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Abstract—This paper addresses a novel framework for probabil-

istic data-driven based prediction of unstable groups of coherent 

generators in large interconnected power systems. In contrast with 

the existing techniques in which deterministic classification or fore-

casting approaches are applied to an offline database, the current 

study is relying on a prediction interval (PI)-based method to tackle 

with prediction uncertainties. First, similarity coefficients (SCs) are 

considered as internal outputs and calculated for all offline cases 

based on rotor angle difference between any pair of generators. 

Then, at some generator terminals, selected via a feature selection 

process, voltage values are measured and exerted as the input fea-

tures of the prediction tool. Quantile regression forest is conducted 

to generate PIs, in which several intervals with certain probabilities, 

are predicted for SCs between any pair of generators. Afterwards, 

the obtained PIs are used to shape an empirical cumulative distribu-

tion function of SCs; a Monte Carlo simulation is conducted there-

with to find a reliable estimate of possible grouping patterns. Final-

ly, a decision making phase is devised to draw clear distinction 

among various parts of the most plausible grouping pattern with re-

spect to a reliability index. It can offer power operators a wider flex-

ibility to select the corrective control strategy. On several IEEE test 

systems, the effective performance of the developed approach is put 

on show, followed by a discussion on results. 

 

Index Terms—Coherent generators, feature selection, Monte Car-

lo (MC) simulation, phasor measurement unit (PMU), prediction in-

terval, probabilistic prediction, quantile regression forest (QRF), 

transient stability. 
 

I. INTRODUCTION 

ODERN power systems are operating much closer to sta-

bility boundaries to improve efficiency and decrease oper-

ation and planning costs. It compels operators to employ diverse 

preventive, corrective, and emergency control strategies to en-

sure reliable operation of the grid, as power networks are recur-

rently exposed to various contingencies [1]. Meanwhile, gigantic 

size of the system has imposed serious challenges to stability 

analysis and control. Thus, various approaches have been intro-

duced to either reduce the computational burden or facilitate opt-

ing a proper control action [2]. Generator grouping, known as 

coherency analysis, is one of the most popular tools which pro-
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vides priceless inputs to dynamic model reduction and system 

aggregation techniques [3], network partitioning [4], and wide-

area control studies [5]–[6]. 

 Once a disturbance occurs in an interconnected power system, 

some generators, known as coherent groups, have tendency to 

swing in unison, that is, the generators in each group maintain an 

almost constant angular difference from each other [7]. In model 

reduction literature, this data is widely used to develop lower-

order, but approximate, equivalent models of the original system 

[3]. With respect to network partitioning and wide-area control, 

coherent groups are considered as the basis of islanding and 

emergency control strategies [5]. This paper contributes to the 

generator groupings literature with regards to the latter applica-

tions. 

Considering the importance of this problem, there are several 

research conducted in the literature to either identify or predict 

stability status and coherent groups of generators [7]–[24]. In 

overall, these studies can be classified into two categories:  

• Slow coherency identification [7]–[12]: The system re-

mains stable following a disturbance, wherein some genera-

tors swing together, but the angle or speed difference do not 

exceed the stability limits. Successful applications of fast 

Fourier transform [8], empirical mode decomposition [9], 

principal component analysis [10], and clustering tech-

niques [11]–[12] are reported in the specialized literature.  

• Unstable generator grouping [19]–[24]: The system lose 

synchronism after fault clearance and the grouping pattern 

allows operators to trigger prompt emergency actions such 

as generator tripping, fast-valving, and islanding to avoid 

blackouts or cascading failures [2]. Since the system may 

be exposed to widespread supply interruption in this situa-

tion, fast prediction of unstable groups of generators is cru-

cial. It has various advantages over grouping identification 

approaches which are not suitable for real-time applications 

[19]. This paper zeros in on developing an online prediction 

technique for coherent generators that are subjected to sys-

tem instability. 

Prediction of unstable groups of generators consists of two 

basic stages, i.e., instability prediction and grouping prognostica-

tion. There are several research conducted in the literature to ad-

dress early prediction of rotor angle instability [13]–[18]. Among 

them, data-driven methods, in which a prediction model is devel-

oped using a large set of training data, have drummed up interest, 

owing  to their blessings  in  real-time  applications [14]–[18]. As 
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Fig.  1. Percentage of unstable cases that lose synchronism in different post-fault 

cycles for a database prepared in [9]. 

 

An instance,  efficacy  and  robustness  of  extreme learning ma-

chine [16], core vector machine [17], and decision tree (DT) 

[17]–[18] have been reported. Although the aforesaid methods 

describe stability status of the network, they do not offer any in-

formation about the system dynamic behavior. 

Much research has been carried out in the specialized literature 

to confront with the discussed matter [19]–[24]. Prediction of co-

herent groups of generators is considered as a multi-class classi-

fication problem in [19]–[23]. In [19], different prediction en-

gines, including DT, random forest (RF), and support vector ma-

chine (SVM) are used with post-fault rotor angles as the input 

features. In [18], maximum Lyapunov exponents are calculated 

using online voltage magnitudes measured by phasor measure-

ment units (PMUs) and used as inputs of an SVM based predic-

tion model. Besides, efficacy of disparate input features are in-

vestigated in [21]–[22]. In [23], a decision forest method is ex-

ploited to solve the problem; furthermore, the sequence in which 

generator groups lose synchronism is also considered. Although 

studies [19]–[23] have attained commendable results using large 

window of input data, i.e. above 30 post-fault cycles, their accu-

racy hardly exceeds 90% for lower cycles. In order to resolve this 

issue, authors in [24] put into practice a prediction model for ro-

tor angles of generators which is consequently served to ascertain 

generator groupings. Even though the developed method returned 

decent outcomes using 6 cycles of post-fault data, it is neither 

tested on large systems, nor considered topology changes in the 

process which can concretely affect the overall precision [23]. 

