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Abstract ― Increasingly frequent severe weather events in recent 

years threaten the security of power systems and result in major 

power outages throughout the world. The development of reasonable 

power system restoration (PSR) solutions is therefore urgently 

needed to speed up the recovery of the power supply while at the 

same time steering clear of vulnerable and risky equipment. This pa-

per aims to develop a case-sensitive PSR model for power transmis-

sion systems that can adjust restoration solutions according to the 

evaluated availability of outage equipment in specific blackout sce-

narios and weather conditions. A novel PSR model that integrates 

the startup of generating units, formulation of the restoration net-

work, renewable energy sources, and availability assessment of de-

vices is proposed. A reformulated model is also proposed to relieve 

the computational burden of complex PSR problems. The availabil-

ity of outage equipment is comprehensively assessed based on histor-

ical operating records, fault diagnosis results, and weather condi-

tions. The assessed availability results are sensitive to the character-

istics of real blackout cases and will support system operators gener-

ate case-sensitive PSR solutions while mitigating the vulnerable 

equipment. The feasibility and effectiveness of the proposed PSR 

model and its reformulations are verified through case studies. 

Index Terms ― Fault diagnosis, power system restoration, power 

system resilience, availability assessment 

NOMENCLATURE 

Sets 

ΩA(𝑥) Set of alarms related to device x 

ΩL Set of power lines in blackout area 

ΩN Set of buses in blackout area 

ΩT Set of time slots 

ΩX Set of devices in blackout area 

ΩY Set of severe weather factors 

Parameters 

𝑏𝑖𝑗 , 𝑏𝑖𝑗
lc Series and shunt susceptance of line ij 

𝑔𝑖𝑗  Series conductance of line ij 

NB Number of blackout buses 

NL Number of blackout lines 

NT Number of considered time slots 

𝑃𝑖,𝑡
G,est

 Forecasted active power generation capacity 

for renewable energy source at bus i at time t 

𝑃𝑖
set Active power rating of the non-black-start 

power plant at bus i 

𝑃𝑖
L Startup load of power plant at bus i 

𝑃𝑖
rp

 Ramping rate of power plant at bus i 

𝑄𝑖
L Reactive load at bus i 

𝜏𝑖
st Required time to start ramping of the non-

black-start power plant at bus i 

𝜏𝑖
rp

 Total ramping time of non-black-start power 

plant at bus i to reach 𝑃𝑖
𝑠𝑒𝑡   

𝜛𝑖
lim Power factor limit of renewable energy sources 

𝜂𝑖 Reserve margin of renewable energy forecasts 

∆𝜏𝑖𝑗  Required time to restore line ij 

Variables 

𝑑𝑎 Received alarm signal 

𝑑𝑎
ℎ𝑥  Expected alarm signal based on fault 

hypothesis 

𝑓𝑥 Availability of device x based on fault diagno-

sis 

ℎ𝑥 Fault hypothesis for device x 

𝑃𝑖,𝑡 Active nodal power injection at bus i at time t 

𝑃𝑖,𝑡
G  Active power generation capacity at bus i at 

time t 

𝑃𝑖,𝑡
L  Active power load at bus i at time t 

𝑃𝑖𝑗,𝑡 Active power flow through line ij at time t 

𝑄𝑖,𝑡  Reactive nodal power injection at bus i at time t 

𝑄𝑖,𝑡
G  Reactive power generation at bus i at time t 

𝑄𝑖,𝑡
L  Reactive power load at bus i at time t 

𝑄𝑖𝑗,𝑡 Reactive power flow through line ij at time t 

∆𝑄𝑖,𝑡
lc  Nodal reactive power increment of restoring 

line ij at time t 

𝑟𝑥 Availability assessment of device x based on 

historical operating records 

𝑠𝑥 Availability assessment of device x against se-

vere weather events 

𝑠𝑥,𝑦 Survivability of device x against environmental 

factor y 

𝑉𝑖,𝑡 Nodal voltage magnitude of bus i at time t 

𝑣𝑥,𝑦 Impact of environmental factor y on device x 

𝑣𝑥,𝑦
std The designed standard of device x against the 

environmental factor y 

𝛼𝑖,𝑡 Restoration status of bus i at time t 

𝛽𝑖,𝑡 Ramping status of the non-black-start power 

plant at bus i at time t 

𝛾𝑖𝑗,𝑡  On-off status of line ij at time t 

𝜃𝑖,𝑡 Nodal voltage phase angle of bus i at time t 

