequently, it 

is important to consider heat transfer in the cavern model. 

The results obtained from the constant-temperature model in 

the charging (discharging) process are also plotted in Fig. 10 

(Fig. 11). Obviously, the pressure and temperature obtained 

from the constant-temperature model are quite different from 

those obtained with the bilinear model. Considering that the 

accuracy of the bilinear model was verified in Section V-A, 

Figs. 10 and 11 indicate that the constant-temperature cavern 

model is inaccurate. Therefore, it is necessary to use an accurate 

cavern model instead of the constant-temperature cavern model, 

especially in a real application problem. 

(b) 

(a) 

(c) 

(a) 

(b) 

(c) 
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                           (a)                                                       (b)               

Fig. 10. Results obtained from the bilinear cavern model (with and without 

considering heat transfer) and the constant-temperature cavern model in the 

charging process: a) pressure of the air in the cavern and b) temperature of the 

air in the cavern. 

 

 
                          (a)                                                         (b)              

Fig. 11. Results obtained from the bilinear cavern model (with and without 

considering heat transfer) and the constant-temperature cavern model in the 

discharging process: (a) pressure of the air in the cavern and (b) temperature of 

the air in the cavern.  

 

D. Different Time Intervals 

In power system operation problems, the time interval is 

usually longer than one second, e.g., the time intervals of 

economic dispatch and unit commitment are both usually 1 hour, 

respectively. Therefore, it is necessary to know whether the 

proposed bilinear model is accurate for different time intervals. 

In this regard, the status of the air in the cavern is calculated 

using the procedure given in Figs. 4a, 4b, and 4c for different 

time intervals (1 second, 1 minute, 5 minutes, 10 minutes, 20 

minutes, and 60 minutes) using the same initial status. The final 

temperature and pressure of the charging, discharging, and idle 

processes obtained by the bilinear model and the analytical 

model are plotted in Fig. 12. The error and relative error (values 

given in round brackets) between the results, in terms of final 

temperature and pressure, obtained from the two models are 

shown in Table IV, where the 2nd-5th, the 6th-9th, and the 10th-

13th rows show the error/relative error in the charging, 

discharging, and idle processes, respectively. Again, the unit of 

temperature is set to Kelvin when calculating the relative error 

of temperature.  

Figs. 12a-12d show that the accuracy of the bilinear model in 

the charging and discharging processes decreases as the time 

interval increases. This is because the charging and discharging 

parts of the model utilize the assumption that the air injected 

into or released from the cavern in each time step is much 

smaller than the total amount of air in the cavern (i.e., 𝑚̇𝑖𝑛Δ𝑡 ≪

𝑚𝑠 and 𝑚̇𝑜𝑢𝑡Δ𝑡 ≪ 𝑚𝑠); this assumption introduces higher error 

when the time interval is larger. Figs. 12e-12f show that the 

accuracy of the bilinear model in the idle process does not 

change with the time interval; this is because the idle part of the 

model does not utilize the above assumption. 

Tables IV-V show that the error and relative error of the 

temperature and pressure in both the charging and discharging 

processes are small when the time interval is less than or equal 

to 10 minutes. When the time interval is equal to 20 minutes, 

the errors (relative errors) of the pressure in the charging and 

discharging processes are 0.121 and 0.045 bar (0.17 and 0.09%), 

respectively, which are still relatively small. When the time 

interval is equal to 60 minutes, the error (relative error) in both 

the charging and discharging processes is relatively large. Table 

VI shows that the idle process of the model is quite accurate for 

all time intervals. Therefore, Fig. 12 and Tables IV-VI show 

that the accuracy of the bilinear cavern model is high, moderate, 

and relatively low when the time interval is between 1 second 

and 10 minutes, equal to 20 minutes, and equal to 60 minutes, 

respectively. 

 

 
                                (a)                                                              (b) 

 
                                 (c)                                                            (d) 

 
                                  (e)                                                           (f) 

Fig. 12. Final temperature/pressure obtained by both the analytical model and 

the bilinear model in different processes using different time intervals: (a) final 

temperature in the charging process, (b) final pressure in the charging process, 

(c) final temperature in the discharging process, (d) final pressure in the 

discharging process, (e) final temperature in the idle process, and (f) final 

pressure in the idle process. 
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TABLE IV 

ERROR (RELATIVE ERROR IN ROUND BRACKETS) BETWEEN THE SOLUTION 

OBTAINED BY THE BILINEAR MODEL AND THE ANALYTICAL MODEL IN THE 

CHARGING PROCESS USING DIFFERENT TIME INTERVALS 

Interval 1 s 1 min 5 min 10 min 20 min 60 min 

Temperat

ure (°C) 

0.066 0.051 -0.010 -0.087 -0.241 -0.872 

(0.02%) (0.02%) (-3E-5) (-0.03%) (-0.08%) (-0.27%) 

Pressure(

bar) 

0.002 0.007 0.031 0.061 0.121 0.356 

(0.002%) (0.01%) (0.05%) (0.09%) (0.17%) (0.52%) 