Considering the above mentioned studies, one can note that 

prediction accuracy of generators grouping is not perfect. More-

over, despite the fact that precision increases by extending length 

of predictors, there are several cases that may become unstable 

before the required amount of inputs can be gathered. Figure 1 

depicts the percentage of unstable cases that lost synchronism at 

various post-fault time spans, based on the database prepared in 

[18]. As it can be seen in this figure, more than 20% of cases, in 

all test systems, would become unstable in less than 1 s (60 cy-

cles); thus, from the practical point of view, the efficacy of the 

prediction models significantly degrades in larger post-fault 

spans. Functionality is an important factor that was rarely reflect-

ed in previous case studies, and may merit consideration. 

Taking into account both accuracy and functionality, power 

system operators prefer to receive stability warning signs close to 

the fault clearing time [14], [18]. This requires inclusion of less 

post-fault information into the decision making process which 

subsequently may impose greater uncertainty in the prediction 

phase. To tackle with uncertainty related issues, probabilistic 

frameworks are employed in [17] and [23] to consider probabil-

ity of various failures or uncertainty of system components. 

However, those methods are incapable of offering confidence 

level of a predicted state or pattern. Thus, in order to dispel such 

deficiency, it seems helpful to apply probabilistic estimation-

based approaches to handle prediction errors. 

Moreover, the structure of data-driven based techniques to 

solve the current problem has remained essentially unchanged in 

recent years. Majority of the proposed methods train a multi-

class classifier for a network in which any unique grouping pat-

tern is linked to a single cluster [19]–[23]. In online application, 

if the classifier fails to predict the exact class of a scenario, the 

outcome would be a wrong pattern; there is no idea which part of 

the proposed layout is erroneous, even though its distinction with 

the correct solution is minor. Since even the slightest error in 

generator groupings may lead to fallacious restorative control 

strategy, the system may be exposed to abrupt instability. Thus, a 

framework, which can separate different parts of a predicted 

grouping layout on the basis of a reliability index, would be of 

interest to power system operators. It allows them to utilize dif-

ferent control schemes for distinct parts of the network founded 

on the confidence level. 

In addition, it is shown that a simple generator grouping may 

not be sufficient to preserve a network from instability [25]. Tak-

ing this into account, critical generators [19] and the order, in 

which critical generators lose synchronism [23], are also declared 

in past methods. However, the time span wherein each group of 

generators becomes unstable is not reported yet, though it can af-

fect the adopted control action [25]. 

Aimed at addressing the aforementioned shortcomings of the 

coherency prediction methods proposed to date, a novel frame-

work is put forward. A prediction interval (PI) based approach is 

developed for probabilistic estimation of similarity coefficients 

(SCs) defined for each pair of generators, as well as the genera-

tors’ time span to instability (TSI). To the best of our knowledge, 

this is the first effort to adopt PIs into the transient stability do-

main. To such aim, quantile regression forest (QRF) is used to 

build the prediction models. The obtained quantiles are then used 

to from an empirical cumulative distribution function (CDF) for 

SCs. Thereupon, a Monte Carlo (MC) simulation is carried out 

via the procured CDFs, and a coherency identification technique 

is conducted to identify generator groupings for any set of SCs. 

The outcome of the MC process is used to evaluate SCs in refer-

ence to a reliability index and consequently to shape possible 

grouping patterns in conformity with the desired confidence lev-

els. Finally, functionality of the proposed approach is appraised 

and compared with the existing methods via several IEEE test 

systems, including 10-, 16-, 48-, and 50-machine networks. 
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II. IDENTIFICATION OF GENERATORS DYNAMIC BEHAVIOR 

As expressed in the past section, dynamic behavior of an inter-

connected power system in post-fault scenarios plays a signifi-

cant role in opting a satisfactory remedial action. It can be fairly 

determined through two major modules, i.e. generators coheren-

cy identification and critical generators ordering [19]–[23]; the 

engaged methods therein are explained next. 
 

 

A. Coherency Identification 

There are several methods introduced in the literature for co-

herency identification of a multi-area interconnected power sys-

tem [7]–[12], [19]–[24]. In overall, the general procedure triggers 

by calculating a similarity coefficient, 𝑆𝐶, between any pair of 

generators: 

𝑆𝐶𝑖𝑗 = Υ(𝑖, 𝑗), ∀ 𝑖, 𝑗 ∈ Ω𝐺  (1) 

where Υ(∙) and Ω𝐺  represent a similarity function and the set of 

generators, respectively. With respect to low-frequency oscilla-

tions of a stable network, Υ is widely defined by the correlation 

between two dynamic signals [7], or using various transfor-

mations applied to generators speed or rotor angle values [9]. 

However, in an unstable situation, which is the primary focus of 

this study, the similarity function is mainly specified based on 

the rotor angle difference between generators, as it provides a 

consistent approach for coherency recognition [19].  

The hierarchical clustering, which is performed well in previ-

ous studies, is employed in this paper [19], [23]. To do so, an ag-

glomerative (bottom-up) strategy is conducted to form a hierar-

chical cluster tree. Each generator is initially considered as a sin-

gle cluster, and then iteratively merged to the nearby clusters 

based on a linkage criterion. The final clusters are identified by 

cutting the tree using a predefined threshold for the linkage crite-

rion, set to 360° in this work. Detailed process of the hierarchical 

clustering is explained in [19], [21], and [23].  
 

B. Critical Generators Ordering 

Once the generators coherency is known, critical groups of 

generators can be ordered based on the sequence in which they 

lose synchronism [23]. In the present work, generators’ TSI is 

utilized to form the succession of critical generators. TSI of a 

generator indicates a time interval in the post-fault state in which 

the generator loses synchronism with the remaining part of the 

network.  

