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Abstract ― This letter presents an optimal energy flow (OEF) for 

integrated energy systems considering the transient process of nat-
ural gas flows, whose main dynamic features are efficiently approx-
imated in our setup. To achieve this, new discretization criteria are 
proposed to divide the gas flow equations into reasonable temporal 
and spatial segments to accurately model the gas flow dynamics in 
a set of difference equations. Simulation results validate the effec-
tiveness of the OEF based on the proposed discretization criteria 
and its advantages over existing methods.  

Index Terms ― Integrated energy system, optimal energy flow, 

transient gas flow. 

I.  INTRODUCTION 

NTEGRATED energy systems (IESs), especially integrated 

electric power and natural gas systems, are a promising way 

to achieve the target of energy transition around the world. 

Similar to the optimal power flow in power system studies, the 

optimal energy flow (OEF) is of great importance to an IES. 

When optimizing the operation of a power system from an 

economic perspective, it is reasonable to neglect the fast 

dynamics of electrical transients. However, natural gas flow may 

have much slower dynamics and become more difficult to solve 

because it is generally described by a set of partial differential 

equations (PDEs). As a result, it is reasonable to approximate and 

simplify the PDEs to ease the computational burden while at the 

same time keeping track of the gas flow transients.  

This letter considers the one-dimensional transient gas flow 

through horizontal pipelines under isothermal conditions [1]. 

The following PDEs are used to describe the gas pipe dynamics:  

𝜕𝑡𝑝 +
4𝑐2

𝜋𝐷2 𝜕𝑥𝑚 = 0                          (1) 

𝜕𝑥𝑝 +
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𝑚|𝑚|

𝑝
         (2) 

where 𝜕𝑡 is the partial derivative against the time variable t and 

𝜕𝑥 against the spatial variable x, and 𝑝 = 𝑝(𝑥, 𝑡), 𝑚 = 𝑚(𝑥, 𝑡), 

𝜌 = 𝜌(𝑥, 𝑡) , and 𝑢 = 𝑢(𝑥, 𝑡)  respectively denote the pressure 

(Pa), mass flow rate (kg/s), gas density (kg/m3), and gas flow 

velocity (m/s). Finally, 𝑐 is a constant representing the speed of 

sound (m/s), 𝐷  is the pipe diameter (m), and 𝑓  is a constant 

representing the friction factor. Note that the above equations 

also assume a constant compressibility factor (i.e., 𝑝 = 𝑐2𝜌) [1]. 

Several approaches have aimed to simplify and linearize (1) 

and (2). For instance, the steady-state gas flow that ignores 𝜕𝑡𝑝, 

𝜕𝑡𝑚, and 𝜕𝑥(𝜌𝑢2) is employed in [2]. Both 𝜕𝑡𝑚 and 𝜕𝑥(𝜌𝑢2) 

are neglected in [3] and [4], but only 𝜕𝑥(𝜌𝑢2) is neglected in [5] 

and [6]. In these studies, the PDEs are linearized and discretized 

for ease of computation. However, the temporal and spatial 

discretization in these studies is not clearly discussed and may 

only be feasible for specific cases [6]. Especially for OEF 

problems where the emphasis is usually placed on energy 

production and consumption with large time intervals (e.g., 1 h 

for day-ahead and 5 or 15 min for real-time), existing works do 

not address concerns regarding how to discretize the transient gas 

flows in both time and space for a given time interval.  

In this context, the main work of this letter is to develop 

temporal and spatial discretization criteria to integrate gas flow 

transients into OEF problems. The transient gas flow is 

approximated based on a finite difference method and Talyor 

series. The discretization criteria are derived from the transfer 

function of gas pipelines to divide gas flow equations into 

segments in spatiotemporal coordinates to enhance the accuracy. 

Based on the approximated transient gas flow, the OEF model is 

developed and verified by numerical simulations.  