 

TABLE V 

ERROR (RELATIVE ERROR IN ROUND BRACKETS) BETWEEN THE SOLUTION 

OBTAINED BY THE BILINEAR MODEL AND THE ANALYTICAL MODEL IN THE 

DISCHARGING PROCESS USING DIFFERENT TIME INTERVALS  

Interval 1 s 1 min 5 min 10 min 20 min 60 min 

Temperat

ure (°C) 

-0.386 -0.350 -0.201 -0.014 0.366 1.968 

(-0.13%) (-0.12%) (-0.07%) (-5E-5) (0.12%) (0.67%) 

Pressure 

(bar) 

-0.060 -0.055 -0.034 -0.008 0.045 0.270 

(-0.13%) (-0.12%) (-0.07%) (-0.02%) (0.09%) (0.58%) 
 

TABLE VI 

ERROR (RELATIVE ERROR IN ROUND BRACKETS) BETWEEN THE SOLUTION 

OBTAINED BY THE BILINEAR MODEL AND THE ANALYTICAL MODEL IN THE 

IDLE PROCESS USING DIFFERENT TIME INTERVALS  

Interval 1 s 1 min 5 min 10 min 20 min 60 min 

Temperat

ure (°C) 

-2E-4 -2E-4 -2E-4 -2E-4 -2E-4 -2E-4 

(-1E-6) (-1E-6) (-1E-6) (-1E-6) (-1E-6) (-1E-6) 

Pressure(

bar) 

-1E-4 -1E-4 -1E-4 -1E-4 -1E-4 -1E-4 

(-2E-6) (-2E-6) (-2E-6) (-2E-6) (-2E-6) (-2E-6) 

E. Self-scheduling Problem of Compressed Air Energy 

Storage in Day-ahead Electricity Market 

This subsection presents the results of solving the SSP of 

CAES using different cavern models. When the time interval is 

set to 60 minutes, the day-ahead SSP has 24 steps, which 

introduces a relatively small computational burden. However, 

the error is relatively large as shown in the previous subsection. 

When the time interval is set to 20 minutes, the error is 

relatively small and the day-ahead SSP has 72 steps. When the 

time interval is set to 10 minutes or smaller, the error decreases 

but the computational burden increases. Therefore, the time 

interval in the SSP is set to 20 minutes as a trade-off between 

the accuracy and computational burden. 

1) Comparison Among Models 1-3 

Models 1 and 3, described in Sections III-A and III-C, 

respectively, are both solved by a popularly used MINLP solver, 

i.e., BARON [47], with the values of objective functions (i.e., 

the profits from the electricity market) given in the 3rd and 2nd 

columns of Table VII, respectively. Model 2 is solved by 

CPLEX with the objective function value given in the 4th 

column of Table VII. Models 1-3 are MIBLP, MILP, and 

MINLP models, respectively, as mentioned in Section III. 

These three models are solved using different numbers of time 

steps (i.e., 𝑛𝑡). The stopping criteria for both the BARON and 

CPLEX solvers are set to a maximum time of 8 hours and a gap 

of 0.1%; the solving process will terminate as soon as one of 

the two criteria is met. 

Table VII shows that the objective function value obtained 

from Model 2 is higher than that from Models 1 and 3 for all 

three different numbers of steps. Note that a larger objective 

value represents a better solution as the goal of SSP is to 

maximize the profits. When the numbers of time steps are 10, 

24, and 72, the objectives of Model 2 are 1.3, 7.4, and 3.6% 

higher than Model 3 and 1.3, 7.4, and 1.1% higher than Model 

1, respectively.  

The electricity market price, power output, and pressure in 

the 24-time-step case are plotted in Fig. 13. Note that the power 

output of the CAES in Fig. 13b equals the discharging power 

minus the charging power. The high price hours are 9-12 and 

18-21. Fig. 13b indicates that the CAES generally discharges 

power at high price hours and charges power at low price hours 

to maximize the profit. The difference between the results of 

Models 1-3 lies in the power output in hours 1, 12, 18, and 20-

22. A detailed comparison between Models 2 and 3 is given 

below. A similar analysis can be applied to Models 2 and 1 but 

is not provided. 

The results of Model 2 discharge more power at hours 12 and 

21 and charge more power at hour 20 compared to the results 

of Model 3, as detailed in Table VIII. In Table VIII, the last 

column provides the total profit in hours 12, 20, and 21 and 

clearly shows that Model 2 achieves higher profits than Model 

3 and coincides with Table VII.  

Linearizing the bilinear model into an MILP problem results 

in high accuracy as shown in [41], i.e., Model 2 is almost as 

accurate as Model 1. Therefore, the higher profit obtained from 

Model 2 indicates that a better solution has been obtained from 

Model 2 than Models 1 and 3 and the solutions obtained from 

Models 1 and 3 are not optimal. This is because MILP problems 

are easier to solve than MINLP or MIBLP problems. This 

shows the advantage of the proposed bilinear cavern model, 

which can be converted to an MILP problem and is therefore 

suitable for integration into optimization problems considering 

CAES. 
 