In this respect, starting with the fault clearing moment as a ref-

erence time, 𝑡 = 0, the maximum rotor angle difference between 

any pair of generators is calculated. If the angle difference vio-

lates the stability criteria in an instant of time, 𝑡 = 𝛾, the pair of 

generators associated with the largest angle difference is select-

ed. Consider 𝑡∗ as the final simulation time, angle difference be-

tween the current time (𝛾) and 𝑡∗ is calculated for both genera-

tors of the selected pair. Among them, the generator with the 

higher value is chosen and its TSI is set to 𝛾. Then, this generator 

is omitted and the same process is repeated till the stability crite-

rion is met. Afterwards, a similar procedure is conducted for the 

next instances while either TSI of the remaining generators are 

obtained, or all time samples are observed. The TSI of a genera-

tor is assumed equal to the last time sample if the above process 

cannot assign a value to the generator. 
 

 

Fig.  2. A schematic predictor resulting PIs for a target value. 

 

III. PREDICTION INTERVAL AND QUANTILE REGRESSION FOREST 

To date, a vast majority of the stability prediction methods has 

restricted their attention solely to point forecasting based ap-

proaches. A point forecast represents a single number which is 

the most likely realization of the unknown true future value. 

Nevertheless, it does not deliver any information about variabil-

ity around that predicted value, which is usually referred to as the 

degree of uncertainty involved in the estimation. PIs compensate 

for this deficiency by providing a range of values that one can be 

confident, the true value is encircled with a certain probability 

[26]. Such intervals can be remarkably informative as they repre-

sent a way of evaluating the extent to which a new observation 

may deviate from the deterministically predicted value. As an 

example, for a given 95% PI, one can be 95% confident that the 

new observation will fall within this range. Fig. 2 illustrates a 

symbolic predictor resulting PIs for a target value. It is shown 

that PIs are of greater importance to decision-makers compared 

to point estimates in practical applications, as they allow for a de-

tailed assessment of the future uncertainty [26]–[28]. 

There are several methods introduced in the literature to con-

struct PIs [28]; QRF is utilized in this study, as it has a common 

basis with RF, which has been successfully tested on stability 

prediction so far [12], [19], [23]. Moreover, it gives a nonpara-

metric and accurate way of estimating conditional quantiles for 

high-dimensional predictor variables, which is the aim of this 

study [29]. However, any other algorithm can be incorporated 

without loss of generality, as the employed PI method is not a 

part of the contribution of this paper. The basic methodology be-

hind QRF and its main components, i.e., quantile regression 

(QR) and RF, are presented next. 
 

A. Quantile Regression 

In machine learning, regression is used as an approach to mod-

el the relationship between a response variable, 𝑌 ∈ ℝ, and a set 

of explanatory variables, 𝑋 ∈ ℝ𝑛. For a given 𝑋 = 𝑥, standard 

regression analysis attempts to exploit a least square technique to 

find an appropriate estimator, 𝑧(𝑥), in order to predict the condi-

tional mean, 𝐸(𝑌|𝑋 = 𝑥), via minimizing the expected square er-

ror loss as follows [28]: 

𝐸(𝑌|𝑋 = 𝑥) = arg min
𝑧

𝐸{(𝑌 − 𝑧(𝑥))2|𝑋 = 𝑥} (2) 

Since the conditional mean may not convey sufficient infor-

mation about power system dynamic behavior, other forms of re-

gression should be considered to tackle with the uncertainties. 

QR is a specific type of regression analysis, which is originally 

used for construction of confidence intervals for a set of data; the 



 4 

goal is to find arbitrary quantiles of the conditional distribution 

of 𝑦, as defined bellow [28]: 

𝐹(𝑦|𝑋 = 𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥) (3) 

where 𝐹(∙) and 𝑃(∙) denote the CDF and probability distribution 

function (PDF), respectively. The 𝜏 quantile of a random variable 

x, 𝑄𝜏(𝑥), can be described as (4), which means with a given 

probability of 𝜏, observation 𝑥 will be equal or less than 𝑄𝜏(𝑥): 

𝑄𝜏(𝑥) = inf {𝑦 ∶ 𝐹(𝑦|𝑋 = 𝑥) ≥ 𝜏},    0 ≤ 𝜏 ≤ 1 (4) 
 

B. Random Forests 

RF is an ensemble learning method that performs by construct-

ing a large number of decision trees, each capable of offering a 

response when fed by a set of predictor values [29]. In order to 

reduce the correlation between trees, RF employs a bootstrap ag-

gregating technique in which a random subsample is extracted 

from the data with replacement for the process of tree growing. 

Furthermore, a random subset of predictors is selected as input 

features for each tree. 

As a mean to elucidate the RF decision making process, as-

sume a training data set as follow: 

ℒ = {(𝑋𝑖 , 𝑌𝑖)𝑖=1
𝑁 | 𝑋𝑖 ∈ ℝ𝑀 , 𝑌𝑖 ∈ ℝ} (5) 

where 𝑁 and 𝑀 are the number of training samples and number 

of features, respectively. Moreover, suppose 𝜗𝑘 as a random pa-

rameter vector which determines how the 𝑘𝑡ℎ tree, 𝑇(𝜗𝑘), is 

grown. For a typical sample from ℒ, like 𝑥, let 𝒦ℓ be a set of 

leaves, ℓ(𝑥, 𝜗𝑘), that can be identified along the decision tree. 

