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Abstract—This paper proposes a novel multiple group search 
optimizer (MGSO) to solve the highly constrained multiobjective 
power dispatch (MOPD) problem with conflicting and competing 
objectives. The algorithm employs a stochastic learning automata 
based synergistic learning to allow information interaction and 
credit assignment among multi-groups for cooperative search. An 
alternative constraint handling, which separates constraints and 
objectives with different searching strategies, has been adopted to 
produce a more uniformly-distributed Pareto-optimal front (PF). 
Moreover, two enhancements, namely space reduction and chaotic 
sequence dispersion, have also been incorporated to facilitate local 
exploitation and global exploration of Pareto-optimal solutions in 
the convergence process. Lastly, Nash equilibrium point is first 
introduced to identify the best compromise solution from the PF. 
The performance of MGSO has been fully evaluated and 

benchmarked on the IEEE 30-bus 6-generator system and 118-bus 
54-generator system. Comparisons with previous Pareto heuristic 
techniques demonstrated the superiority of the proposed MGSO 
and confirm its capability to cope with practical multiobjective 
optimization problems with multiple high-dimensional objective 
functions. 

Index Terms—Multiobjective power dispatch, Multiple group 
search optimizer, Synergistic learning, Nash equilibrium, Pareto-
optimal front. 

NOMENCLATURE 

ai, bi, ci, 
di, ei 

Fuel cost coefficients for the ith generator with 
valve-point effects 

αi, βi, γi, 
ζi, λi 

Emission coefficients for the ith generator 

Amax Maximum number of iterations of scanning 

crp, crsl Constants for controlling ramping rate of the 
hyperbolic tangent functions 

sl

kC  Coefficient of synergistic components at the kth 
iteration 

Csl,max, 
Csl,min 

Upper and lower bounds of sl

kC  

k

pC  Coefficient of leader component at the kth iteration 

Cp,max, 
Cp,min 

Upper and lower bounds of k

pC  

k
cnd  Normalized crowding distance of the nth solution in 

the repository at the kth iteration 

D(φ) Polar to Cartesian transformation function 
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fg(•) The gth objective function 

fgj The gth objective’s normalized fitness of the jth 
solution in the PF 

hgj The gth objective’s equilibrium value of the jth 
solution in the PF 

Hg Nash equilibrium solution of the gth objective 

iterLmax Maximum number of iterations for space reduction 

iterRmax Maximum number of iterations for adaptive ranger 

Itermax Maximum number of iterations 

max

k

gL  Maximum pursuit distance of the gth group at the 
kth iteration 

LB Lower bound for variable vector k

gjX  
k

dnL  Normalized Euclidean distance in solution space 
between a given infeasible member and the nth 
element in the repository at the kth iteration 

LFij Apparent power flow from bus i to j 

LFk,max Maximum loading limit for the kth branch 

Meq Number of equality constraints 

Mineq Number of inequality constraints 
k
ingM  Number of infeasible members in the gth group at 

the kth iteration 

Mobj Number of MOPD objective functions 

Mp Population size of each searching group 

Mpf Maximum size of PF set in the repository 

rep
kM  Number of PF solutions to be selected for constraint 

handling in the repository at the kth iteration 
k
rgM  Number of rangers in the gth group at the kth 

iteration 
k
sgM  Number of scroungers in the gth group at the kth 

iteration 

NG Number of generating units in the system 

NL Number of branches in the system 
k
ngN  Number of members in set k

ngT at the kth iteration 

NPi Number of POZs for the ith generator 
k

gjprob  Selection probability of the jth member in the gth 
group at the kth iteration for synergistic learning 

k

Bnprob  Boltzmann distribution probability of the nth 
solution in the repository at the kth iteration 

PD Total active power demand 

PGi Active power generation of generator i 

PGi,max Maximum active power output of generator i 

PGi,min Minimum active power output of generator i 

PGi(j),lb Lower bound of the jth POZ for generator i 

PGi(j),ub Upper bound of the jth POZ for generator i 

PLoss Total power loss of transmission network 

SPGi Spinning reserve contribution of generator i 

SPR System spinning reserve requirement 
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k
ngT  Set of members seeking out nondominated solutions 

in the gth group at the kth iteration 

UB Upper bound for variable vector k

gjX  

νg Upper expectation limit for the gth objective player 

w Temperature of Boltzmann distribution 
k

gjX  Position of the jth member in the gth group at the 
kth iteration 

k

gpX  Producer’s position in the gth group at the kth 
iteration 

(sl)

k

mX  Position of the member selected for synergistic 
learning from the mth group at the kth iteration 

pf

kX  Solution selected from the current PF for constraint 
handling at the kth iteration 

η Reinforcement factor 

μ Chaotic iteration factor 

Ω Set of generators with POZs 

ωg Weight expressing relative importance of the gth 
objective function 

θmax Maximum pursuit angle 

ψmax Maximum turning angle 
k

gj  Head angle of the jth member in the gth group at the 
kth iteration 

k

gp  Producer’s head angle of the gth group at the kth 
iteration 

%k

gr
 Percentage of rangers for the gth group at the kth 

iteration 

∆L Predefined decrement size for
max

k

gL  

∆R Predefined increment size for %k

gr
 

I.  INTRODUCTION 

LECTRIC power dispatch is an essential function required 

in modern energy management systems to determine the 

optimal steady-state operation of dispatchable generators with 

multiple contradictory objectives, such as fuel cost, emission 

reduction and energy saving, subjected to a set of operational 

and physical constraints [1]. Over the years, extensive research 

has been reported in the area of multiobjective power dispatch 

(MOPD). Most notably, many techniques have been presented 

to transform the MOPD into a single-objective optimization 

using the linear weighted aggregate method [2],[3]. However, 

many trials are required in those techniques to obtain a desired 

set of noninferior solutions by varying the weights, and they 

are not effective to handle problems with nonconvex Pareto-

optimal fronts (PFs) [4]. Consequently, in recent years, various 

Pareto-based multiobjective stochastic optimization algorithms 

have been proposed to solve this MOPD problem. 

So far the state-of-the-art in Pareto optimization algorithms, 

including multiobjective stochastic search technique (MOSST) 

[4], strength Pareto evolutionary algorithm (SPEA) [5], niched 

Pareto genetic algorithm (NPGA) [6], nondominated sorting 

genetic algorithm (NSGA) [6], NSGA-II [7], fuzzy clustering-

based particle swarm optimization (FCPSO) [8], etc., have 

been successfully applied to the dual-objective environmental / 

economic dispatch (EED) problem on a small IEEE 30-bus 6-

generator system to obtain a Pareto tradeoff between fuel cost 

and atmospheric emission. Those algorithms operate on a set 

of nondominated solutions with different search mechanisms 

in a single simulation trial. However, some important system 

constraints, like reserve constraints, have not been considered 

in the literatures yet. This work therefore is aimed to develop a 

novel multiobjective algorithm designed for highly constrained 

MOPD problems with high-dimensional objective functions. 

Recently, a new optimization algorithm inspired by social 

group living and foraging behaviors of animals, called group 

search optimizer (GSO), was proposed based on the producer-

scrounger model [9]. Previous application studies have been 

demonstrated that, compared to other evolutionary algorithms 

(EAs), the overall performance of the GSO exhibits superiority 

and high efficiency on the non-differential, high-dimensional 

and multimodal optimization problems [9]-[11], and hence it 

would be well suited for solving the highly constrained and 

nonlinear power system dispatch problems. 