TABLE VII 

OBJECTIVE VALUES ($) OF THE SELF-SCHEDULING PROBLEM OF COMPRESSED 

AIR ENERGY STORAGE USING DIFFERENT CAVERN MODELS (NUMBERS IN 

BRACKETS ARE THE RELATIVE DIFFERENCE BETWEEN MODEL 2 AND MODEL 

𝑖 (𝑖 = 1,3)) 

Number of time 

steps (𝑛𝑡) 

Model 3 -  

MINLP [30] 

Model 1 -

MIBLP 

Model 2 -

MILP 

10 2.28E+5 (1.3%) 2.28E+5 (1.3%) 2.31E+5 

24 2.51E+5 (7.4%) 2.51E+5 (7.4%) 2.71E+5 

72 5.43E+5 (3.6%) 5.57E+5 (1.1%) 5.63E+5 

 

TABLE VIII 

THE PRICE AND THE SOLUTION OBTAINED BY MODELS 2 AND 3 IN HOURS 12, 

20, AND 21 OF THE SELF-SCHEDULING PROBLEM OF COMPRESSED AIR 

ENERGY STORAGE  

  Hour 12 Hour 20 Hour 21 Total profit ($) 

Price ($) 225.58 240.26 229.65 -- 

Model 3 
Power output (MW) 154.49 40.0 40.0 -- 

Profit ($) 34386.4 9490.4 9066.0 52942.8 

Model 2 
Power output (MW) 290.0 -60.0 101.71 -- 

Profit ($) 64548.2 -14595.6 23052.6 73005.2 
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Fig. 13. The electricity market price (a) and the solution obtained by Models 1-

3 in the 24-time-step case for the power output (b) and pressure (c). 

 

2) Comparison Between the Bilinear and Constant-

temperature Cavern Models 

To show the advantage of the proposed bilinear cavern model 

over the constant-temperature model, both models are used to 

solve the SSP and comparative analysis is given as follows. The 

results, including the power output, temperature, and pressure, 

are given in Fig. 14. In Figs. 14b and 14c, the dots represent the 

temperature and pressure obtained from the SSP using the 

constant-temperature cavern model as detailed in Section III-C. 

Given the power output obtained from the SSP using the 

constant-temperature cavern model as input, the SSP using the 

bilinear cavern model is used to calculate the temperature and 

pressure as shown in the circles in Figs. 14b and 14c. That is, 

the circles given in Figs. 14b and 14c are the accurate values for 

the charging/discharging process given in Fig. 14a. Fig. 14b 

shows that the temperature during the charging/discharging 

process varies in a range of about 30 K, which is quite different 

from constant. In Fig. 14c, the pressure obtained from the 

constant-temperature cavern model varies from 46 to 56.43 bar 

(shown in dots); however, the pressure actually varies from 

40.68 to 63.44 bar (shown in circles). At both hours 21 and 22, 

the pressure obtained from the constant-temperature cavern 

model is 46 bar; however, the pressure actually drops down to 

40.68 and 40.79 bar, respectively, at these two time points. That 

is, the pressure obtained from the constant-temperature cavern 

model is quite inaccurate and the actual pressure drops far 

below the minimum bound of the normal operating range (i.e., 

46 bar as shown in the dashed line in Fig. 14c). This inaccurate 

constant-temperature cavern model, however, has been adopted 

in a variety of power system application areas, e.g., [32], [33], 

[34], [35]. The proposed bilinear cavern model can replace the 

constant-temperature cavern model and is suitable for these 

power system applications and beyond, which shows the value 

of the proposed bilinear cavern model. 

 
Fig. 14. The solution for the self-scheduling problem: (a) the power output 

obtained from the constant-temperature model, (b) the temperature obtained 

from the constant-temperature model and the corresponding accurate value, and 

(c) the pressure obtained from the constant-temperature model and the 

corresponding accurate value. 

F. Cavern Efficiency 

The efficiency of the cavern is analyzed in this subsection. 

The internal energy is calculated from 𝑚𝑐𝑣𝑇, i.e., the product of 

mass of air 𝑚, a constant specific heat value 𝑐𝑣, and temperature 

𝑇. Let the cavern efficiency be the ratio of the internal energy 

of all the air discharged out of the cavern in a period of time to 

the internal energy of all the air charged into the cavern in the 

same period of time. Note that the temperature of the air 

charged into the cavern is always equal to 50 °C because of the 

use of aftercoolers. 

The initial temperatures of cavern air in the first day are set 

to 35, 40, and 45 °C, respectively. For each setting, Model 3 for 

the SSP of CAES in one day is solved; the internal energies of 

air injected into and released out of the cavern on this day are 

given in the 2nd and 4th columns of Table IX, respectively; and 

the heat transferred from the cavern wall to the cavern air on 

this day is given in the 3rd column of Table IX. Note that the 

positive (negative) values in the 3rd column of Table IX indicate 

that less (more) heat is transferred to the cavern wall than is 

received from the cavern wall.  