The estimation of a 𝑇(𝜗𝑘) for a sample 𝑋𝑖, denoted by �̂�𝑘, is ob-

tained by calculating weighted average of the original observa-

tions [29]: 

�̂�𝑘 = ∑ 𝜔𝑖(𝑥, 𝜗𝑘)  ∙  𝑌𝑖

𝑁

𝑖=1

 (6) 

𝜔𝑖(𝑥, 𝜗𝑘) =
1

{𝑋𝑖∈𝒦ℓ(𝑥,𝜗𝑘)}

#{𝑗 ∶  𝑋𝑗 ∈ 𝒦ℓ(𝑥,𝜗𝑘)}
 (7) 

where 𝜔𝑖 is a weight vector which gives a positive constant if 

observation 𝑋𝑖 is part of ℓ(𝑥, 𝜗𝑘), and 0 otherwise. The “#” sym-

bol stands for numbers, and the 𝜔𝑖 weights sum to one. Finally, 

the conditional mean 𝐸(𝑌|𝑋 = 𝑥) is obtained by average predic-

tion of all trees (Ω𝑇), as show in (8): 

�̂� = 𝐸(𝑌|𝑋 = 𝑥) = ∑ 𝜔𝑖(𝑥)  ∙  𝑌𝑖

𝑁

𝑖=1

 (8) 

𝜔𝑖(𝑥) =
1

|Ω𝑇|
∙ ∑ 𝜔𝑖(𝑥, 𝜗𝑘)

𝑘∈Ω𝑇

 (9) 

  

C. Quantile Regression Forest 

QRF is an extension of RF and uses the same process to grow 

the trees. However, in comparison to RF which calculates and 

stores average observation for the entire leaves of the whole 

trees, it retains all relevant predictions. In other words, QRF pre-

serves a raw distribution of all predictions at each leaf node. 

Such information can be used in a straightforward manner to as-

sess the full conditional distribution of 𝑌, for a given 𝑋 = 𝑥, as 

bellow [29]: 

𝐹(𝑦|𝑋 = 𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥) =  𝐸(1{𝑌≤𝑦}|𝑋 = 𝑥) (10) 

Similar to RF, the conditional distribution can be approximat-

ed by the weighted mean over the observations of 1{𝑌𝑖≤𝑦} as rep-

resented in (11), in which 𝜔𝑖(𝑥) is calculated through (9). 

�̂�(𝑦|𝑋 = 𝑥) = ∑ 𝜔𝑖(𝑥)  ∙  1{𝑌𝑖≤𝑦}

𝑁

𝑖=1

 (11) 

Using (11), the conditional quantile 𝑄𝜏(𝑥) can be estimated 

for a given 𝜏, with 0 ≤ 𝜏 ≤ 1 [23]: 

𝑄𝜏(𝑥) = �̂�−1(𝜏) = inf {𝑦 ∶ �̂�(𝑦|𝑋 = 𝑥) ≥ 𝜏} (12) 
 

IV. THE PROPOSED SOLUTION FRAMEWORK 

Since the current study seeks to solve coherency prediction 

problem for unstable networks, stability status is an important 

factor which must be provided before triggering the process [19]. 

It is shown in the literature that the stability of a network can be 

reliably predicted with accuracies over 96% using pre-fault and 

during fault data [18], and over 99% using less than 10 cycles of 

post-disturbance data [14]–[15]. Thus, the amount of error which 

is imposed to the coherency prediction phase through the stabil-

ity status identification is negligible in comparison to the overall 

prediction error [19]. In this paper, stability status is predicted 

based on [18] and fed into the proposed grouping framework, 

though any other method can be used in a straightforward man-

ner. 

The proposed coherency grouping framework consists of a 

training stage, MC simulation, and a decision making phase. De-

tailed description of each phase is delineated below. 
 

A. Phase I: Training of Prediction Models 

In order to train the prediction models, voltage magnitudes re-

ceived from PMUs, fault type, and fault duration are considered 

as the predictors. The selected voltage values contain a cycle be-

fore fault occurrence, a cycle after fault time, a cycle before fault 

clearing time, and a few cycles of post-fault data which is set by 

the user preference. Absolute rotor angle difference is employed 

as the similarity function in (1), and SCs are calculated for any 

pair of generators. The total number of SCs is equal to all possi-

ble combinations of the two generators. Besides, TSI values are 

calculated for generators based on the procedure explained in 

Section II.B. The QRFs are utilized to predict both SCs and TSIs; 

in overall, for a network with 𝑛𝑔 machines, the total number of 

prediction models, 𝑁𝑃𝑀, which can be solved in parallel, is as 

follows: 

𝑁𝑃𝑀 =
𝑛𝑔 ∙ (𝑛𝑔 − 1)

2
+ 𝑛𝑔 (13) 

It might be helpful to mention that the QRF method selects 

various sets of features for different leaves; therefore, it has a 

suitable level of resistivity against inappropriate input features 

[29]. However, in this paper, a mutual information based feature 

selection algorithm is also applied to the input features in order 

to decrease both the number of trees as well as sensitivity to 

PMU delays [18]. 
 

B. Phase II: Monte Carlo Simulation  

Since the number of quantiles which can be obtained from a PI 

model is limited, the PI models are not still able to fully represent 
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all the possible realization of SCs. To thoroughly capture the un-

certainty in SCs, first, CDF of the entire SCs are estimated. There 

are several methods in the specialized literature which can effi-

ciently generate random numbers with a desired precision, by re-

laying on the quantile values or a given empirical CDF [30]–

[31].  