𝜗𝑖 Restored time of bus i 

𝜉𝑖𝑗  The indicator of restoration direction of line ij 

𝜇𝑖  On/off status of bus i 

𝜔 The weighting factor of fault diagnosis results 

𝜑𝑖𝑗,𝑡
p

,𝜑𝑖𝑗,𝑡
q

 Ancillary variable for active and reactive power 

flow of line ij at time t 
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𝜓𝑥, 𝜓𝑥
− Evaluated availability and risk indexes of de-

vice x 

𝛹∑ 𝑥 Integrated availability index of restoring a set 

of devices 

𝛹𝑖 , 𝛹𝑖
− Evaluated cumulative availability and risk in-

dexes to restore bus i 

Superscripts 

min/max Minimum or maximum limit of a quantity 

I.  INTRODUCTION 

LACKOUTS threaten the security of electricity supply and 
incur enormous social and economic damage around the 

world. Although the resilience of modern power grids has been 
enhanced with the implementation of advanced monitoring and 
control systems, blackouts cannot be fully averted due to the vul-
nerabilities of transmission and distribution facilities, especially 
in cases of severe weather events [1,2]. According to a recent sur-
vey, the majority of recent blackouts have been weather-related 
[3]. For example, a disastrous winter storm caused a major black-
out in southern China in 2008, disturbing the power supply for 
over 25 million people [4]. Hurricane Sandy struck the U.S. in 
2012 and resulted in power outages for more than 8.5 million 
households and businesses [5]. The major blackout of South Aus-
tralia in 2016 that affected around 1.7 million people was also 
caused by a severe storm [6]. Effective strategies to restore power 
supply after such disastrous events are in urgent need to reduce 
the negative influences of blackouts on economy and society. 

The restoration of power supply after blackouts is generally 
referred to as power system restoration (PSR), the strategy of 
which plays a key role in directing the recovery steps and the im-
plementation of black-start resources. After a blackout, the black-
start units (BSUs) that can start on their own without external 
power supply are the power sources to initiate the PSR [1]. Sub-
stations and transmission lines will be energized to create a crank-
ing path for the BSUs to supply cranking power to the non-black-
start units (NBSUs) that rely on the external power supply to start. 
With sufficient generating units back up online, the load supply 
will be gradually recovered to finalize the PSR process.  

With the ever-growing threats from extreme weather events, 
the development of reasonable PSR strategy for weather-related 
blackouts becomes crucial because severe weather not only trig-
gers blackouts by causing permanent or long-term faults but also 
threatens the proper functioning of power system facilities. Moti-
vated by the inevitable need to restore the power supply after 
weather-related blackouts, this paper investigates the modeling of 
PSR that are capable of identifying the causes of specific black-
outs and properly handling potential risk factors (e.g., faulted de-
vices, equipment that might suffer from severe weather condi-
tions) to secure the success of system recovery in a timely fashion. 

A.  Literature Review 

The PSR is usually divided into three stages—the startup of 
NBSUs, the formulation of restoration networks/islands, and the 
restoration of power loads [7]—each of which has been separately 
studied in the existing literature. For the first stage, a fuzzy deci-
sion-making support method is proposed in [7] to obtain the opti-
mal black-start scheme based on selected key factors. The NBSU 
restoration strategy to supply cranking power to NBSUs is opti-
mized in [8] considering the startup characteristics of NBSUs. 
The steam-turbine cylinder temperature of NBSUs is also esti-
mated in [9] to enhance the efficiency and feasibility of unit start-
up decisions. These studies generally emphasize the optimization 
of NBSU startup sequences based on the status of NBSUs, while 