In this paper, a novel meta-heuristic multiple group search 

optimizer (MGSO) is further developed ingeniously to form a 

significantly improved multiobjective algorithm for large-scale 

MOPD applications. A new stochastic learning automata based 

reinforcement scheme is formulated to explicitly assign rewards 

among searching individuals for synergistic learning [12] which 

allows parallel groups to have information interaction and 

resource sharing in the cooperative search process. 

Furthermore, a dynamic search-space reduction strategy [13] is 

introduced in scanning mechanism to obtain the accurate and 

extreme vertex solutions in PF surface, and a chaotic sequence 

dispersion is adopted to improve population diversity and 

avoid entrapment into local optima. Meanwhile, the algorithm 

objectives and constraints are also handled separately based on 

the Boltzmann distribution [14] so as to direct infeasible 

members towards the sparsely populated regions of PF surface. 

Lastly, a novel Nash equilibrium-inspired decision making is 

proposed to extract the best compromise solution from the 

elitist PF set for decision maker (DM). The effectiveness and 

validity of the proposed MGSO algorithm have been 

thoroughly verified on the IEEE 30-bus and IEEE 118-bus test 

power systems. 

II.  PROBLEM FORMULATION 

A.  Multiobjective Optimization 

Real-world optimization problems often need to deal with 

two or more conflicting and incommensurable objectives [15], 

and such multiobjective optimization aims to find a family of 

Pareto-optimal solutions in which none of these solutions can 

outperform any other for all objectives. In mathematical terms, 

the Pareto optimization can be formulated as: 

obj

ineq

eq

Min     ( )          1,2, ... , 

( ) 0,   1, 2,  ... , 
  s.t.   

( ) 0,   1, 2,  ... , 

g

j

k

f X g M

y X j M

q X k M



 


 

           (1) 

Based on Pareto optimality principle, there is a dominance 

relationship between the solution vector being considered and 

the others, and any solution which cannot be dominated by other 

solutions of a given set is called the nondominated solution. The 

solutions which are nondominated within entire feasible search 

space are known as Pareto-optimal solutions or Pareto set, and 

the front obtained by mapping these solutions to the fitness 

vectors in the objective space is the PF. The determination of 

the complete PF is extremely difficult and even infeasible due 

E 
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to computational complexity and memory constraint caused by 

the presence of infinite suboptimal PFs [6]. Consequently, the 

optimization goal of MGSO is to acquire a widely spread and 

well-distributed PF, in which the Pareto set can be diversified 

to cover the maximum possible regions of the solution space, 

within a limited repository. The following are three basic 

quality measure criteria for evaluating the PFs resulted from 

various multiobjective optimization algorithms [16]. 

1) The distance of the resulting nondominated PF set to the 

true PF should be minimized. 

2) The PF should be as uniformly distributed as possible. 

3) The extent of the obtained nondominated PF in objective 

space should be maximized. 

B.  MOPD Objectives 

1) Economic Objective: The economic objective of MOPD 

is to minimize the total generation cost. The fuel cost of units 

with non-convexity caused by valve-point effects is modeled as 

the ripple curve [13], and the total fuel cost F(PG) in ($/h) can 

be expressed with quadratic functions and sine components as: 

 2

, min

1

( ) | sin[ ( )] |
GN

G i Gi i Gi i i i Gi Gi

i

F P a P b P c d e P P


        (2) 

2) Emission Objective: The objective of emission dispatch 

is to minimize the atmospheric pollutants due to fossil-fueled 

thermal units, such as sulfur dioxides and nitrogen oxides, etc. 

[4]. The total emission E(PG) in (ton/h) can be represented as: 

 2 2

1

( ) 10 exp( )
GN

G i Gi i Gi i i i Gi

i

E P P P P    



       (3) 

3) Transmission Loss Objective: The aim of energy-saving 

generation dispatch is to minimize power transmission losses, 

and the minimization of power loss in transmission lines can 

therefore be used as an objective of MOPD. The solution of 

PLoss involves the calculation of load flow problem, which can 

be readily solved using Newton-Raphson method [1]. 

C.  MOPD Constraints 

1) Power Balance Constraint: Since the total power outputs 

of generators must equal to the sum of total load demand PD 

plus power loss PLoss, after the load flow calculation the active 

power output of the slack generator should be reassigned to 

satisfy the equality constraint (4). 

Loss

1

0
GN

Gi D

i

P P P


                             (4) 

2) Generation Constraints: The active power output of each 

generator should be within its lower and upper limits. For 

generator i with NPi prohibited operating zones (POZs), its 

feasible operating zones can be described as a disjoint 

nonconvex set [17]: 

, min (1),lb

( 1),ub ( ),lb

( ),ub , max

   2,3, ... , 

     

Gi Gi Gi

Gi j Gi Gi j i

Gi j Gi Gi i

P P P

P P P j NP

P P P j NP



  


  


  

        (5) 

3) System Spinning Reserve Constraint: For reliable and 

secure operation, the spinning reserve demand [17] should be 

considered for contingency conditions. Since the POZs of the 

generators would severely limit their flexibility to regulate the 

system load, these generators cannot contribute to the system 

spinning reserve and the spinning reserve constraint with POZs 

considered can be expressed as below: 

1 ,max

0                  
,     

   others

GN

Gi R Gi

i Gi Gi

i
SP SP SP

P P

 
  


         (6) 

4) Transmission Security Constraints: The apparent power 

flow through the kth transmission line should not excess its 

loading limit LFk,max as follows so as to avoid any overloading: 

,maxmax ,     1,2, ... , ij ji k LLF LF LF k N   
 

      (7) 

III.  PROPOSED MULTIPLE GROUP SEARCH OPTIMIZER 

A.  Algorithm Framework 

In the proposed MGSO, various stochastic global searching 

and probability selection techniques have been integrated for 

different types of swarm members. Firstly, the population of 

MGSO consists of multiple searching groups, and each group 

is designed based on producer-scrounger model [18] for each 

objective of the MOPD problem. For each searching group, 

there are four categories of swarm members for four different 

searching strategies as follows: 1) Producer: this member is 

designated to the member conferring the best single-objective 

fitness for each iteration, and it is the group leader which has a 

critical impact on the overall searching direction of the group. 

2) Scroungers: except for the producer, 80% of the remaining 

feasible members are selected randomly as scroungers which 

constitute the main searching force in the algorithm. Thus, the 

update policy of this swarm should take all the objectives into 

account through social cooperative mechanism among groups. 

3) Rangers: the remaining feasible members in the group are 

rangers, and they can move in an unpredictable dispersion to 

discover resource globally. 4) Infeasible members: the update 

policy of this swarm should be a constraint satisfaction process 

for handling the complex constraints. Also, every individual in 

the population has a current position XRNG and a head angle 

φRNG-1, and the search direction vector of head angle, D(φ) = 

(d1, d2, … , dNG) RNG, can be calculated through a polar to 

Cartesian coordinate transformation [9]. 

B.  Initialization 

The population can be initialized by generating members of 

each group randomly within the boundary search patch as: 
0

1

obj p

   ( )

1,2, ... , ;   1,2, ... , 

gjX LB r UB LB

g M j M

  

 
                (8) 

where r1RNG is a uniform random sequence in the range (0, 1); 

operator “ ” calculates the entrywise product of two matrices. 

After the initialization of members in each group, the multi-

objective fitness sequence for each member can be calculated. 

For each initial group, if there is no feasible solution that 

satisfies all problem constraints, members in this searching 

group will be reinitialized using (8) until there is at least one 

feasible member that can be used as the producer in each 

group. Furthermore, the initialized head angle for each group 

member is set to (π/4, … , π/4) [9]. 