Then, an MC simulation is performed to consider the effects of 

prediction uncertainty of SCs on the grouping pattern of coherent 

generators. In this study, a technique proposed by [31] is put into 

practice for CDF estimation; it requires a set of four quantiles 

which are obtained from the PI models. At any MC iteration, 

random values are generated based on the predicted quantiles and 

assigned to SCs. Once all SCs are generated, the hierarchical 

clustering technique, explained in Section II.A, is applied to find 

the grouping pattern. Based on an obtained layout at iteration 𝑘, a 

set of binary variables, 𝜁𝑖𝑗
𝑘 , is initialized; 𝜁𝑖𝑗

𝑘  is set equal to 1 if 

generators 𝑖 and 𝑗 are in a same group, and 0 otherwise. The 

stopping criterion of the MC simulation is calculated as (14):  

max
𝑖,𝑗∈Ω𝐺

(
√𝒵𝑖𝑗

√𝑁𝑆 ∙ ℳ𝑖𝑗   
)  ≤ 𝜎 (14) 

ℳ𝑖𝑗 =
1

𝑁𝑆
 ∙   ∑ 𝜁𝑖𝑗

𝑘

𝑁𝑆

𝑘=1

  (15) 

𝒵𝑖𝑗 =
1

𝑁𝑆
 ∙   ∑(𝜁𝑖𝑗

𝑘 − ℳ𝑖𝑗)
2

𝑁𝑆

𝑘=1

 (16) 

 

where 𝑁𝑆 is the number of MC iterations, and 𝜎 is set to 0.002 in 

this paper [32]. ℳ𝑖𝑗 and 𝒵𝑖𝑗  respectively calculate mean and var-

iance of the binary variables. Eq. (14) certifies that sufficient 

number of simulations has been carried out for all SCs. 
 

C. Phase III: Decision Making 

The coherent groups of generators can be represented by a 

graph structure; the vertices indicate generators, and each edge 

denotes that the vertices at both ends belong to a same group. 

Thus, a connected graph, which has a path between every pair of 

vertices, portrays a stable network; and a disconnected graph 

stands for an unstable system. In this respect, the amount of ℳ𝑖𝑗, 

calculated in (15), represents the probability of existing an edge 

between 𝑖 and 𝑗 vertices. Based on the outcomes of the MC simu-

lation, a reliability index can be assigned to each edge, ℛ𝑖𝑗 , indi-

cating the solution consistency in all MC iterations:  

ℛ𝑖𝑗 = 100% ∙ {
1 − ℳ𝑖𝑗 , ℳ𝑖𝑗 < 0.5

ℳ𝑖𝑗 , ℳ𝑖𝑗 ≥ 0.5
 (17) 

If ℳ𝑖𝑗 = 1, generators 𝑖 and 𝑗 are assigned to the similar co-

herent groups in the entire MC scenarios; similarly, ℳ𝑖𝑗 = 0 im-

plies that no edge should be drawn between 𝑖 − 𝑗. In both cases, 

ℛ𝑖𝑗 = 100%. If the QRF fails to yield sharp PIs for a target SC, 

the prediction uncertainty will be high and the random generator, 

which uses the predicted quantiles, will be incapable of providing 

realizations close to the actual values. Thereby, there might be 

severe discrepancies in 𝜁𝑖𝑗
𝑘  at distinct MC iterations which conse-

quently lead to lower reliability index. In the worst case, ℛ𝑖𝑗 =

50%, that symbolizes the cut-off used by the point forecast 

methods. 

 
Fig.  3. Overall process of the proposed method applied to offline database. 

 

By setting a reliability cut-off, 𝑅𝐿∗ ∈ [50  100], a graph can be 

formed using those arcs which meet the confidence criterion: 

𝔾𝑅𝐿∗ = (Ω𝐺 , [ℰ]|Ω𝐺|×|Ω𝐺|) (18) 

ℰ𝑖𝑗 = {

0, ℛ𝑖𝑗 < 𝑅𝐿∗

{
0, ℳ𝑖𝑗 < 0.5

1, ℳ𝑖𝑗 ≥ 0.5
, ℛ𝑖𝑗 ≥ 𝑅𝐿∗ ,       ∀ 𝑖, 𝑗 ∈ Ω𝐺  (19) 

where 𝔾𝑅𝐿∗ is a graph which represents coherent groups of gen-

erators with 𝑅𝐿∗ confidence interval. The number of groups and a 

list of generators belonging to each group can be found using a 

depth-first search algorithm (DFSA) [33].  

Depending on the input features and the selected 𝑅𝐿∗, some 

edges may not pass the reliability condition, which consequently 

may leave some generators as single groups. In this regard, (18)-

(19) confirm a generator is not assigned to a multi-member co-

herent group unless the predefined reliability level is met. Such 

an attribute certifies a significant privilege of the developed 

framework in comparison to the past studies; it decreases the 

misclassification rate and restricts instability of the network 

caused by an erroneous grouping pattern. Based on (19), decreas-

ing 𝑅𝐿∗ leads to more edges in 𝔾𝑅𝐿∗; 𝑅𝐿∗ = 50% reports a de-

terministic solution, similar to previous methods, in which pre-

diction uncertainty is ignored.  

With the objective to find ordering of the critical generators for 

a selected layout, a simple MC simulation is carried out; similar 

to Phase II, different values are randomly generated for TSIs 

based on the predicted quantiles. Then, an average TSI is calcu-

lated for each group and the MC process is repeated till the stop-

ping criterion is met [23]. Afterwards, the coherent groups are 

sorted in an ascending order based on the obtained average TSIs.  

The overall process of the proposed method is shown in Fig. 3. 

As it can be seen in this flow diagram, major portions of the pro-

cedure, illustrated with collateral blocks, can be solved in parallel 

resulting in a substantial decrease of computational burden. 
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TABLE I 
DATA FOR THE NETWORKS USED IN SIMULATIONS 

 

Network # of buses 
# of cases in database 

(unstable %) 

# of coherency 

patterns 

10-machine 39 10000 (27.11%) 49 

16-machine 68 10000 (12.72%) 20 

48-machine 140 15000 (18.57%) 31 

50-machine 145 15000 (15.45%) 63 

 

D. Online Application Procedure 

In case of online application, the proposed coherency predic-

tion module triggers by a sign received from the central control 

indicating a fault occurred in the network. The algorithm starts 

collecting the required input data as mentioned in Section IV.A. 

Once the protecting switches disconnected the faulted line, a sta-

bility status prediction algorithm is conducted to check whether 

the system remains stable or not. This process takes a fraction of 

a cycle [18]. If the system is identified as unstable, the gathered 

predictors apply to the prediction models trained in Section IV.A. 