The cavern efficiency for each setting is given in the last 

column of Table IX. Table IX shows that the cavern efficiency 

is higher than 1 when the initial temperature is 35 °C. This is 

because the temperature of the cavern wall (40 °C) is higher 

than 35 °C and thus heat is transferred to the cavern air from the 

cavern wall. That is, the cavern air gains energy from the cavern 

wall and therefore the cavern efficiency is higher than 1. But 

when the initial temperature is 40 or 45 °C, the cavern 

efficiency is lower than 1; this is because the temperature of 

cavern air is equal to or higher than that of the cavern wall and 

therefore heat is transferred to rather than received from the 

(a) 

(b) 

(c) 

(b) 

(a) 

(c) 
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cavern wall. That is, the cavern air loses energy to the cavern 

wall and therefore the cavern efficiency is lower than 1. 

To determine the average cavern efficiency for a longer 

period of time, the efficiencies for 10 consecutive days for each 

setting are plotted in Fig. 15. For each of the 2nd to 10th days, 

the initial temperature of the cavern air in the next day is set to 

be the temperature of the cavern air at the end of the previous 

day and then the SSP of CAES in the day is solved to calculate 

the cavern efficiency for that day. The figure shows that the 

cavern efficiencies on the first day are quite different, but are 

close to one another for the 2nd-10th days. The average 

efficiency for all days is 0.9572 and the average efficiency for 

all days excluding the first day is 0.9579. Therefore, the average 

cavern efficiency is about 0.96. 

 

TABLE IX 

INTERNAL ENERGY OF AIR CHARGED IN AND DISCHARGED OUT, HEAT 

TRANSFERRED FROM CAVERN WALL, AND THE CAVERN EFFICIENCY 
Initial 

temperature 

of cavern air 

(°C) 

Internal 

energy of 

air in (J) 

Heat 

transferred 

from cavern 

wall (J) 

Internal 

energy of 

air out (J) 

Cavern 

efficiency 

35 3.45E+15 0.14E+15 3.59E+15 1.04 

40 3.40E+15 -0.17E+15 3.23E+15 0.95 

45 3.42E+15 -0.48E+15 2.94E+15 0.86 

 

 
Fig. 15. Cavern efficiencies for 10 consecutive days using different initial 

temperatures for the first day. 

V. CONCLUSION 

This paper proposed an accurate bilinear cavern model for 

compressed air energy storage based on the ideal gas law and 

the first law of thermodynamics. The accuracy of the proposed 

bilinear cavern model is verified via comparison with both an 

accurate analytical model in the literature and two sets of field-

measured data. 

Simulation results show that the mean absolute percentage 

error (mean absolute error) between the bilinear cavern model 

and the accurate analytical model for pressure (temperature) are 

no more than 0.82% and 0.36 bar (0.82% and 2.58 °C) for a 

variety of conditions. Note that the errors are usually less than 

the worst-case values given above. Simulation results also show 

that the pressure (temperature) results obtained from the 

bilinear cavern model can well match the pressure (temperature) 

from the two sets of field-measured data considered, i.e., 

datasets I and II, with a relative error of 0.47 and 1.01% (0.19 

and 3.16%), respectively, in the normal operating mode of 

compressed air energy storage. The accuracy of the proposed 

bilinear model decreases as the time interval increases. For time 

intervals between 1 second and 10 minutes, equal to 20 minutes, 

and 60 minutes or longer, the bilinear cavern model has high, 

moderate, and relatively low accuracy, respectively. Simulation 

results also show that heat transfer has an obvious and 

measurable effect on the variation of temperature and pressure 

of the air in the cavern. Therefore, it is necessary to consider 

heat transfer in the cavern model. The constant-temperature 

cavern model is also shown to be inaccurate.  

The self-scheduling problems of compressed air energy 

storage using different cavern models are solved. The 

simulation results show that the self-scheduling problem of 

compressed air energy storage using the proposed bilinear 

cavern model can be straightforwardly converted into a mixed-

integer linear programming model that is easier to solve than 

the mixed-integer nonlinear programming. The self-scheduling 

problem of compressed air energy storage using the constant-

temperature cavern model can result in infeasible solutions. 

However, by properly setting the time interval, the proposed 

bilinear cavern model is accurate and suitable for use in power 

system optimization problems and is superior to the existing 

highly nonlinear cavern model and the constant-temperature 

cavern model. 