C.  Variable-size External Repository 

The external repository is a bounded elite archive used for 
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preserving the nondominated solutions found along the search 

process. After the initialization of each searching group, the 

initial repository is determined by the nondominated members 

obtained in the initial population. For each iterative step of the 

MGSO algorithm, each nondominated individual obtained in 

the new generation of the population is checked for dominance 

with the solutions in the current repository. The following is 

the dominance comparison strategy adopted for updating the 

archive: 1) In case the new solution obtained is infeasible or 

dominated by other members in the population, the solution 

will not be saved into the repository. 2) If a nondominated 

member in the population cannot be dominated by any solution 

in the current repository, the solution will be saved into the 

repository. 3) Any dominated solution in the current repository 

by this nondominated member will be removed from the 

repository. 

Though a large-size memory of the elite repository tends to 

represent the better characteristics of the PF, it would lead to 

explosion in the computational burden due to the dominance 

comparisons [8]. Therefore, the number of PF solutions saved 

in the repository, i.e. the size of the PF, should be limited. In 

this paper, a variable-size external repository, which can be 

resized on demand, is adopted. After each iterative step of the 

algorithm, the repository will be resized to cover the entire 

nondominated set, including new nondominated members and 

the survival solutions in the repository. The resized repository 

could further be shrunk if the hierarchical clustering described 

in Section III-H was adopted. 

D.  Space Reduction-based Scanning Strategy for Producer 

The producer employs the scanning strategy inspired from 

white crappies [9] to pursue new Pareto-optimal solutions. The 

scanning field can be characterized by maximum pursuit angle 

θmaxR1 and maximum pursuit distance LmaxR1, and the apex 

is the producer’s current position Xp. In the gth group at the kth 

iteration, the producer will scan the NG-dimensional hypercube 

field by randomly sampling three points: one point at the zero 

degree, two points in the left and right sides symmetrically as: 

2 max ( )k k

gz gp g gpX X r L D                              (9) 

2 max 3 max( 2)k k

gr gp g gpX X r L D r                    (10) 

2 max 3 max( 2)k k

gl gp g gpX X r L D r                    (11) 

where r2R1 is a normal distributed random number with mean 

0 and standard deviation 1; r3RNG-1 is a uniform distributed 

random sequence in the range (0, 1). 

After the scanning at each iteration, three objective fitness 

vectors are sampled by the producer in each group, and the 

corresponding nondominated solution will then be stored to 

the repository via dominance comparisons. Meanwhile, if the 

producer can find a better group single-objective fitness than 

its existing fitness, then it will move to this point; otherwise, it 

will stay at its current position and update its head angle as: 
1

3 max max max,    2k k

gp gp r                     (12) 

In case the producer cannot find a better position within Amax 

iterations, it will turn its head angle back to zero as below, 

max

max   ( 1)
k A k

gp gp GA round N 
  ，         (13) 

In order to generate an accurate optimal solution for each 

objective as well as facilitate the convergence process, a space 

reduction strategy is added to adaptively adjust the maximum 

pursuit distance for better local exploitation in scanning space. 

This strategy will be activated when the performance of the 

producer in the gth group is not improved after a prespecified 

iteration period iterLmax. In this case, the scanning space will be 

shrunk based on the pursuit distance at the kth iteration, 

0 2

max max max , max , min

1

(1 ),    ( )
GN

k k

g g L g Gi Gi

i

L L L P P


       (14) 

Furthermore, after each iterative cycle, the member found 

the best fitness value for the corresponding objective is chosen 

as the producer in this group. At the same time, if a better 

group single-objective fitness could be found from the member 

of external groups, the producer will move to the position of 

the member for the most promising resource. 

E.  Synergistic Learning for Scroungers 

Here, a synergistic learning mechanism inspired from the 

stochastic learning automata [19] is proposed for extending the 

single objective GSO to cope with multiobjective problems. 

During the kth searching bout of the algorithm, the scroungers 

in the gth group use a special area copying behavior [9], which 

move across and learn from the promising resources found by 

its leader and external group members, to pursue PF solutions, 
obj

+1

sl (sl)

=1, 

obj

( ) ( )

                                1,2, ... , ;      1,2, ... , 

M

k k k k k k k k

gj gj p gp gp gj m m gj

m m g

k

sg

X X C r X X C r X X

g M j M



    

 


(15) 

where rgp, rmRNG are uniform random vectors in the range (0, 

1); the second and third terms in (15) are referred as the leader 

component and synergistic components. 

Since the selection of member from external groups for the 

interactive cooperation is important to the performance of the 

synergistic learning, a new linear reinforcement scheme based 

probability distribution selection [14] is proposed such that all 

nondominated solutions found in the search process are taken 

as the social achievement of these searching groups, and the 

reinforcement [20] can be assigned to each member in terms of 

the good solutions found by this member. Initially, a uniform 

probability distribution for members in each group is adopted. 

Then, the k

gjprob can be updated as follows: 

1

(1 )     

(1 )                 otherwise

k
ng

k k k

gj gt ng
k t T
gj

k k

gj ng

prob prob j T

prob

prob N





 

   


 
 


      (16) 

where η (0<η<1 k

ngN ) is a small constant in this paper. It can 

be found that the member which can find most nondominated 

solutions, e.g. the scanning strategy-based producer, has high 

selection probability for the synergistic component in (15). 
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Simulation studies indicated that the search performance of 

MGSO can be significantly enhanced through fine-tuning the 

coefficients in (15). In the initial stage of the search process, 

since most of group members have not sought out the 

promising areas, scroungers should give priority to following 

the producer in its own group. On the other hand, along with 

the convergence of the groups, scroungers can learn from other 

groups for the PF solutions, and the leader component should 

decrease while synergistic components increase in the search 

process. After comparative studies, the coefficients at the kth 

iteration are set using hyperbolic tangent functions as below: 

, max , min max

, min

( )
tanh ( ) 1

2 2

p pk

p rp p

C C Iter
C c k C

   
      

  
(17) 

sl, max sl, min max

sl sl sl, min

( )
tanh ( ) 1

2 2

k

r

C C Iter
C c k C

   
     

  
  (18) 

F.  Chaotic Sequence Dispersion for Rangers 

A special random walk dispersion is employed by rangers 

to improve the population diversity and the global exploration 

for dispersive PF resources over the entire search space as: 
1 0

sign max

obj

( 2 )

1,2, ... , ;      1,2, ... , 

k k k k k

gj gj gL g gj g

k

rg

X X r r L D r

g M j M

    

 
            (19) 

where rsign represents a randomly generated sign equal to 1 or 

1. Previous work showed that global searching performance 

can be enhanced with the use of chaotic sequences instead of 

random sequences [21]. Therefore, here, rgL
kR1, rgφ

kRNG-1
 are 

time series generated by chaotic logistic functions rather than 

random number generators, and the logistic map based chaotic 

sequence iterator in (19) can be expressed as follows: 
1 1(1 ),    (1 )k k k k k k

gL gL gL g g gr r r r r r                  (20) 

where μ is a control factor determining the time series to be 

constants, oscillate within limits, or behave chaotically in an 

unpredictable pattern. Here, sequences (20) are deterministic 

and will display chaotic behaviors when μ=4.0, and the initial 

values of the chaotic sequences shall not contain any members 

of the following {0, 0.25, 0.50, 0.75, 1.0} [21]. 