Then, MC simulations are carried out in parallel over the ob-

tained PIs. Finally, the decision making process is executed as 

stated in Section IV.C. It is empirically seen in simulations that 

the entire process can be accomplished in a couple of cycles for 

different test systems, if PMU delays are ignored. 
 

V. TESTS AND RESULTS 

A. Description of Test Systems and Simulation Tools 

Aimed at evaluating performance of the proposed approach, 

computer routines are performed in a MATLAB environment. 

The developed method is applied to several test networks, includ-

ing IEEE 36-, 68-, 140-, and 145-bus systems. The data required 

for offline analysis are generated via the power system toolbox 

(PST) package [34]. In the database generation phase, different 

fault types, fault locations, fault resistances, and fault durations 

(2–15 cycles) are considered. Besides, the load demand at each 

bus is randomly changed between 0.65–1.25 of the base value. 

Furthermore, offline analysis is conducted so that the nominal 

power network topology as well as 𝑁 − 1 and 𝑁 − 2 contingen-

cies, respectively cover 85, 14, and 1% of the whole database 

[18]. All simulations are carried out for 20 s after the fault clear-

ance time and the PMUs are assumed to measure two samples 

per cycle [19]. Coherency identification algorithm, introduced in 

Section II.A, is applied to the whole database, and distinct unsta-

ble coherency patterns are identified. A summary of the generat-

ed database is reported in Table I. The computer used in simula-

tions featured an Intel 3.4–GHz CPU with 16 GB of RAM. 
 

B. Prediction of Transient Stability Status 

As the first step, a DT based solution framework proposed in 

[18] is conducted to predict unstable cases. A stratified 5-fold 

technique is employed to divide the whole database; the evalua-

tion process is repeated five times using different training sets, 

and 20% of the database is accounted as test samples in each it-

eration. Different post-fault cycles (PFCs) of voltage samples are 

considered as inputs of the classifiers. The obtained results are 

reported in Table II; as it can be seen in this table, the DT classi-

fier is capable of predicting over 93% of unstable cases without 

any PFC data. The  mean accuracy exceeds 97%  using 60 cycles 

 
Fig.  4. Rotor angle variation of generators for a line-to-ground fault occurred 

near bus 16 of the IEEE 68-bus test system. 
 

TABLE II 

MEAN ACCURACY OF THE DT BASED METHOD ([18]) TO PREDICT UNSTABLE 

CASES USING DIFFERENT POST-FAULT CYCLES 
 

Length of predictors 39-bus 68-bus 140-bus 145-bus 

No PFC 95.33% 95.01% 99.63% 93.38% 

20 PFC 95.91% 96.19% 99.66% 94.80% 

40 PFC 96.70% 97.52% 99.75% 96.14% 

60 PFC 98.27% 98.75% 99.84% 97.66% 

 

of post-fault voltage samples. Thus, one can note that unstable 

cases can be predicted with suitable accuracy, which makes it 

reasonable to solve the coherency prediction in two stages [19]. 

Therefore, only unstable scenarios are considered to evaluate the 

proposed grouping framework in the subsequent simulations 

[19]–[24]. 
 

C. Coherency Prediction for a Test Scenario 

In order to elaborate the procedure of the proposed method, 

obtained results of the developed algorithm is reported in detail 

for a sample test scenario. A line-to-ground fault is applied close 

to bus 16 of the IEEE 68-bus system, on a line connecting buses 

16 and 19. The transmission line between buses 46 and 49 is 

considered to be out of service before the contingency taken 

place; load demands at network buses are randomly changed 

based on Section V.A. The fault is cleared after 5 cycles and the 

obtained rotor angles of generators are illustrated in Fig. 4. As it 

can be seen in this figure, the system is unstable and the genera-

tors are clearly separated into three coherent groups. 

The input features of this test case are formed based on Section 

IV.A and fed into the trained QRF models. There are 16 genera-

tors in this study; hence, based on (13), 136 prediction models 

are trained in parallel, consisting of 120 models for SCs and 16 

models related to TSIs. Both SCs and TSIs are normalized before 

running the training phase. The developed QRF models predict 

different quantiles for a target value, which consequently is used 

to estimate a probability distribution for the expected output. Fig. 

5 represents the predicted 90% PI bounds for 𝑆𝐶15 as well as 

PDF of several samples which are randomly generated based on 

the predicted quantiles. As it can be deduced from this figure, the 

target value of 𝑆𝐶15 is about 0.04 and the predicted 90% PI is 

[0.0091,0.0667]; the user can be 90% confident that the value of 

𝑆𝐶15 would fall within this boundary. PDF of the samples pro-

duced based on the predicted quantiles shows that the similarity 

coefficient between generators 1 and 5 may hardly surpasses 

0.08;  this  subsequently  unveils that  these generators  belong to 
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Fig.  5. PDF of samples generated for 𝑆𝐶15 based on the predicted quantiles. 
 

 

Fig.  6. Reliability index for all possible edges of the coherency graph of Fig. 4. 
 

different coherency groups, as shown in Fig. 4. 

Similarly, quantile values of the entire SCs are extracted from 

the prediction models and the MC simulations are carried out. 

Based on the MC outputs, the reliability index of (17) is calculat-

ed for the test scenario, and depicted in Fig. 6. This figure indi-

cates the status of an edge between any pairs of generators ℰ𝑖𝑗 , 

and its reliability in accordance with the MC simulations. As an 

instance, it declares that generators 1 and 5 are classified in sepa-

rate coherency groups (ℰ15 = 0) in around 94% of all MC cases.  