the formulations of cranking paths and restoration networks/is-
lands are generally simplified or ignored. For the second stage, 
the allocation of BSUs and the division of islands are optimized 
in [10] from the viewpoint of cost-efficiency. Alternatively, a 
blackout system can be divided into several islands and restored 
in parallel by different BSUs to speed up the restoration process. 
These islands are referred to as restoration islands in the rest of 
the paper, and the topology information is used to generate the 
parallel restoration islands in [11]. The configuration of restora-
tion networks is generated based on graph theory and a self-heal-
ing algorithm is derived in [12]. The restoration strategies of mi-
crogrid-based distribution systems and unbalanced distributions 
systems are respectively developed in [13] and [14]. The similar 
aims of these research works are to generate an optimal backbone 
network to assist the PSR process, but the startup and ramping 
characteristics of NBSUs have not been sophisticatedly consid-
ered. For the third stage, an optimization load restoration scheme 
in transmission systems considering power system dynamics is 
proposed in [15]. The critical load restoration problem in distri-
bution systems is studied in [16]. The present paper focuses on 
the first two stages. Load restoration is not further discussed be-
cause most generating units and transmission lines have already 
been synchronized at the load restoration stage, making it less 
complex compared to the other two stages.  

Summarized from the literature review, several weaknesses of 
existing PSR studies can be identified:  

1) Different PSR stages have not been comprehensively inte-
grated. In the aforementioned research [7]-[16], the cranking 
of NBSUs and the formulation of restoration network are sep-
arately modeled and analyzed. Efforts have been made in 
studies such as [17] and [18] to coordinate multiple PSR 
stages, but the startup of NBSUs remains the dominant stage. 
Once the startup sequences of NBSUs are optimized, the con-
figuration of the restoration network can be accordingly ob-
tained. However, the startup of NBSUs can only be accom-
plished by restoring certain transmission lines, while energiz-
ing lightly loaded transmission lines requires support from 
available generating units. It turns out that, the startup of 
NBSUs and the formulation of restoration network are deeply 
coupled during a PSR process. Moreover, if transmission in-
frastructure fails to construct the backbone network due to 
factors such as faults and extreme weather, the optimized 
startup sequence of NBSUs cannot be achieved. Thus, the in-
teractions between these two PSR stages should be respected 
and comprehensively integrated when formulating PSR mod-
els.  

2) In existing PSR studies, the emphasis is laid on the planning 
and optimization of universal PSR solutions that assume the 
availability of most transmission/distribution facilities and do 
not distinguish the characteristics of different blackout cases 
(e.g., reasons that caused the blackouts and potential threats 
to the success of PSR). In this paper, these studies are cate-
gorized as case-insensitive because their PSR solutions can-
not be adjusted with respect to specific blackout cases, espe-
cially those related to severe weather. In cases of weather-
related blackouts, existing case-insensitive PSR solutions 
might lead to the restoration of lines and substations that suf-
fer from faults or severe weather, which introduces excessive 
risks to the PSR and threatens the success of NBSU startup 
and restoration network formulation.  

3) The positive role of renewable energy sources (RESs) in ac-
celerating the PSR process has not been explored in depth. 
The fast-growing capacity and black-start capability make it 
possible for RESs to act as black-start units (BSUs) and con-
tribute to the PSR [19]-[21]. Meanwhile, the uncertainty of 
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RESs will introduce great difficulties in planning the PSR so-
lutions, especially for existing case-insensitive PSR models. 
On the one hand, uncertainty modeling methods such as sto-
chastic optimization significantly boost the computational 
burden. On the other hand, the generation outputs of RESs 
may deviate significantly from their schedules because the 
case-insensitive PSR solutions are generated way ahead of 
the occurrence of the actual blackout, meaning that existing 
case-insensitive PSR models with RESs may result in over-
optimistic or over-pessimistic solutions.  

B.  Proposed Approaches 

To tackle these weaknesses, this paper attempts to propose a 
case-sensitive PSR strategy that not only integrates the startup se-
quence optimization of NBSUs and the formulation of restoration 
networks but also alleviates unnecessary risks introduced by re-
storing devices that suffer from faults or severe weather. In com-
parison to existing case-insensitive PSR studies, the case-sensi-
tivity is defined as the capability to automatically generate PSR 
solutions considering the characteristics of specific blackout cases 
including fault information, weather influences, etc. The case-
sensitive PSR model developed here also accommodates the inte-
gration of RESs, whose uncertainty factors can be well monitored 
through short-term forecasts that fit the proposed case-sensitive 
context. Unlike existing PSR planning models that optimize PSR 
strategies with simulated blackout cases, the proposed case-sen-
sitive PSR model generate PSR solutions soon after the occur-
rence of a major outage to support system operators in decision-
making with respect to the characteristics of the specific blackout.  