Furthermore, GSO is not sensitive to most of its parameters 

except for the percentage of rangers, and the recommended 

percentage in [9] is 20%. In order to motivate the individuals 

to explore the global search space when getting stuck into the 

local PF, an adaptive strategy for the ranger percentage %k

gR
 is 

adopted. This strategy will be activated once no nondominated 

solutions can be sought to improve the PF in a given iteration 

period iterRmax. Thereafter, the percentage of rangers at the kth 

iteration can be increased as follows: 

% %k k

gR gR R                                (21) 

G.  Constraint Handling Strategy 

Firstly, in order to restrict the groups to search within their 

generation constraints (5), the following strategy is placed to 

cope with the bounded search patch: when a member moves 

outside the search patch, it will be turned back to the search 

patch by setting the violated dimensional variables of this 

member to its previous values. 

For the sake of effective constraint handling for the highly 

complex constrained search space, infeasible members will be 

separated from the population in order to guide them towards 

feasible space for pursuing new Pareto-optimal solutions. Here, 

this is achieved through the following policy: 
+1

pf pf

obj

( )

1,2, ... , ;   1,2, ... , 

k k k k

gj gj gj

k

ing

X X r X X

g M j M

  

 
              (22) 

where rpfRNG is a uniform random vector in the range (0, 1). 

Also, in order to direct the infeasible swarm towards sparsely 

populated regions for a uniformly-distributed PF, a Boltzmann 

distribution based on crowding distance [22] is used to form the 

probability distribution for selecting Xpf, as follows: 

rep

1

k

k k k k
cn dn cn dn

M

d wL d wLk

Bn

n

prob e e


                 (23) 

The crowding distance is a measure of PF density with the 

neighborhood. For the gth objective, the boundary solutions, 

with the smallest and largest fitness values, are assigned to 1 as 

the crowding distances in (23), and the normalized crowding-

distance calculation for all other intermediate solutions is 

detailed in [22]. Consequently, the infeasible members can be 

hauled towards the nearby preferable feasible PF regions, and 

thereby the border of feasible search space can also be readily 

located to seek the Pareto-optimal solutions. 

H.  Pruning Pareto Set 

After each searching bout, new nondominated solutions will 

be found and saved in the variable-size repository. When the 

number of repository elements exceeds the prespecified size of 

the PF, Mpf, an average linkage-based hierarchical clustering 

[23] is utilized to prune the PF set to a desirable size with its 

trade-off characteristics preserved. This clustering method is to 

iteratively classify and join the repository solutions into the 

required number of clusters. Then, the nearest individual to the 

centroid of each cluster can be extracted as the representative 

to form the elitist PF [5]. 

I.  Nash Equilibrium-inspired Decision Making 

The best compromise solution should be identified from the 

resulting PF to simulate the DM’s preference. Previous MOPD 

algorithms generate the best compromise solution using fuzzy 

logic theory in which a simple fuzzy membership function is 

defined based on the experiences without considering the PF’s 

trade-off characteristics [5],[6],[8]. In the MGSO, the competing 

objectives are considered as noncooperative decision making 

players, and the PF’s objective fitness can be modeled as the 

players’ set of actions for Nash equilibria of game theory [24]. 

Consequently, an alternative multi-criteria decision making is 

proposed on the basis of the Nash equilibrium to extract an 

individual with the best joint actions. 

Based on the concept of Pareto optimality, this equilibrium 

selection problem with several noncooperative objectives can 

be modeled and transformed to find a Nash equilibrium point 

[24] of multiobjective players, which involves an optimization 

problem with probability and rationality constraints to yield 

the joint probability distribution over the PF’s action space as: 
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where Hg = [hg1, hg2, …, hgj, …, hgMpf] represents a probability 

distribution over the PF’s fitness. Here, ωg is set to 1 for the 

unbiased preference of DM. The optimization problem (24) is 

a standard constrained nonlinear programming (NLP) solved 

in this paper by sequential quadratic programming (SQP) [25], 

a highly effective and matured method for the NLP. As a result, 

a list of equilibrium values will be provided for the DM, and 

the best compromise solution can then be derived from the best 

joint equilibrium which represents the highest payoff outcome 

obtained from this joint action, as follows: 
obj obj obj obj

pf1 2 M
1 1 1 1

max[ , , ... , ... ]
M M M M

g g gj g
g g g g

h h h h
   

             (25) 

J.  Procedures for MGSO 

To sum up, the flowchart of the equilibrium-inspired MGSO 

with synergistic learning is depicted in Fig. 1. 

Initialize and evaluate population members, then initialize the repository

Yes

Producer in each group performs space reduction-based scanning strategy

Determine scroungers and rangers in each group with following (21)

Scroungers in each group implement synergistic learning strategy

Rangers in each group perform chaotic sequence dispersion

Infeasible members in each group perform constraint handling strategy

End

Extract the best compromise solution based on Nash equilibrium point

Maintain the population within their bounded search patch (5)

Start

Termination Criterion

Satisfied?

Evaluate the population and find the producer in each group

Prune the PF by hierarchical 
clustering

No

No

Yes

Update the variable-size repository by dominance comparison strategies

The size of the PF
> Mpf ?

 

Fig. 1.  Flowchart of the proposed algorithm for MOPD problems 

IV.  SIMULATION STUDIES 

A.  EED Studies on IEEE 30-bus System 

For comparison with previously published algorithms and 

results, the proposed MGSO is tested on the IEEE 30-bus 6-

generator system to solve the dual-objective MOPD problems. 

While the detailed system data are given in [2],[6], the fuel cost 

and emission coefficients in (2) and (3) are available in [8]. 

Since the overall performance of the algorithm is not sensitive 

to most of its parameters [9], the setting guidelines in [9] were 

adopted such that the maximum pursuit angle θmax is set to 

π/(Amax)2 and termination criterion Itermax is fixed to 300. The 

iteration periods iterLmax and iterRmax in (14) and (21) were set 

to 35 and 16, respectively. Since the producer in (9)-(11) 

requires three function evaluations, the population size of each 

group Mp is set to 28 such that the total number of function 

evaluations in a generation is 60. For all the optimization runs, 

the size of the PF, Mpf, is fixed to 50 [5]. Meanwhile, the 

settings for other parameters in this paper are heuristically 

well-tuned as shown in Table I through a large amount of 

comparative studies and simulations [26]. In the case studies, 

the problem constraints include only (4), (5) and (7), and the 

following three cases are considered. 

TABLE I 

PARAMETER SETTINGS OF MGSO FOR EED OF IEEE 30-BUS SYSTEM 

∆L ∆R Cp,max Cp,min Csl,max Csl,min crp crsl η w 

0.03 0.01 1.20 0.30 1.05 0 0.015 0.015 0.03 0.15 

1) Case 1 

Ten independent runs of MGSO were carried out. The PFs 

of the best runs from all algorithms were selected to compare 

the algorithm performances [6]. Tables II and III detailed the 

best solutions for fuel cost and emission obtained by the 

extreme vertices in the resulting PF of MGSO and other 

algorithms published in [5],[6],[8]. In addition, the PF 

solutions obtained from MGSO were plotted in Fig. 2 and 

compared with those from the well-know NSGA-II [22]. The 

results indicate that MGSO performs well with two better 

outer solutions and compares well with other EED algorithms, 

and its frontier is well-distributed and dispersedly covered the 

entire PF of NSGA-II. 
TABLE II 

COMPARISON OF BEST FUEL COST FOR CASE 1 OF IEEE 30-BUS SYSTEM 

Case 1 
NSGA 

[6] 
NPGA 

[6] 
SPEA 

[5] 
FCPSO 

[8] 
SPEA2 

[27] 
NSGA-II 

[16] 
MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.1358 
0.3151 
0.8418 
1.0431 
0.0631 
0.4664 