Having the edge status and its reliability for all possible com-

binations of two generators, final grouping patterns can be ob-

tained with respect to the user confidence priorities. To such aim, 

Fig. 6 is injected into the decision making phase and the obtained 

coherency layouts are shown in Fig. 7 for different reliability cut-

offs. As it can be seen in this figure, for 𝑅𝐿∗ = 90%, there are 

five groups with more than one member ({G2,G3}, {G4,G5}, 

{G5,G7,G9}, {G10,G12,G13,}, {G14,G15}), and four groups 

with a single generator, i.e. G1, G8, G11, G16. By checking the 

rows of Fig. 6 which are associated with G1, G8, G11, and G16, 

it would be clear that there is no edge with a reliability over 90% 

to connect these generators to others; so, each formed a single 

group. By decreasing 𝑅𝐿∗, there are more edges that meet the 

confidence requirement; it is shown in Fig. 7 that 𝑅𝐿∗ = 75% 

can lead to the correct grouping pattern, same as Fig. 4. It should 

be mentioned that the edges depicted in Fig. 7 are solely used to 

represent coherent groups. Thus, there might be several other 

edges which meet the reliability criterion, though they are omit-

ted to avoid confusion. However, the neglected edges do not 

change the coherency patterns.  The  groupings depicted in Fig. 7 

 
Fig.  7. Grouping patterns of generators for different 𝑅𝐿∗. 
 

 

Fig.  8. Average TSI of coherency groups for 𝑅𝐿∗ = 75%. 
 

offer valuable information to the operators. They draw clear dis-

tinction between layouts with different reliability levels. Moreo-

ver, they report confidence level for different parts of a selected 

pattern. As an example, while reliability of finding the correct 

pattern is around 75%, the algorithm detects G4 and G5, which is 

a critical coherency group, with over 93% confidence. Further-

more, by reporting conservative solutions for 𝑅𝐿∗ > 50%, the 

proposed method does not assign a generator to other groups, un-

less it fulfills the reliability requirements. This helps the operator 

to avoid adopting an improper control strategy that may push the 

system towards instability. 

The obtained patterns of each reliability cut-off can be sorted 

based on the trained TSI models. The coherency groups are fed 

into a simple MC simulation and the average TSI of each group 

is reported in Fig. 8 via a boxplot representation. It can be seen 

that the obtained results could sharply bound the actual values in 

all groups with high reliability. Therefore, the predicted average 

TSIs clearly distinguish the consequence of the critical groups.  

The entire simulations, required to predict the coherency 

groupings and TSIs of this test case, i.e. phases II and III of Sec-

tion IV, are accomplished in 0.0071 s. It is empirically seen in all 

simulations that the longest calculation time for these two phases, 

which occurred in the IEEE 140-bus system, did not exceed 

0.0184 s which is around 1 cycle; this processing time decreased 

to 0.0109 s while running on a 64 processor Intel E5-2660 2.0-

GHz CPU with 64 GB of RAM. It might be helpful to mention 

that this test system contains 48 machines and represents the 

electrical  system  of  the  northeast power  coordinating  council,  
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Fig.  9. Performance of the proposed method using different post-fault cycles for 

𝑅𝐿∗ = 50%. 
 

TABLE III 
COMPARISON OF ACCURACY OF DIFFERENT METHODS FOR COHERENCY 

PREDICTION USING 𝑅𝐿∗ = 50% 
 

Prediction model PFC 39-bus 68-bus 140-bus 145-bus 

DT based multi-class 

classification [19] 

20 86.10% 82.23% 81.67% 75.72% 

60 90.44% 91.26% 86.12% 83.09% 

ANN based rotor angle 

forecasting [24] 

20 77.63% 74.65% 73.52% 69.93% 

60 83.77% 84.18% 77.49% 73.95% 

Proposed method with-

out PMU noise 

20 86.31% 82.78% 82.80% 78.51% 

60 91.32% 91.65% 87.71% 84.13% 

Proposed method with 

PMU noise 

20 84.39% 80.42% 80.59% 76.47% 

60 90.25% 90.07% 85.33% 83.86% 

 

which supplies a relatively large-area of North America; thus, the 

obtained simulations illustrate that the developed method is suit-

able for real-time applications of practical systems. 
 

D. Performance of the Proposed Framework in Various Con-

ditions 

In order to assess efficacy of the proposed framework, the de-

veloped method is conducted on different IEEE test systems and 

tested for several PFCs. The reliability cut-off is set to 50% to 

enables meaningful comparison with the traditional multi-class 

classification techniques [19]–[24]. The obtained results are de-

picted in Fig. 9. As it can be seen in this figure, the accuracy of 

prediction increases by expanding PFCs. Functionality is also 

shown in this figure as an evaluation metric. It refers to the per-

centage of cases which are correctly predicted before losing syn-

chronism. The figure presents that increasing PFCs over 20 cy-

cles substantially decrease functionality in all networks. As an 

instance, functionality decreases from 86.1% to 59.32% by in-

creasing PFCs from 20 to 40 in IEEE 68-bus test system. Since 

functionality is a dominant factor to evaluate a module from the 

operators’ perspective, coherency prediction should be made 

with few PFCs in real-life applications. However, few PFCs lead 

to more prediction uncertainty and consequently lesser accuracy. 

This proves the necessity of employing probabilistic based ap-

proaches for coherency prediction, which is the main contribu-

tion of this paper. 

Moreover, the effects of PMU delays are also included in the 

simulation results. To this end, different delays up to 200 ms are 

randomly added to the input signals. 2000 cases are generated for 

each  scenario  in  the  database and  the average  functionality  is 

TABLE IV 
DETAILED COMPUTATIONAL TIME OF THE PROPOSED METHOD WITH RESPECT TO 

THE EXISTING TECHNIQUES FOR IEEE 140-BUS TEST SYSTEM (𝑃𝐹𝐶 = 60) 
 

Application Function 
DT 
[19] 

ANN 
[24] 

Proposed 
Method 

Offline 
(Training 

Data) 

Generate database (h) 16.1458 

Model development (min.) 3.7528 4.6001 17.8150 

Online 
(Test Data) 

Average 

CPU 
Time (s) 

Without delay 0.0008 0.0013 0.0159 

With 200 ms delay 0.1604 0.2013 0.0526 

Prediction 

Accuracy  

Without noise 86.12% 77.49% 87.71% 

With noise 82.89% 73.06% 85.33% 

Outputs 

Generator grouping ✓ ✓ ✓ 

Critical generators - - ✓ 

Time to instability - - ✓ 

Prediction uncertainty - - ✓ 

 

shown in Fig. 9. Compared to the situation in which PMU delays 

are ignored, the average prediction functionality of all networks 

decreases by 2.1%. It might be helpful to mention that QRF de-

velops several trees which operate by different input features. 