To achieve this, three major obstacles are addressed. The first 
is to build a connection between NBSU startup and network res-
toration. The key variable in the first stage is the startup timing 
information of NBSUs, while the second stage aims to optimize 
the on/off statuses of transmission lines/substations. Therefore, a 
reasonable connection must be found between NBSU startup and 
network restoration, and this connection should be modeled 
properly so that the mathematical models of these two stages can 
be integrated. The second is to properly assess the availability of 
transmission equipment to alleviate the restoration of risky 
devices, and further integrate the availability assessment results 
into the PSR model. In addition to the consideration of specific 
blackout cases, a desirable case-sensitive PSR solution should be 
made available to system operators as fast as possible after the 
occurrence of the blackouts to minimize the negative influences 
of blackouts. Hence, the third obstacle is to effectively solve the 
PSR model so that the system operators are able to make case-
sensitive decisions after the blackout occurs. Besides, enhancing 
computational efficiency also greatly eliminates the negative im-
pacts of RES generation uncertainties since the short-term RES 
generation forecasts are more accurate compared to long-term 
ones.  

In this paper, the connection between NBSU startup and net-
work restoration is constructed based on graph theory, and the 
power flow constraints of the dynamic restoration network are lin-
earized and integrated into the PSR model to guarantee the feasi-
bility of optimized PSR solutions. To relieve the computational 
burden of the proposed PSR model and effectively utilize the 
short-term RES generation forecasts, a reformulation model is de-
veloped. The availability of transmission facilities will be com-
prehensively assessed by consulting multiple data sources, in-
cluding historical operating records, fault diagnosis results, and 
geography-related weather conditions. The assessment indices 
can reflect the success rate of restoring certain lines/substations 
with respect to the specific blackout cases.  

C.  Contributions and Paper Organization 

The contributions of this paper are summarized as follows.  
1. The availability of power equipment after blackouts is de-

fined, with a special emphasis laid on weather-related black-
outs. A novel comprehensive availability assessment method 
is proposed to evaluate the success rate of restoration opera-
tion based on post-blackout data. The available power gener-
ation of RESs is also integrated into the availability assess-
ment module. Instead of introducing complex uncertainty 
modeling, the short-term RES forecasts are valid within the 
proposed case-sensitive PSR context. 

2. A novel integrated PSR model (referred to as the full model) 
is proposed to overcome the research lap in coordinating the 
startup sequence optimization of NBSUs and the formulation 
of a restoration backbone network. As such, the proposed 
PSR model provides holistic PSR solutions that cannot be de-
livered by existing literature to date.  

3. A novel reformulated model is developed to simplify the 
time-consuming power flow constraints. The reformulated 
model can boost the PSR model solution process to make 
sure that system operators are able to quickly make case-sen-
sitive decisions after blackouts without violating power sys-
tem operating constraints. The assessed availability is also 
properly integrated into both the full and reformulated mod-
els so that case-sensitive PSR solutions can be obtained. 

The remainder of the paper is organized as follows. The frame-
work of the proposed case-sensitive PSR strategy is described in 
Section II. Section III discusses the availability assessment of 
transmission equipment. Section IV proposes the full PSR model 
that integrates the startup of NBSUs, network reconfiguration, 
and power flow constraints. To relieve the computational burden, 
a novel reformulated model is also developed in Section IV. Sec-
tion V integrates availability assessment into the proposed PSR 
models. The effectiveness of proposed PSR models is validated 
through case studies in Section VI. Finally, conclusions are drawn 
in Section VII. 