0.1127 
0.3747 
0.8057 
0.9031 
0.1347 
0.5331 

0.15975 
0.35339 
0.79600 
0.97176 
0.08684 
0.49709 

0.1596 
0.3535 
0.7974 
0.9719 

0.08624 
0.49609 

0.1543 
0.4066 
0.7270 
0.5916 
0.5925 
0.3873 

0.1646 
0.3757 
0.7108 
0.5861 
0.6229 
0.3995 

0.1775 
0.3588 
0.7448 
0.5913 
0.5996 
0.3870 

F(PG) 
E(PG) 

620.87 
0.2368 

620.46 
0.2243 

620.165 
0.22826 

620.18 
0.2283 

620.0149 
0.20330 

619.8271 
0.20289 

619.6269 
0.20346 

TABLE III 

COMPARISON OF BEST EMISSION FOR CASE 1 OF IEEE 30-BUS SYSTEM 

Case 1 
NSGA 

[6] 
NPGA 

[6] 
SPEA 

[5] 
FCPSO 

[8] 
SPEA2 

[27] 
NSGA-II 

[16] 
MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.4403 
0.4940 
0.7509 
0.5060 
0.1375 
0.5364 

0.4753 
0.5162 
0.6513 
0.4363 
0.1896 
0.5988 

0.47975 
0.52868 
0.67109 
0.53174 
0.12571 
0.53010 

0.47969 
0.5287 

0.67116 
0.5318 
0.1257 
0.5299 

0.4033 
0.4602 
0.5436 
0.3990 
0.5441 
0.5146 

0.4188 
0.4457 
0.5424 
0.4069 
0.5465 
0.5045 

0.4102 
0.4630 
0.5436 
0.3896 
0.5438 
0.5147 

F(PG) 
E(PG) 

649.24 
0.2048 

657.59 
0.2017 

651.633 
0.20470 

651.62 
0.2047 

643.9420 
0.19419 

643.4741 
0.19423 

645.1976 
0.19418 



 7 

620 630 640 650
0.19

0.195

0.2

0.205

Fuel Cost ($/h)

E
m

is
si

o
n

 (
to

n
/h

)

 

 

NSGA-II

Group 1 of MGSO

Group 2 of MGSO

Compromise Solution

 
Fig. 2.  Comparison of the PFs obtained for Case 1 
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Fig. 3.  Producer’s convergence of each group objective in Case 1 

For the best run of MGSO in Fig. 2, the convergence 

process of each objective function is shown in Fig. 3. 

Furthermore, as shown from the distribution of solutions which 

were found by multi-groups and marked differently in Fig. 2, 

synergistic learning for diverse regions of the PF indeed can 

maintain the diversity characteristics and full extent of the PF 

over the tradeoff surface. 

In order to estimate the spread of the PFs, the span metric in 

[16] is used to measure the normalized distance in the objective 

space between the PF’s two boundary solutions. The averages 

of this metric over ten different runs for different algorithms 

presented in Table IV confirm that the proposed MGSO 

outperforms the other algorithms. Besides, compared with 

NSGA, NPGA, SPEA and NSGA-II in previous findings [8], 

MGSO and FCPSO require much fewer function evaluations 

to form the optimal front. Coupled with its high exploratory 

capability, the proposed MGSO can give the best performance 

but with less number of fitness evaluations. 

TABLE IV 

RESULTING STATISTICS OF SPAN MEASURE OF DIFFERENT ALGORITHMS 

NSGA [6] NPGA [6] SPEA [5] FCPSO [8] NSGA-II SPEA2 MGSO 

0.85539 0.81312 0.85363 0.85358 0.87961 0.88526 0.90133 

2) Case 2 

In this case, a dual-objective dispatch is investigated to 

optimize the fuel cost and power loss. For further comparison 

and discussion, two advanced Pareto optimization algorithms, 

NSGA-II and improved SPEA (SPEA2) [27], were considered 

and implemented. Table V listed the best results obtained for 

this case, and the corresponding PF solutions were plotted in 

Fig. 4. It can be found from Fig. 4 that, with the help of space 

reduction-based scanning, MGSO can find solutions with better 

fitness on each objective compared to other algorithms. This 

confirms the Pareto optimality of the proposed algorithm and 

its potential to find solutions covering the entire true PF. 

TABLE V 

COMPARISON OF BEST SOLUTIONS FOR CASE 2 OF IEEE 30-BUS SYSTEM 

Case  
2 

Best Fuel Cost Best Power Loss 

SPEA2 NSGA-II MGSO SPEA2 NSGA-II MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.1638 
0.3671 
0.7639 
0.5931 
0.6191 
0.3516 

0.1828 
0.3559 
0.7584 
0.5925 
0.6069 
0.3622 

0.1741 
0.3581 
0.7492 
0.5914 
0.6001 
0.3861 

0.1632 
0.3160 
0.9826 
0.3936 
0.6568 
0.3444 

0.1511 
0.3305 
0.9793 
0.4430 
0.6157 
0.3370 

0.1596 
0.3061 
0.9848 
0.3927 
0.6638 
0.3497 

F(PG) 
PLoss 

619.8322 
0.024695 

619.7626 
0.024787 

619.6288 
0.024977 

637.8233 
0.022561 

633.7917 
0.022608 

637.9634 
0.022558 
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Fig. 4.  Comparison of the PFs obtained for Case 2 

3) Case 3 

This case is to study a dual-objective MOPD with the 

objectives of emission and power loss. From the results 

presented in Table VI and Fig. 5, MGSO performs well with 

outstanding diversity and spanning of the PF.  

TABLE VI 

COMPARISON OF BEST SOLUTIONS FOR CASE 3 OF IEEE 30-BUS SYSTEM 

Case  
3 

Best Emission Best Power Loss 

SPEA2 NSGA-II MGSO SPEA2 NSGA-II MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.4100 
0.4754 
0.5507 
0.3838 
0.5341 
0.5109 

0.4122 
0.4471 
0.5535 
0.4032 
0.5592 
0.4892 

0.4154 
0.4632 
0.5438 
0.3896 
0.5439 
0.5091 

0.1517 
0.3138 
0.9864 
0.3993 
0.6563 
0.3491 

0.1529 
0.2978 
0.9884 
0.4280 
0.5945 
0.3951 

0.1590 
0.3070 
0.9850 
0.3873 
0.6674 
0.3509 

E(PG) 
PLoss 

0.19420 
0.030804 

0.19426 
0.030344 

0.19418 
0.030927 

0.21365 
0.022560 

0.21289 
0.022683 

0.21355 
0.022557 
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Fig. 5.  Comparison of the PFs obtained for Case 3 

TABLE VII 

COMPROMISE SOLUTIONS OF MGSO FOR DIFFERENT DECISION MAKING 

 
Case 1 Case 2 Case 3 

Fuzzy Equilibrium Fuzzy Equilibrium Fuzzy Equilibrium 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.3150 
0.4159 
0.5538 
0.5639 
0.5612 
0.4538 

0.3150 
0.4159 
0.5538 
0.5639 
0.5612 
0.4538 

0.1435 
0.3032 
0.9300 
0.6052 
0.5500 
0.3254 

0.1435 
0.3032 
0.9300 
0.6052 
0.5500 
0.3254 

0.3057 
0.3743 
0.7696 
0.4016 
0.5746 
0.4331 

0.3313 
0.3662 
0.7541 
0.3748 
0.5990 
0.4337 

Fitness 
625.7582 
0.196505 

625.7582 
0.196505 

622.2655 
0.023321 

622.2655 
0.023321 

0.19848 
0.024743 

0.19802 
0.025057 
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Moreover, the best compromise solutions of MGSO solved 

by the proposed Nash equilibrium point were marked with   
in Fig. 2,4 and 5, and the compromise solutions obtained with 

fuzzy decision making [8] and the proposed method were 

listed in Table VII. It is interesting to note that the results for 

Case 3 are different while the results in Case 1 and 2 are the 

same. This confirms that the equilibria-based decision making 

method is able to provide a reasonable bargaining solution for 

power system dispatchers. 