II.  APPROXIMATION OF TRANSIENT GAS FLOW 

A.  Finite Difference Approximation of PDEs 

By omitting the convective term 𝜕𝑥(𝜌𝑢2)  but keeping the 

intertia term 𝜕𝑡𝑚 in (2), the partial differential equations (1) and 

(2) can be processed by numerical integration methods. The 

effectiveness of neglecting 𝜕𝑥(𝜌𝑢2) has been validated by [1].  

The finite difference method is adopted and the time 

derivative is approximated by the implicit trapezoidal rule. Other 

numerical methods such as pseudospectral approximation and 

lumped element approximation to discretize PDEs can be found 

in [7] and will not be further discussed. A diagram of the time 

and spatial grid can be found in [1]. The numerical formulations 

for a natural gas pipe segment between spatial grid points i and 

i+1 and from time grid points t to t+1 can be presented as:  
𝑝𝑖+1

𝑡+1−𝑝𝑖+1
𝑡

2∆𝑡
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𝑡

2∆𝑡
+
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where ∆𝑡 and ∆𝑥 denote the time and spatial steps, respectively.  

Note that the friction force term on the right-hand side of (4) 

is still non-linear. The following steps are taken to linearize (4): 

1) The direction of gas flow rarely changes for pipes with slow 

dynamics; therefore, 𝑚|𝑚| is rewritten as 𝑚2.  

2) The first-order Taylor series is employed to approximate 

the non-linear term in (4) based on a reference point (𝑚0, 

𝑝0). The references 𝑚0 and 𝑝0 are further replaced by the 

reference gas flow velocity (typically around 10 m/s [6]). 

The friction force term in (4) is linearized as: 
8𝑓𝑐2

𝜋2𝐷5
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𝑝
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2𝑚0
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𝑚 −
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2

𝑝0
2 𝑝) =

4𝑓𝑢0

𝜋𝐷3 𝑚 −
𝑓𝑢0

2

2𝑐2𝐷
𝑝    (5) 

3) For each segment, 𝑚  and 𝑝  can be approximated as the 

average mass flow and pressure of its two terminal points.  

Finally, the non-linear equation (4) is linearized as (6). Then, 

(3) and (6) are the final linearized equations employed in this 

letter to approximate the PDEs (1) and (2). 
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Note that the accuracy of finite difference methods depends 

on the step sizes of ∆𝑡 and ∆𝑥. Smaller step sizes can improve 

the accuracy but at the cost of larger computational burdens. 

Because OEF problems focus on energy production and 

consumption, larger step sizes may be acceptable as long as the 

error can be constrained to a satisfactory level.  

B.  Temporal Discretization Criteria 

To achieve satisfactory accuracy with the finite difference 
method, the temporal discretization should consider both the 
speed of gas flow transients and the studied time interval of IES 
optimization. The gas flow transient speed can be analyzed 
through a transfer function as described in [4]-[6]. In short, 
equations (3) and (6) can be written in matrix form to derive the 

transfer function 𝐻(𝑠) of input 𝑝𝑖
𝑡+1  or 𝑚𝑖+1

𝑡+1  to output 𝑝𝑖+1
𝑡+1  or 

𝑚𝑖
𝑡+1. Using the first-order series expansion, the approximated 

transfer functions are of the following type:  

𝐻(𝑠) =
𝑘1+𝑘2𝑠

1+𝜏𝑠
                                  (7) 

where 𝑘1, 𝑘2, and 𝜏 are parameters. 

According to the approximated 𝐻(𝑠), the gas flow transient 

speed is mainly decided by 𝜏, which can be calculated in terms 

of pipeline parameters as shown in (8): 

𝜏 =
𝐿

𝑢0
𝑦𝑒

𝑦

2 (1 −
𝑦

6
+

𝑦2

24
)  , 𝑦 =

𝑓𝑢2𝐿

2𝐷𝑐2 ≈
𝑓𝑢0

2𝐿

2𝐷𝑐2           (8) 

Thus, the slow dynamics of gas flow can be approximated by 

an exponential decay function 𝑒−𝑡/𝜏 (𝜏 > 0) [5]. For a given gas 

pipeline, the length L, diameter 𝐷 , and friction factor 𝑓  are 

known and 𝑢0 and 𝑐 can be assumed to be constant. Thus, 𝜏 can 

be approximated by (8) prior to executing the OEF. Assume the 

parameters 𝐷, 𝑓, 𝑢0 , and 𝑐 are respectively 1 m, 0.01, 10 m/s, 

and 380 m/s, and 𝜏 is 0.35, 35.0, and 3900.1 s for pipelines with 

respective lengths of 1, 10, and 100 km. 