Thus, it is able to provide suitable responses even if a couple of 

features are missed. 

For the sake of comparison with the existing methods, a DT 

classifier proposed in [19] and the ANN algorithm reported in 

[24] are employed. The developed algorithms utilize different 

sizes of post-fault voltage samples as inputs and triggered by the 

same stability status prediction module as that of the proposed 

method, for better consistency. The obtained results are reported 

in Table III. It can be observed that the proposed method with 

𝑅𝐿∗ = 50%, could result comparable solutions in contrast to both 

methods, in all cases; this is while improving the accuracy of de-

terministic coherency prediction is not the main focus of this pa-

per. Besides, the obtained results confirm that indirect identifica-

tion of coherent groups via the predicted SCs is an effective ap-

proach. Comparing the outcomes of [19] and [24], it can be de-

duced that the classification based technique could bring about 

better prediction accuracies than the regression based framework 

used in [24]. The accuracy of the ANN solutions are less than 

what reported in [24] as the topology changes, ignored in that 

study, are also considered while creating database in this paper 

The performance of the developed method is also investigated 

in the presence of PMU noise. White Gaussian noise is added to 

whole database with a signal-to-noise ratio equal to 34 dB [18], 

and the training process is repeated. The obtained results are 

shown in Table III; on average, classification accuracy is de-

creased by 1.73% in all cases in presence of PMU noise. Since 

the amount of noise considered in this study is almost twice of 

the requirement of IEEE C37.118.1-2011 standard, the developed 

method can realize superior accuracies in real-life situations 

compared to this severe test. 
 

VI. DISCUSSION 

The current study has proposed the inclusion of PI-based ap-

proach for coherency prediction of power systems. It helps the 

operators to come to grips with prediction uncertainties by 

providing extra information regarding confidence levels of dif-
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ferent grouping patterns. Since such framework may give rise to 

more computational complexity, it seems helpful to discuss the 

course of dimensionality with more details and compare it with 

the exiting techniques. 

 Detailed computational burden associated with the IEEE 140-

bus tests system is reported in Table IV. As it can be seen in this 

table, the time required to generate the database is similar for all 

methods and is around 16 h. Transient stability program is con-

ducted in parallel for 15,000 separate scenarios using MATLAB 

parallel processing toolbox. Inasmuch as an actual power system 

may have hundreds of generation units, database generation may 

take several hours and it can be considered as a practical draw-

back of the entire machine learning based algorithms. To address 

this concern, dynamic equivalencing techniques might be used to 

reduce the original network and consequently shorten the simula-

tion times [35]; however, this is beyond the scope of current 

study.  

Computational burden of the model development phase is also 

illustrated in Table IV. It takes around 17 min for the proposed 

method to train PI models, in parallel, for all SCs and TSIs. Alt-

hough this time is above 4 times greater than that of [19] and 

[24], it is practically reasonable as the prediction models are con-

structed once in the process and can be in function for several 

weeks. 

Based on Table IV, average CPU time of the proposed method 

is around 0.0159 s in online applications. This time is significant-

ly larger than the existing techniques, i.e. around 20 times more 

than [19], but clearly meets the realistic expectations, as it is still 

less than a cycle. The MC simulations are the main culprit for 

this computational burden, though they are conducted in parallel. 

Besides, with the inclusion of 200 𝑚𝑠 delay for PMUs, CPU time 

of the proposed method is increased to 0.0526. However, since 

the developed framework is less sensitive to PMU delays, due to 

the QRF nature and involvement of feature selection, it is more 

than three time faster than [19], [24]. It might be helpful to men-

tion that a 3% tolerance is considered in this study; i.e. the accu-

racy of the delayed scenario should not be less than 97% of the 

solutions without delay. 

Considering the above discussions and with respect to Table 

IV, one can note that the proposed method meets the practical 

computational requirements in online applications. In addition, it 

is more resistive to PMU noises and delays with respect to the 

existing techniques. Besides, the proposed algorithm provides 

more information to operators such as time to instability and pre-

diction uncertainties which can be included into the emergency 

control approaches. Thus, since the developed framework can re-

sult in better prediction accuracies than the existing methods, and 

taking into account the mentioned side benefits, it might be a 

helpful tool for real-life systems. 
 

VII. CONCLUSION 

This paper introduced a novel framework for probabilistic co-

herency prediction of unstable generators in power systems. 

QRF, as a PI based approach, was developed to estimate similari-

ty coefficients for all possible combinations of two generators. 

The quantiles obtained from the trained predictors were incorpo-

rated to form probable distribution of the target response. The 

coherency groups were molded into a graph theory based repre-

sentation and MC simulations were carried out to find reliability 

of each edge. In addition, a decision making phase was per-

formed to find the grouping patterns based on the predefined 

confidence levels. The method developed was successfully tested 

on various IEEE test systems; the results and comparisons re-

vealed that the proposed method can be used as an effective tool 

for generators grouping prediction of power systems. 

Further research may be conducted to increase the prediction 

accuracy of the proposed framework through applying different 

machine learning techniques. Moreover, the application of the 

proposed probabilistic approach in finding optimal corrective 

control strategy can be investigated.  
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