B.  Computational Studies on IEEE 118-bus System 

For in-depth investigation of the proposed method on larger 

power systems, a modified 54-generator 118-bus power system 

[28] is used for a tri-objective MOPD optimization including 

fuel cost, emission and energy saving objectives. For unit 1-24, 

a POZ is set in the middle of the generation capacity patch for 

each unit, and the POZ interval is 10% of the unit’s original 

feasible operating zone. In this study, all system constraints 

listed in Section II-C are considered, and SPR is set to 38 pu. 

Besides, the settings of MGSO for the IEEE 118-bus system 

can be obtained following the guidelines outlined in Section 

IV-A and are tabulated in Table VIII. As the problem 

complexity for this case study is much higher with larger 

system size and more variables and constraints,  Itermax, Mp 

and Mpf are set to 2000, 98 and 150, respectively. On the other 

hand, numerous trials have been carried out to determine the 

optimum settings for NSGA-II and SPEA2. In addition, their 

population size and maximum number of generations are set to 

300 and 2000, respectively, such that the number of function 

evaluations for the EAs is the same as MGSO for fair 

comparisons. Moreover, the probabilities of crossover and 

mutation are set to 0.9 and 0.01, respectively [6]. 
TABLE VIII 

PARAMETER SETTINGS OF MGSO FOR MOPD OF IEEE 118-BUS SYSTEM 

∆L ∆R Cp,max Cp,min Csl,max Csl,min crp crsl η w 

0.03 0.01 1.20 0.30 1.05 0 0.025 0.025 0.01 0.10 

The PFs resulted from the above three MOPD algorithms 

should be assessed systematically with performance measures 

derived from the three basic quality criteria stated in Section II-

A and the true PF of the MOPD problem. However, since the 

true PF is difficult to determine and guarantee for the problems 

with high-dimensional and highly complex search space, a 

pseudo PF, named as reference PF [29], is used instead as the 

true PF to compare the PFs generated by various algorithms. 

Here, the reference PF is formed by 50 independent runs of all 

MOPD algorithms, NSGA-II, SPEA2 and MGSO, i.e. 150 sets 

of PFs. All the 150 sets of PF solutions were then combined 

and ranked by the dominance comparisons. As a result, the new 

population, which consists of 1725 nondominated solutions, is 

the reference PF, in which approximately 69.86% and 30.14% 

of the solutions are contributed by MGSO and SPEA2, 

respectively. It can be observed that all the solutions found with 

NSGA-II are covered by those with MGSO and SPEA2, and 

MGSO has contributed the majority of reference PF solutions. 

This also reveals that the solutions of MGSO are closer to the 

true Pareto set. Meanwhile, the PF of the overall best run in 

the 50 runs of each algorithm is selected for further analysis. 

Table IX lists the best solutions for fuel cost, emission, and 

power loss obtained from the best run of each algorithm. It can 

be found that, in terms of the best results for each objective, 

MGSO can find more optimal outer solutions to maintain a 

widespread Pareto set over the entire true PF region. 

TABLE IX 

COMPARISON OF BEST SOLUTIONS FOR COST, EMISSION AND SYSTEM LOSS 

 NSGA-II SPEA2 MGSO 

 
Best 
Cost 

Best 
Emission 

Best 
Loss 

Best 
Cost 

Best 
Emission 

Best 
Loss 

Best 
Cost 

Best 
Emission 

Best 
Loss 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

PG7 

PG8 

PG9 

PG10 

PG11 

PG12 

PG13 

PG14 

PG15 

PG16 

PG17 

PG18 

PG19 

PG20 

PG21 

PG22 

PG23 

PG24 

PG25 

PG26 

PG27 

PG28 

PG29 

PG30 

PG31 

PG32 

PG33 

PG34 

PG35 

PG36 

PG37 

PG38 

PG39 

PG40 

PG41 

PG42 

PG43 

PG44 

PG45 

PG46 

PG47 

PG48 

PG49 

PG50 

PG51 

PG52 

PG53 

PG54 

0.72173 
0.73771 
0.44926 
0.77448 
0.98092 
1.09317 
0.65785 
0.80228 
0.77893 
0.75292 
1.15408 
0.88530 
0.85460 
0.88577 
0.93039 
0.90418 
0.92126 
0.95221 
0.88275 
0.85610 
0.74622 
0.64131 
0.74873 
0.80231 
1.15279 
0.93228 
0.71643 
1.27803 
1.40964 
0.02693 
0.23952 
0.09128 
0.11316 
0.67900 
0.63257 
0.88149 
1.21877 
0.76777 
0.41465 
0.97630 
0.72530 
0.73647 
0.83822 
0.75673 
0.94380 
0.84489 
0.89287 
0.87476 
0.83149 
0.89014 
0.64005 
0.84295 
0.87936 
0.89432 

0.76199 
0.65878 
0.62338 
0.84211 
0.52309 
0.73307 
0.70475 
0.66317 
0.76393 
0.72547 
1.04424 
0.65124 
0.74357 
0.71981 
0.84767 
0.90416 
0.87521 
0.94356 
0.93224 
0.84480 
0.62417 
0.81922 
0.91233 
0.94115 
1.51391 
1.12075 
0.78851 
0.92673 
1.46552 
0.90302 
0.80366 
0.59800 
0.75677 
0.73683 
0.79890 
0.85558 
0.87279 
0.79579 
0.44914 
1.02684 
0.70676 
0.58912 
0.83467 
0.71566 
1.09169 
0.51758 
0.80195 
0.59212 
0.66800 
0.67858 
0.39074 
0.50473 
0.62738 
0.83860 

0.70488 
0.43894 
0.42939 
0.79662 
0.60977 
1.48669 
0.81324 
0.44580 
0.82309 
0.23790 
0.33425 
0.23569 
0.71436 
0.79245 
0.77682 
0.90018 
0.93866 
0.96827 
0.95870 
0.90154 
1.98481 
1.08317 
0.98645 
0.99171 
2.15846 
1.37003 
0.71322 
0.97124 
0.97493 
0.36969 
0.51854 
0.29906 
0.26399 
0.74611 
0.87603 
0.93063 
2.80108 
0.70509 
0.19342 
1.01993 
0.83877 
0.42754 
0.96992 
0.73817 
0.97317 
0.28708 
0.68979 
0.30922 
0.64611 
0.58328 
0.20380 
0.45103 
0.29869 
0.88388 