APPENDIX 

𝑎1 =
𝑉𝑠

𝑐𝑣
(𝑘 − 2)

Δ𝑡2

2𝑚𝑎𝑣
,                                    𝑎2 =

𝑅𝑘𝑇𝑖𝑛
𝑘

𝑉𝑠
𝑘𝑝𝑖𝑛

𝑘−1,    

𝑎3 =
𝑅𝑘−1𝑇𝑖𝑛

𝑘

𝑉𝑠
𝑘−1𝑝𝑖𝑛

𝑘−1                                                𝑎4 =
ℎ𝑒𝑓𝑓𝑉𝑠𝑡

𝑚𝑎𝑣0𝑐𝑣
, 

𝑎5 = (ℎ𝑏𝑚̇𝑖𝑛0
1.8 − ℎ𝑏𝑙2 𝑚̇𝑖𝑛0),                   𝑎6 =

𝑉𝑠Δ𝑡

𝑐𝑣
,   

𝑎7 =
𝑉𝑠Δ𝑡2

2𝑚𝑎𝑣𝑐𝑣
(𝑘 − 1),                                     𝑎8 =

𝑅𝑇𝑅𝑊Δ𝑡

𝑐𝑣
,  

𝑎9 =
𝑅Δ𝑡2

2𝑐𝑣
(𝑘 − 1),                                        𝑎10 =

𝑅Δ𝑡

𝑐𝑣
, 

𝑎11 =
Δ𝑡Δ𝑡

𝑐𝑣𝜌𝑎𝑣
 ,                                                    𝑎12 =

𝑅 𝑇𝑅𝑊Δ𝑡

𝑐𝑣
, 

𝑎13 =
𝑉𝑠

2𝑐𝑣
𝑎3 Δ𝑡2(𝑚𝑎𝑣0)𝑘−3,     

𝑐0 = 𝑇
𝑖𝑛

𝑘

𝑘−1/𝑝𝑖𝑛,                                                    𝑐1 = (𝑇𝑖𝑛2)
𝑘

𝑘−1/𝑝𝑖𝑛2, 

𝑐2 = (𝑘 − 2)Δ𝑡 −
𝑉𝑠

𝑐𝑣
ℎ𝑏Δ𝑡 𝑙1  − 𝑎1ℎ𝑏𝑙2 − 𝑎1ℎ𝑎,  

𝑐3 = 𝑎3Δ𝑡(𝑘 − 1)(𝑚𝑎𝑣0)𝑘−2 − 𝑎13(ℎ𝑏𝑙2 + ℎ𝑎)(𝑘 − 2),  

c4 = 𝑎3Δ𝑡(𝑚𝑎𝑣0)𝑘−1 +
𝑉𝑠

𝑐𝑣
ℎ𝑏𝑇𝑅𝑊 Δ𝑡 𝑙1 − 𝑎3Δ𝑡(𝑘 − 1)(𝑚𝑎𝑣0)𝑘−1 −

𝑎13(ℎ𝑏𝑙2 + ℎ𝑎)(3 − 𝑘)𝑚𝑎𝑣0,  

𝑐5 =
𝑉𝑠

𝑐𝑣
(ℎ𝑏Δ𝑡𝑙1 𝑚̇𝑖𝑛0 − ℎ𝑏Δ𝑡𝑚̇𝑖𝑛0

0.8 − ℎ𝑎Δ𝑡) − 𝑎1ℎ𝑏𝑚̇𝑖𝑛0
1.8 +

          𝑎1ℎ𝑏𝑙2𝑚̇𝑖𝑛0,  

c6 = −𝑎13𝑎5(𝑘 − 2),  

𝑐7 =
𝑉𝑠

𝑐𝑣
𝑇𝑅𝑊 (Δ𝑡ℎ𝑏𝑚̇𝑖𝑛0

0.8 −  Δ𝑡ℎ𝑏 𝑙1𝑚̇𝑖𝑛0 + ℎ𝑎 Δ𝑡) − 𝑎13𝑎5(3 −

          𝑘)𝑚𝑎𝑣0,  

𝑐8 = ((𝑘 − 1)Δ𝑡 − 𝑎11ℎ𝑎 − 0.5𝑎11(𝑘 − 2)(ℎ𝑎 + ℎ𝑏  𝑙2) −

Δ𝑡𝑉𝑠ℎ𝑏𝑙1/𝑐𝑣 − 𝑎11ℎ𝑏𝑙2),  

c9 = (𝑎2 Δ𝑡𝑘(𝑚𝑎𝑣0)𝑘−1 + 𝑎12ℎ𝑏𝑙1),  

𝑐10 = (𝑎2 Δ𝑡(1 − 𝑘)(𝑚𝑎𝑣0)𝑘 + 𝑎12ℎ𝑎Δ𝑡 + 𝑎12Δ𝑡ℎ𝑏𝑙2),  

𝑐11 = 𝑎12(ℎ𝑏𝑚̇𝑖𝑛0
0.8 − ℎ𝑏𝑙1𝑚̇𝑖𝑛0 + ℎ𝑎),  
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𝑐12 = − ((𝑉𝑠ℎ𝑏𝑚̇𝑖𝑛0
0.8 + ℎ𝑎𝑉𝑠 − 𝑉𝑠ℎ𝑏𝑙1𝑚̇𝑖𝑛0)Δ𝑡/𝑐𝑣 +