Considering an exponential decay function 𝑒−𝑡 , we say the 

function is sufficiently decayed with regards to an arbitrary tol-

erance 𝜀 ∈ ℝ+ , ∃𝑡∗ ∈ ℝ+  such that 𝑒−𝑡 ≤ 𝜀, ∀𝑡 ≥ 𝑡∗. Provided 

the 𝜀, we get 𝑡∗ equals 𝜏ln(𝜀). Assuming 𝜀=0.05, the calculation 

then shows that 𝑒−𝑡 will not sufficiently decay before 𝑡∗≈1.05 s 

and 11700 s for Δ𝑥=1 km and 100 km, respectively. If the time 

interval of OEF is 1 h, the gas transients can be ignored for a 

1 km pipe but should be properly addressed in the model for a 

100 km pipeline. Hence, the discretization requirements for the 

time rely on 𝜏, the predefined optimization time interval ∆𝑇, and 

the discretization error tolerance 𝜉.  

With any given ∆𝑇, the exponential decay function 𝑒−𝑡/𝜏 can 

be tranformed into a non-dimensional term 𝑒−𝑡∆𝑇/𝜏 . The local 

truncation error 𝐸 of the trapezoidal rule with a non-dimensional 

step size ℎ = ∆𝑡/∆𝑇  over the time span [0, −𝜏 ln(𝜀) /∆𝑇] can 

then be estimated by (9) and the maximum step size ∆𝑡  to 

accommodate the error tolerance 𝜀 can be calculated by (10).  

𝐸 =
ℎ2

12

−𝜏 ln(𝜀)

∆𝑇

∆𝑇2

𝜏2 𝑒−𝑡∆𝑇/𝜏 ≤
− ln(𝜀)∆𝑇

12𝜏
ℎ2 ≤ 𝜉           (9) 

∆𝑡 = ℎ∆𝑇 ≤ √−12𝜉𝜏∆𝑇/ ln(𝜀)                (10) 

where �̃� ∈ [0, −𝜏 ln(𝜀) /∆𝑇]. 
An interesting phenomenon can be observed from (10). Take 

∆𝑇=3600 s and 𝜉=0.05 as an example. When dealing with short 

pipelines with small 𝐿  (e.g., 𝐿 =10 km), no additional time 

discretization is required because the transient period is much 

shorter than ∆𝑇 . However, for a very long pipeline (e.g. 

𝐿 ≥200 km in this example), additional time discretization is 

also not necessary because the time interval ∆𝑇 is sufficient to 

approximate the slow dynamics of long gas pipes. The following 

criteria are summarized with respect to discretizing time steps: 

(i) If 𝜏 ≤ −∆𝑇/ ln(𝜀), ∆𝑇 need not be discretized. 

(ii) If ∆𝑡 ≥ ∆𝑇 , i.e., ∆𝑇  is sufficiently small, temporal 

discretization is not required.  

(iii) If neither criteria (i) nor (ii) is satisfied, each time interval 

∆𝑇 should be discretized into 𝑁𝑇 segments as shown in 

(11). In (11), ⌈ ⌉+ denotes the ceiling function.  

𝑁𝑇 = ⌈ℎ−1⌉+ ≥ √− ln(𝜀)∆𝑇 /12𝜉𝜏           (11) 

C.  Spatial Discretization Criteria 

In addition to temporal discretization, spatial discretization 

may be required to guarantee the eligibility of the transfer 

function approximation in (7). For a given pipeline length L, the 

reasonable number of spatial segments, denoted 𝑁𝑋, should be 

considered a function Ψ with respect to length L, the OEF time 

interval ∆𝑇 , and other parameters of the pipeline. All the 

variables of Ψ can be regrouped into two ancillary variables, 𝑧1 

and 𝑧2, as shown in (12).  