0.75703 
0.76224 
0.75586 
0.73924 
1.00706 
0.49696 
0.97751 
0.58385 
0.95651 
0.94955 
0.75750 
0.89259 
0.98936 
0.86347 
0.89189 
0.86265 
0.89383 
0.90763 
0.92972 
0.85233 
0.74734 
1.43396 
0.76689 
0.78098 
1.47571 
1.03391 
0.85855 
1.50905 
0.74968 
0.00653 
0.04576 
0.03870 
0.02122 
0.99796 
0.97556 
0.98961 
2.04168 
0.82205 
0.04985 
0.88626 
0.79854 
0.75838 
0.75697 
0.75342 
0.90037 
0.03608 
0.89057 
0.85788 
0.89339 
0.00328 
0.32419 
0.89109 
0.89873 
0.92523 

0.76673 
0.81038 
0.77147 
0.77614 
0.39282 
0.55485 
0.77939 
0.78275 
0.79377 
0.75319 
1.28962 
0.61387 
0.87079 
0.59690 
0.80287 
0.87498 
0.89483 
0.98433 
0.99551 
0.65568 
0.63205 
0.50959 
0.87363 
0.91534 
1.45494 
0.93109 
0.85812 
0.68337 
1.40593 
0.94975 
0.84294 
0.90200 
0.88151 
0.90314 
0.96946 
0.99535 
0.67283 
0.81776 
0.42581 
1.01118 
0.72233 
0.66047 
0.70865 
0.67425 
1.33429 
0.37129 
0.82506 
0.79681 
0.63813 
0.68032 
0.32488 
0.52492 
0.57696 
0.63988 

0.65630 
0.40696 
0.42817 
0.80210 
0.81436 
1.40722 
0.70993 
0.58037 
0.82214 
0.39684 
0.46604 
0.30727 
0.68996 
0.82249 
0.81963 
0.89455 
0.90842 
0.95022 
0.93865 
0.89298 
1.90454 
1.04511 
0.94238 
0.81012 
1.83209 
1.36289 
0.67920 
1.16498 
0.83725 
0.76350 
0.37394 
0.22116 
0.24564 
0.71788 
0.76831 
0.91323 
2.56623 
0.74408 
0.29801 
0.93242 
0.75973 
0.64023 
0.83990 
0.71376 
0.92563 
0.40727 
0.69729 
0.28432 
0.70726 
0.62070 
0.27389 
0.56915 
0.44271 
0.87228 

0.79389 
0.74791 
0.75325 
0.75467 
0.01160 
0.50197 
0.98957 
0.96314 
0.97826 
0.98398 
0.74600 
0.91078 
0.96614 
0.85305 
0.89597 
0.88205 
0.90140 
0.88826 
0.90450 
1.18878 
1.12491 
1.47025 
0.77110 
0.80278 
1.49572 
1.01507 
0.75854 
2.17752 
0.05950 
0.04171 
0.06338 
0.00506 
0.02321 
0.99544 
0.99925 
0.99312 
2.04236 
0.75501 
0.03853 
0.90297 
0.76411 
0.78433 
0.75272 
0.74150 
0.88861 
0.00949 
0.90119 
0.01488 
0.89016 
0.86860 
0.29227 
0.87988 
0.89031 
0.89933 

0.77471 
0.79572 
0.76807 
0.77642 
0.42353 
0.54468 
0.76611 
0.73736 
0.78596 
0.77855 
1.37738 
0.68242 
0.81381 
0.62000 
0.83377 
0.91320 
0.91888 
0.97425 
0.98081 
0.65467 
0.56249 
0.50199 
0.88130 
0.86603 
1.44090 
0.83258 
0.85283 
0.60144 
1.43433 
1.00482 
0.88686 
0.87758 
0.88413 
0.90619 
0.90754 
0.99583 
0.66046 
0.82751 
0.42570 
0.99215 
0.70055 
0.66182 
0.67808 
0.68847 
1.35972 
0.37292 
0.85349 
0.77265 
0.72345 
0.72147 
0.33549 
0.57440 
0.59374 
0.61370 

0.69754 
0.59249 
0.85366 
0.69375 
0.01819 
1.75926 
0.99996 
0.66563 
0.78492 
0.59552 
0.00136 
0.00100 
0.62676 
0.73927 
0.82216 
0.97097 
0.91020 
0.99692 
0.99631 
0.85525 
1.86667 
1.40251 
0.83522 
0.97481 
2.29563 
0.90776 
0.99533 
1.32547 
0.76845 
0.27964 
0.46747 
0.02999 
0.03644 
0.98794 
0.98240 
0.99978 
2.79243 
0.95005 
0.09411 
0.96017 
0.99682 
0.21507 
0.96677 
0.74161 
1.37848 
0.08100 
0.49493 
0.44628 
0.61843 
0.55969 
0.00333 
0.46647 
0.07533 
0.97590 

F(PG) 

E(PG) 

PLoss 

66781.4 

2.94914 

0.61645 

77327.5 

2.68451 

0.35346 

72453.5 

3.55349 

0.14520 

63863.3 

3.24115 

0.32615 

80888.8 

2.61526 

0.45485 

70493.7 

3.38979 

0.17165 

63166.7 

3.42424 

0.30795 

81109.9 

2.61030 

0.49290 

75201.9 

4.04161 

0.12346 

In this paper, three typical performance metrics were used 

to compare and analyze the solution quality of PFs obtained 

from various MOPD algorithms. The first is the convergence 

metric adopted to measure the degree of closeness between the 

resulting PF and the reference PF [22]. For each PF solution 

obtained, the Euclidean distance from it to the nearest solution 

of reference PF in the objective space is first calculated, and 

this metric can then be obtained using the average of these 

distances. Secondly, the distribution uniformity of PF solutions 

can be assessed by spacing metric [15] which is calculated as 

the relative crowding distance between consecutive solutions 

in the resulting PF set. The desired value for this metric is 0, 

which means the elements of PF solutions can be equidistantly 

spaced. Thirdly, as explained in Section IV-A, the extent of 

the PF can be assessed with the normalized Euclidean distance 

of the extreme solutions for the three MOPD objectives. 

Furthermore, the performance metrics of the overall best run 

of each algorithm are listed in Table X, and the statistical results 
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on the convergence, spacing and span measures over the 50 

optimization runs are tabulated in Table XI-XIII, respectively. 

The resulting statistics demonstrate that, with the same number 

of fitness function evaluations, MGSO can markedly outperform 

the two earlier methods, and provides satisfactory performance 

on various measures, especially on the convergence and span 

metrics. The simulations also confirmed that the different types 

of functional members do facilitate the developed algorithm to 

effectively propagate the search towards the well-scattered and 

diverse PF. 

TABLE X 

PERFORMANCE MEASURES OF THE BEST RUN OF EACH ALGORITHM 

Algorithms Convergence Spacing metric Span metric 

NSGA-II 3.057125 0.013010 0.721867 

SPEA2 1.797026 0.019365 0.969229 

MGSO 0.980039 0.023083 0.991228 

TABLE XI 

RESULTING STATISTICS OF CONVERGENCE MEASURES IN 50 RUNS 

Algorithms Best Worst Average Variance Std. Dev. 

NSGA-II 2.156753 3.849242 2.795033 0.127215 0.356672 

SPEA2 1.126984 3.057916 1.925615 0.248221 0.498218 

MGSO 0.809761 2.078176 1.192056 0.065518 0.255965 

MGSO1 0.847567 1.936765 1.228693 0.077964 0.279221 

MGSO2 0.906680 2.564372 1.381657 0.156229 0.395258 

TABLE XII 

RESULTING STATISTICS OF SPACING MEASURES IN 50 RUNS 

Algorithms Best Worst Average Variance Std. Dev. 