𝑎11ℎ𝑏(𝑚̇𝑖𝑛0
1.8 − 𝑙2𝑚̇𝑖𝑛0) + 0.5𝑎11(𝑘 − 2)ℎ𝑏(𝑚̇𝑖𝑛0

1.8 −

𝑙2𝑚̇𝑖𝑛0)),   

𝑐13 = 𝑎12Δ𝑡ℎ𝑏(𝑚̇𝑖𝑛0
1.8 − 𝑙2𝑚̇𝑖𝑛0),  

𝑐14 = (𝑎7(ℎ𝑎 + ℎ𝑏𝑙4) − (𝑘 − 1)Δ𝑡 − 𝑎6ℎ𝑏𝑙3),     

𝑐15 = 𝑎6ℎ𝑏𝑙3𝑇𝑅𝑊,  

c16 = (𝑎7(ℎ𝑏𝑚̇𝑜𝑢𝑡0
1.8 − ℎ𝑏𝑙4 𝑚̇𝑜𝑢𝑡0) − 𝑎6(ℎ𝑎 + ℎ𝑏𝑚̇𝑜𝑢𝑡0

0.8 −

           ℎ𝑏𝑙3 𝑚̇𝑜𝑢𝑡0)),   

𝑐17 = 𝑎6𝑇𝑅𝑊(ℎ𝑎 + ℎ𝑏𝑚̇𝑜𝑢𝑡0
0.8 − ℎ𝑏𝑙3 𝑚̇𝑜𝑢𝑡0),   

c18 = − (𝑘Δ𝑡 + 𝑎10
𝑉𝑠ℎ𝑏

𝑅
𝑙3),  

𝑐19 = −𝑎10ℎ𝑎,  

𝑐20 = (𝑎10Δ𝑡ℎ𝑎 + 𝑎9ℎ𝑎 + (𝑎10Δ𝑡ℎ𝑏 + 𝑎9ℎ𝑏)𝑙4),  

𝑐21 = −𝑎8Δ𝑡ℎ𝑏𝑙3,  

𝑐22 = 𝑎8ℎ𝑏𝑙3,  

𝑐23 = −𝑎8Δ𝑡(ℎ𝑎 + ℎ𝑏𝑚̇𝑜𝑢𝑡0
0.8 − ℎ𝑏𝑙3𝑚̇𝑜𝑢𝑡0),  

𝑐24 = 𝑎8(ℎ𝑎 + ℎ𝑏𝑚̇𝑜𝑢𝑡0
0.8 − ℎ𝑏𝑙3𝑚̇𝑜𝑢𝑡0),  

𝑐25 = −𝑎10
𝑉𝑠ℎ𝑏

𝑅
(𝑚̇𝑜𝑢𝑡0

0.8 − 𝑙3𝑚̇𝑜𝑢𝑡0),  

𝑐26 = (𝑎10Δ𝑡ℎ𝑏 + 𝑎9ℎ𝑏)(𝑚̇𝑜𝑢𝑡0
1.8 − 𝑙4𝑚̇𝑜𝑢𝑡0),  

𝑐27 =
𝑎4𝑒−𝑎4

𝑚𝑎𝑣0
,                              c28 = (𝑒−𝑎4 − 𝑎4𝑒−𝑎4),  

c29 = −𝑇𝑅𝑊
𝑎4𝑒−𝑎4

𝑚𝑎𝑣0
,                    𝑐30 = −𝑇𝑅𝑊(𝑒−𝑎4 − 𝑎4𝑒−𝑎4 − 1),  

𝑐31 = −
𝑅𝑇𝑅𝑊𝑎4𝑒−𝑎4

𝑚𝑎𝑣0𝑉𝑠
,                   𝑐32 = (1 − 𝑒−𝑎4 + 𝑎4𝑒−𝑎4)

𝑅𝑇𝑅𝑊

𝑉𝑠
.  

ACKNOWLEDGEMENTS 

The work was supported in part by the Natural Sciences and 
Engineering Research Council (NSERC) of Canada and the 
Saskatchewan Power Corporation (SaskPower). 

REFERENCES 

[1] Global wind energy council, Global Wind Energy Outlook 2016, 

Available: http://www.gwec.net. 

[2] U. S. Department of Energy, “EPRI-DOE Handbook of Energy Storage 

for Transmission & Distribution Applications: Final Report,” 2003. 

[3] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current 

development in electrical energy storage technologies and the application 

potential in power system operation”, Applied Energy, vol. 137, pp. 511-

536, 2015. 

[4] International Energy Agency, “Technology Roadmap Energy Storage,” 

[Online]. Available: https://www.iea.org, accessed on 19 March 2014. 

[5] World Energy Council, World Energy Resources – Hydropower 2016, 

[Online] https://www.worldenergy.org 

[6] BBC Brown Boveri, Huntorf Air Storage Gas Turbine Power Plant, 

Available: http://www.solarplan.org/Research/BBC_Huntorf_engl.pdf 

[7] S. Succar and R. H. Williams. Compressed Air Energy Storage: Theory, 

Resources, and Applications for Wind Power. Princeton, NJ: Princeton 

University. 2008. 