𝑁𝑋 = 𝐿/∆𝑥 = Ψ(𝑧1, 𝑧2)                      (12) 

where 𝑧1 =
𝑓𝑢0𝐿

2𝐷𝑐
 and 𝑧2 =

𝐿

2𝑐∆𝑇
  

Based on the empirical diagram simulated in [6], Ψ can be 

approximated by (13). The base of the logarithm is 10. 

log 𝑁𝑋 ≈ (𝛽1 log 𝑧1 + 𝛽2) log 𝑧2 + 𝛽3 log 𝑧1 + 𝛽4       (13) 

where parameters 𝛽1 , 𝛽2 , 𝛽3 , and 𝛽4  are approximated as 

−0.154, 0.779, 0.461, and 0.279, respectively. 

An alternative approximation is also developed to intuitively 

illustrate the influences of pipeline parameters and temporal 

interval on the spatial discretization. Because the typical value of 

𝛽1 log 𝑧1 + 𝛽2  ranges from 0.5 to 0.8, the mean value 0.65 is 

employed and the alternative approximation is shown in (14). 

𝑁𝑋 ≈ 0.9𝑓0.46𝑢0
0.46𝐷−0.46𝑐−1.11𝐿1.11∆𝑇−0.65       (14) 

Take a 100 km pipeline as an example. If ∆𝑇 is 3600, 900, 

and 300 s (i.e., 1 h, 15 min, and 5 min), 𝑁𝑋 is estimated at 0.84, 

1.94, and 3.78 by (13) and 0.74, 1.82, and 3.72 by (14), 

respectively. Thus, the 100 km pipeline should be divided into 1, 

2, and 4 spatial segments when ∆𝑇 equals 3600, 900, and 300 s, 

respectively.  

D.  OEF Model with Transient Gas Flow 

Taking the daily optimal operation of IESs as an example, a 
generalized OEF can be expressed as follows: 

Minimize   
 𝐏,m

∑ 𝐶(𝐏, 𝐦)𝑡   

s.t.    𝑔𝑝(𝐏) = 𝟎 , 𝑔𝑛(𝐦) = 𝟎 , 𝑔𝑝𝑛(𝐏, 𝐦) = 𝟎 

where 𝐶(𝐏, 𝐦) denotes the cost function and 𝐏 and 𝐦 respec-

tively denote the variables in power and gas systems. 𝑔𝑝, 𝑔𝑛, and 

𝑔𝑝𝑛 denote the constraints of the power system, gas system, and 

coupling constraints of these two systems, respectively. Note that 

the OEF model is expressed in slack form, where the non-equiv-

alent constraints in 𝑔𝑝 , 𝑔𝑛 , and 𝑔𝑝𝑛  are converted to equality 

constraints by introducing non-negative slack variables.  

III.  CASE STUDY 

In this section, the values of parameters 𝐷, 𝑓, 𝑢0, 𝑐, 𝜀, and 𝜉 

in Section II are employed. The dynamic features of gas flow are 

then simulated by varying the length 𝐿 and time interval ∆𝑇. The 
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simulations are carried out on a desktop computer with an Intel 

i7-7700 processor and 12 GB RAM.  

A.  Validation of Approximated Transient Gas Flow 

Gas flows through three gas pipelines with respective lengths 
of 25, 100, and 200 km are simulated. The inlet pressure is kept 
at 60 bar and the outlet gas flow is decreased from 200 to 
150 kg/s at time t=0 and ∆𝑇=3600 s. According to the proposed 
discretization criteria, 𝑁𝑇 (𝑁𝑋) are 1 (1), 2 (1), and 1 (2) for pipe-
lines with respective lengths of 25, 100, and 200 km. Equations 
(3) and (6) with ∆𝑥=100 m and ∆𝑡=10 s are solved to obtain the 
benchmark results. The results of steady-state gas flow [2], non-
discretized gas flow [3], and the proposed discretized gas flow 
are compared in Table I. The non-discretized method and the 
proposed method for a single pipeline can be solved in less than 
0.01 s, while the computational burden of the benchmark gas 
flow of the 200 km pipeline is 2574.6 s.  