NSGA-II 0.008862 0.059555 0.013219 4.0870E-5 0.006393 

SPEA2 0.017403 0.089156 0.030587 4.1440E-4 0.020357 

MGSO 0.017849 0.077575 0.028133 2.2716E-4 0.015072 

MGSO1 0.018132 0.077043 0.029576 2.8264E-4 0.016812 

MGSO2 0.018956 0.089222 0.028883 2.7403E-4 0.016554 

TABLE XIII 

RESULTING STATISTICS OF SPAN MEASURES IN 50 RUNS 

Algorithms Best Worst Average Variance Std. Dev. 

NSGA-II 0.721867 0.187814 0.470604 0.018573 0.136284 

SPEA2 0.969229 0.496084 0.782732 0.028724 0.169483 

MGSO 0.991228 0.660227 0.832738 0.012285 0.110838 

MGSO1 0.955163 0.609305 0.809921 0.015886 0.126040 

MGSO2 0.980816 0.642971 0.830181 0.014417 0.120071 

In particular, from the statistical comparative experiments, 

it should be pointed out that MGSO can effectively find the 

nondominated solutions in the separated feasible islands so as 

to guarantee the diversity of the PF. This validates its superior 

efficiency of solution searching for complex nonlinear 

constrained problems with high-dimensional search space. Thus, 

the spacing metrics of MGSO are greater than those of NSGA-

II and SPEA2. Besides, it can be found that the PFs from 

NSGA-II are more uniformly-spaced, but perform worst on the 

other two metrics. Also, the variance and standard deviation 

values of these measures indicate the stable performance of 

MGSO for the resulting Pareto set. 

For the investigation of contribution of the space reduction 

strategy for producer and the adaptive ranger percentage with 

chaotic sequence, statistical results were collected over 50 runs 

for MGSO with fixed Lgmax (referred as MGSO1) and MGSO 

with the fixed %gR and random number sequence [9] (referred 

as MGSO2), and tabulated in Table XI-XIII. It is worth noting 

that the span metrics of the PFs can be statistically improved 

with the help of the space reduction-based scanning strategy. 

Furthermore, referring to the MGSO2, it also verified that the 

proposed chaotic sequence dispersion strategy can statistically 

enhance the overall performance of MGSO, especially on the 

convergence metric. 

The ultimate goal of any Pareto-based algorithm is to 

identify a unique solution with the best compromise among 

multiple objectives. In the MGSO, the solution having the 

maximum joint equilibrium value will be chosen as the PF’s 

best compromise solution. In this case study, the fitness of the 

compromise solution obtained with the Nash equilibrium-based 

decision making is (70674.1, 2.96582, 0.17269), as compared 

to (67819.5, 3.05191, 0.19393) obtained by the fuzzy method 

[8]. It can be seen that the two compromise solutions are quite 

different in this study because the proposed method takes into 

account the objectives’ trade-off of the PF solutions and its 

solution model is based on the compromise between the gain 

of one objective and the degradation in other objectives [30] 

with solid technical foundation based on the non-cooperative 

game theory [24]. 

From the investigations and analysis above, it can be found 

that, though the performance improvement of the proposed 

MGSO is moderate compared with other algorithms on the 

small IEEE 30-bus system, the proposed MGSO has exhibited 

its superior capability to 1) provide largely improved solution 

for the larger 118-bus system with limited number of function 

evaluations, 2) significantly enhance the searching ability, 3) 

ensure the quality of PF solutions, and 4) efficiently manage 

the highly complex power system constraints in solving high-

dimensional MOPD problems with more objectives [31]. 

A comparative study of the average run time per generation 

over 50 optimization runs for each of the MOPD algorithms is 

given in Table XIV. All the algorithms were implemented in 

Matlab 7.6 and ran on a personal computer with 3.2 GHz Intel 

Core 2 Quad CPU and 4GB RAM. It is quite evident that the 

computation time of MGSO is less than that of the other two 

techniques. 

TABLE XIV 

RUN TIME PER GENERATION OF DIFFERENT ALGORITHMS 

 NSGA-II SPEA2 MGSO 

Run time (s) 7.877 8.305 7.650 

As the main searching force members, scroungers perform 

the proposed synergistic learning strategy and their behaviors 

are mainly determined by reinforcement factor η which is 

crucial to the credit assignment and information interaction in 

the cooperative searching process. In order to investigate the 

tuning rules for design parameters on the search performance 

of MGSO, the sensitivity of η was studied over a range from 

0.001 to 0.01 in step of 0.001. Table XV provides the statistical 

results of the performance metrics for MGSO with various 

reinforcement factors over 50 optimization runs. It can be seen 

that a large value of η can effectively enhance the interactive 

cooperation between searching groups and hence can improve 

the average performance of the proposed algorithm. Therefore, 

the overall best PF results can be achieved when η was set to 

0.01. Similarly, the other algorithm parameters can also be 

heuristically fine-tuned, as listed in Table I and VIII, using this 

cut-and-try approach [26]. 

TABLE XV 

REINFORCEMENT FACTOR EFFECTS ON PERFORMANCE OF MGSO 

η Convergence Spacing metric Span metric 
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Average Std. Dev. Average Std. Dev. Average Std. Dev. 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.01 

4.390579 
3.937078 
3.126982 
3.359306 
2.791334 
2.561396 
2.323595 
1.622543 
1.465805 
1.192056 

0.219971 

0.576131 
0.428249 
0.271617 
0.386273 
0.362625 
0.315735 
0.325889 
0.309156 
0.255965 

0.042959 
0.043629 
0.040692 
0.033698 
0.026564 
0.022615 

0.027596 
0.031324 
0.034161 
0.028133 

0.018695 
0.019949 
0.021899 
0.023583 
0.019275 
0.017922 
0.018787 
0.020455 
0.016727 
0.015072 

0.516577 
0.657509 
0.638330 
0.549821 
0.618557 
0.715560 
0.787631 
0.810356 
0.806117 
0.832738 

0.257505 
0.235598 
0.192542 
0.221789 
0.171531 
0.142848 
0.106881 

0.152771 
0.124352 
0.110838 

However, it shall also be noted that, according to the No 

Free Lunch theorem, “for any search algorithm, any elevated 

performance over one class of problems would be exactly paid 

for in performance over another class” [32]. This implies that 

though the proposed MGSO algorithm is more superior in this 

class of power system dispatch problems, it may not be 

necessary as well performed in other class of problems. 

V.  CONCLUSIONS 

In this paper, a novel Pareto optimization algorithm, MGSO, 

is developed to solve highly nonlinear constrained and large-

scale MOPD problems. The following are main advantages of 

the proposed approach: 1) Four categories of group members 

in association with the searching strategies are designed in the 

algorithm for effective formation and exploration of the PF 

front and improving the extension, convergence, diversity and 

uniformity of the Pareto solutions. 2) A synergistic learning 

mechanism based on the stochastic learning automata is first 

proposed for the credit assignment and information interaction 

among multiple groups to achieve the cooperative search for 

Pareto set. 3) A new decision making criterion based on Nash 

equilibrium point is presented to identify a more reasonable 

compromising solution from the resulting PF with multiple 

contradictory objectives. 

The proposed MGSO has been successfully applied to the 

dual-objective EED problem on the IEEE 30-bus system and a 

tri-objective MOPD problem on the IEEE 118-bus system. In-

depth numerical simulation studies have confirmed the superior 

efficiency of MGSO for solution searching and the effectiveness 

of the proposed new searching strategies. Compared with the 

previously published Pareto algorithms on various performance 

measures, the proposed MGSO is very competitive in small 

EED problems and clearly superior in the high-dimensional 

MOPD problems with complex constraints and objectives. 
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