[8] U. S. Department of Energy / National Energy Technology Laboratory 

(NETL), “Technical and Economic Analysis of Various Power Generation 

Resources Coupled with CAES Systems: Final Report”, May 2011. 

[9] Power South Energy Cooperative, Compressed air energy storage--

McIntosh Power Plant, Alabama, U. S. [Online]. http://www.powersouth. 

com/files/CAES%20Brochure%20[FINAL].pdf 

[10] Rocky Mountain Power, “Alberta Saskatchewan Intertie Storage (ASISt)”, 

[Online] http://rockymountainpower.ca/ASISt.html 

[11] M. Budt, D. Wolf, R. Span, J. Yan, “A review on compressed air energy 

storage: Basic principles, past milestones and recent developments”, 

Applied Energy, vol. 170, pp. 250-268, 2016. 

[12] J. Wang, K. Lu, L. Ma, J. Wang, M. Dooner, S. Miao, J. Li, D. Wang, 

"Overview of Compressed Air Energy Storage and Technology 

Development”, Energies, vol. 10, no. 7, pp. 1-22, 2017. 

[13] X. Luo, J. Wang, C. Krupke, Y. Wang, Y. Sheng, J. Li, Y. Xu, D. Wang, 

S. Miao, H. Chen, “Modelling study, efficiency analysis and optimisation 

of large-scale adiabatic compressed air energy storage systems with low-

temperature thermal storage”, Applied Energy, vol. 162, pp. 589–600, 

2016. 

[14] E. Barbour, D. Mignard, Y. Ding, Y. Li, “Adiabatic compressed air energy 

storage with packed bed thermal energy storage”, Applied Energy, vol. 155, 

pp. 804-815, 2015. 

[15] H. Peng, R. Li, X. Ling, H. Dong, “Modeling on heat storage performance 

of compressed air in a packed bed system”, Applied Energy, vol. 160, pp. 

1–9, 2015. 

[16] N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop, “Simulation and analysis 

of different adiabatic compressed air energy storage plant configurations”, 

Applied Energy, vol. 93, pp. 541-548, 2012. 

[17] Y. Zhang, Y. Xu, X. Zhou, H. Guo, X. Zhang, H. Chen, “Compressed air 

energy storage system with variable configuration for accommodating 

large-amplitude wind power fluctuation”, Applied Energy, vol. 239, pp. 

957-968, 2019. 

[18] J.D. Wojcik, J. Wang, “Feasibility study of Combined Cycle Gas Turbine 

(CCGT) power plant integration with Adiabatic Compressed Air Energy 

Storage (ACAES)”, Applied Energy, vol. 221, pp. 477-489, 2018. 

[19] I. Ortega-Fernández, S. A. Zavattoni, J. Rodríguez-Aseguinolaza, B. 

D'Aguanno, M.C. Barbatob, “Analysis of an integrated packed bed 

thermal energy storage system for heat recovery in compressed air energy 

storage technology”, Applied Energy, vol. 205, pp. 280-293, 2017. 

[20] X. Zhang, Y. Xu, X. Zhou, Y. Zhang, W. Li, Z. Zuo, H. Guo, Y. Huang, 

H. Chen, “A near-isothermal expander for isothermal compressed air 

energy storage system”, Applied Energy, vol. 225, pp. 955-964, 2018. 

[21] B. Bollinger, “Technology Performance Report - SustainX Smart Grid 

Program-Demonstration of Isothermal Compressed Air Energy Storage to 

Support Renewable Energy Production”, Apr. 1, 2015. 

Available:https://www.smartgrid.gov/project/sustainx_inc_isothermal_co

mpressed_air_energy_storage.html. 

[22] A. Arabkoohsar, M. Dremark-Larsen, R. Lorentzen, G.B. Andresen, 

“Subcooled compressed air energy storage system for coproduction of heat, 

cooling and electricity”, Applied Energy, vol. 205, pp. 602-614, 2017. 

[23] B. Kantharaj, S. Garvey, A. Pimm “Compressed air energy storage with 

liquid air capacity extension”, Applied Energy, vol. 157, pp. 152–164, 

2015. 

[24] S. Succar, D. C. Denkenberger, R.H. Williams, “Optimization of specific 

rating for wind turbine arrays coupled to compressed air energy storage”, 

Applied Energy, vol. 96, pp. 222-234, 2012. 

[25] X. Luo, M. Dooner, W. He, J. Wang, Y. Li, D. Li, O. Kiselychnyk, 

“Feasibility study of a simulation software tool development for dynamic 

modelling and transient control of adiabatic compressed air energy storage 

with its electrical power system applications”, Applied Energy, vol. 228, 

pp. 1198-1219, 2018. 

[26] S. Briola, P. D. Marco, R. Gabbrielli, J. Riccardi, “A novel mathematical 

model for the performance assessment of diabatic compressed air energy 

storage systems including the turbomachinery characteristic curves”, 

Applied Energy, vol. 178, pp. 758-772, 2016. 

[27] T. Das and J.D. McCalley, “Compressed air energy storage”, Educational 

Chapter, Iowa State Univ. 2012. 