All three methods perform well for the 25 km gas pipe, where 
𝜏  equals 222.8 s and is much smaller than ∆𝑇 . Fig. 1 further 
compares the gas flows for the 100 and 200 km gas pipes. The 
simulation results validate that the proposed discretization 
method keeps the maximum error within the acceptable range of 
5% and is more effective at approximating the transient gas flows 
in pipelines of various lengths compared to the non-discretized 
gas flow and steady-state flow.  

 

TABLE I 
MAXIMUM RELATIVE ERROR OF APPROXIMATED TRANSIENT GAS FLOWS 

Pipeline 
length (km) 

 
Steady-state 
gas flow (%) 

Non-discretized 
method (%) 

Proposed 
method (%) 

25 
𝑚𝑖  0.0 1.13 1.13 

𝑝𝑖+1  0.0 0.04 0.04 

100 
𝑚𝑖  4.18 10.37 3.97 

𝑝𝑖+1  0.48 0.74 0.17 

200 
𝑚𝑖  20.98 10.80 3.82 

𝑝𝑖+1  9.09 1.39 1.11 
 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Performance of approximated transient gas flows. (a) Inlet gas flow and 
(b) outlet pressure for the 100 km gas pipe. (c) Inlet gas flow and (d) outlet pres-

sure for the 200 km gas pipe. 
 

B.  OEF Simulation Results 

The IES with three electrical buses and three natural gas buses 
discussed in [2] is employed to verify the proposed OEF scheme 
with a time interval of 15 min (∆𝑇=900 s). The simulated system 
has one gas well, one coal-fired generator (G1), and one gas-fired 
generator (G2). Using the proposed discretization method, only 
the 90 km pipeline 1-2 should be divided into two spatial seg-
ments, i.e., ∆𝑥 = 𝐿/2 =45 km. In addition, each optimization 

interval ∆𝑇 is discretized into two segments according to the pro-
posed temporal discretization criteria, i.e., ∆𝑡=450 s. The OEF 
results over 24 consecutive operating hours are provided in Table 
II.  

G1 G2

1

2

3
Power l ine

Gas pipeline

Gas well

Generator

90 km

70 km
60 km

G

 
Fig. 2. An example IES for simulation. 

 

TABLE II 
SIMULATED DAILY OEF RESULTS BASED ON DIFFERENT METHODS 

 
Steady-

state 
Non-discre-

tized 
Proposed 

Total cost (×106 m.u.*) 21.18 20.41 20.44 
G1 generation (×104 MWh) 12.94 11.98 12.08 
G2 generation (×104 MWh) 6.80 7.76 7.67 
Lowest nodal pressure (bar) 48.52 51.73 51.75 

Number of 15-minute intervals in 
which the gas supply limit is reached 

40 29 34 

CPU time (s) 0.95 0.97 1.02 

* m.u. stands for the monetary unit. 
 

The steady-state gas flow ignores the slow dynamics of gas 
flow and leads to a conservative operating strategy, and thus the 
steady-state flow based OEF has the highest cost. The non-dis-
cretized method and the proposed method share similar opera-
tional results and computational efficiency. Compared to the pro-
posed method, the non-discretized method concludes that more 
gas can be consumed but the gas supply limit is less likely to be 
reached. Thus, the non-discretized method may lead to unrealis-
tic operating strategies. The proposed method is validated to 
achieve an efficient OEF result while maintaining a satisfactory 
accuracy of transient gas flow approximation. 

IV.  CONCLUSION 

This letter integrates transient gas flow equations into an OEF 

model for IESs through finite difference approximation. 

Temporal and spatial discretization criteria are developed based 

on gas pipelines parameters and the desired optimization time 

intervals of OEF to enhance the approximation accuracy. The 

results validate that the proposed discretization criteria and OEF 

are applicable to gas pipelines and IESs of varying parameters 

and optimization time intervals while maintaining a satisfactory 

degree of accuracy. 
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