[28] R. Kushnir, A. Ullmann, A. Dayan, “Thermodynamic models for the 

temperature and pressure variations within adiabatic caverns of 

compressed air energy storage plants”, J. Energy Resources Technology, 

vol. 134, no. 2, pp. 1-10, 2012. 

[29] M. Raju, and S.K. Khaitan, “Modeling and simulation of compressed air 

storage in caverns: A case study of the Huntorf plant”, Applied Energy, 

vol. 89, no. 1, pp. 474-481, 2012. 

[30] C. Xia, Y. Zhou, S. Zhou, P. Zhang, F. Wang, “A simplified and unified 

analytical solution for temperature and pressure variations in compressed 

air energy storage caverns”, Renewable Energy, vol. 74, pp. 718-726, 2015. 

[31] W. He, X. Luo, D. Evans, J. Busby, S. Garvey, D. Parkes, J. Wanga, 

“Exergy storage of compressed air in cavern and cavern volume estimation 

of the large-scale compressed air energy storage system”, Applied Energy, 

vol. 208, pp. 745-757, 2017. 

[32] H. Khani, M.R.D. Zadeh, A.H. Hajimiragha, “Transmission congestion 

relief using privately owned large-scale energy storage systems in a 

https://www.iea.org/
http://www.solarplan.org/Research/BBC_Huntorf_engl.pdf
https://www.smartgrid.gov/project/sustainx_inc_isothermal_compressed_air_energy_storage.html
https://www.smartgrid.gov/project/sustainx_inc_isothermal_compressed_air_energy_storage.html


 

 

18 

competitive electricity market”, IEEE Trans. Power Syst., vol. 31, no. 2, 

pp. 1449-1458, 2016. 

[33] S. Shafiee, H. Zareipour, A.M. Knight, N. Amjady, B. Mohammadi-

Ivatloo, “Risk-constrained bidding and offering strategy for a merchant 

compressed air energy storage plant”, IEEE Trans. Power Syst., vol. 32, 

no. 2, pp. 946-957, 2017. 

[34] H. Daneshi and A.K. Srivastava, “Security-constrained unit commitment 

with wind generation and compressed air energy storage”, IET Gener. 

Transm. Distrib., vol. 6, no. 2, pp. 167-175, 2012.  

[35] X. Luo, J. Wang, M. Dooner, J. Clarke, C. Krupke, “Overview of current 

development in compressed air energy storage technology”, Energy 

Procedia, vol. 62, pp. 603-611, 2014. 

[36] T.D. Eastop and A.C. McConkey. Applied Thermodynamics for 

Engineering Technologists. Delhi, India: Pearson Education, 2009. 

[37] Gilbert Strang, Calculus, Wellesley, MA, USA: Wellesley-Cambridge 

Press, 2010. 

[38] I. Grossmann, “Review of nonlinear mixed–integer and disjunctive 

programming techniques”, Optimization and Engineering, vol. 3, pp. 227-

252, 2002. 

[39] S. Sager, C.M. Barth, H. Diedam, M. Engelhart, J. Funke, “Optimization 

as an analysis tool for human complex problem solving”, SIAM J. Optim, 

vol. 21, no. 3, pp. 936-959, 2011. 

[40] P.M. Castro, “Tightening piecewise McCormick relaxations for bilinear 

problems”, Computers and Chemical Engineering, vol. 72, pp. 300-311, 

2015. 

[41] A. Zare, C.Y. Chung, J.P. Zhan, S.O. Faried, “A distributionally robust 

chance-constrained MILP model for multistage distribution system 

planning with uncertain renewables and loads”, IEEE Trans. Power 

Systems, vol. 33, no. 5, pp. 5248-5262, 2018. 

[42] E. Johnson, G.L. Nemhauser, M. Savelsbergh, “Progress in linear 

programming based algorithms for integer programming: An exposition”, 

INFORMS J. Computing, vol. 12, no. 1, pp. 2-23, 2000. 

[43] IBM, IBM ILOG CPLEX V12.1: User's manual for CPLEX, 

http://www.ibm.com, 2017. 

[44] Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual, 

http://www.gurobi.com, 2017. 

[45] H.Y. Yamin and S.M. Shahidehpour, “Self-scheduling and energy bidding 

in competitive electricity markets”, Electric Power Syst. Res., vol. 71, no. 

3, pp. 203-209, 2004. 

[46] G. Pedrick, “Compressed air energy storage engineering and economic 

study - final report by New York state energy research and development 

authority”, 2009, [Online]. https://www.nyserda.ny.gov 

[47] N.V. Sahinidis, BARON 17.8.9: Global Optimization of Mixed-Integer 

Nonlinear Programs, User's manual, 2017. 

[48] Y. Zimmels, F. Kirzhner, B. Krasovitski, “Design criteria for compressed 

air storage in hard rock”, Energy & Environment, vol. 13, no. 6, pp. 851-

872, 2002. 

 

https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Electic-Power-Delivery/compress-air-energy-storage.pdf