II.  PROBLEM OVERVIEW  

The main principle of PSR is to recover power supply to cus-
tomers as fast as possible to reduce the negative influences of 
power outages. To recover from a blackout, power system opera-
tors are required to arrange the cranking of generating units and 
energize a backbone network to stabilize the fundamental restored 
system, which is also the emphasis of this paper. This process is 
demonstrated in Fig. 1(a). In Fig. 1(a), three NBSUs with priori-
ties ‘1’>’2’>’3’ will be restored by the BSU denoted by ‘B’. More 
transmission buses/lines and power loads will have faster access 
to the power supply after the restored system becomes strong 
enough.  
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Fig. 1. Diagram of PSR process: (a) case-insensitive PSR that does not integrate 

NBSU startup and network configuration; (b) proposed case-sensitive PSR. 
 

Although power companies generally have generalized PSR 
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plans to deal with imaginary blackout scenarios, the feasibility of 
those case-insensitive plans cannot be guaranteed, especially in 
cases of extreme events. Take the illustration in Fig. 1(a) as an 
example, if some cranking paths to the NBSUs are damaged (i.e., 
lines with lightening signs), the restoration plan denoted by solid 
lines in Fig. 1(a) becomes infeasible. Thus, the desired restoration 
plan should integrate the NBSU startup and network configura-
tion to ensure the feasibility and case sensitivity, as shown in Fig. 
1(b).  

To achieve case sensitivity in PSR shown in Fig. 1(b), the sys-
tem operators shall optimize the restoration strategies after the oc-
currence of a blackout. After gathering necessary information re-
garding the cause and impact of the power outage, the system op-
erator will evaluate available resources and construct a PSR solu-
tion that corresponds to the characteristics of the specific blackout 
case. A flowchart illustrating the proposed PSR process is shown 
in Fig. 2. Note that all the modules in Fig. 2 are within the scope 
of the power system operator. In addition to the mathematical 
models to optimize PSR solutions, the key to enabling the case 
sensitivity is the availability assessment module in Fig. 2. In this 
paper, the availability of a transmission component is defined as 
its success rate to be energized after an outage (e.g., energizing 
transmission lines and substations). The evaluation of availability 
is discussed in detail in Section III.  
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blackout data

Comprehensive availability 

assessment

(Section III)

Optimize PSR solutions based 

on selected models

(Sections IV and V)

Proceed with restoration 

operations

 
Fig. 2. Flowchart of the proposed PSR method.  

III.  COMPREHENSIVE ASSESSMENT OF POWER EQUIPMENT AND 

RES GENERATION AVAILABILITY 

The transmission/distribution facilities, e.g., substations and 
transmission lines, are generally assumed to be available in con-
ventional PSR studies. However, the restoration of fault facilities 
can introduce significant disturbances that are intolerable for the 
newly restored system. Thus, the availability of power equipment 
in outage areas should be comprehensively evaluated so that the 
restoration of vulnerable and risky facilities can be alleviated. In 
addition, the available power generation of RESs is also included 
in the proposed availability assessment module. 

A flowchart of the proposed availability assessment module is 
shown in Fig. 3. Both offline and online assessments are em-
ployed and integrated to assess the availability of transmission fa-
cilities and the available generation capacity of RESs. Further-
more, it is assumed that both offline and online data are accessible 
to the system operators after the blackout.  

A.  Offline Reliability Assessment Module 

The offline reliability assessment module aims to evaluate the 

statistical reliabilities of transmission equipment based on histor-

ical operating records derived from an offline database. In this 

paper, the reliability of power equipment is represented by the 

forced outage rate (FOR), which is widely used in power system 

reliability studies. Let 1 − 𝑟𝑥  denote the FOR of equipment x. The 

calculation of FOR can be found in [22] and [23], the evaluated 

FOR of outage equipment is assumed to be available to the system 

operator when a blackout occurs. 𝑟𝑥 is the output index for this 

offline availability assessment module and is case-insensitive. 
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Fig. 3. Flowchart of availability assessment module. 

 

B.  Online Fault Diagnosis Module 

Generally, faults are the direct cause of power system black-
outs. When faults occur, the protective relays will function to pro-
tect the security of power system facilities based on alarm signals. 
Facilities that have suffered from failures are considered more 
vulnerable and should not be prioritized during restoration. How-
ever, a single fault might result in numerous alarm signals and the 
tripping of multiple circuit breakers. Modern fault diagnosis 
methodologies are able to identify the fault devices based on 
alarm information derived from an online database and prede-
fined logics of protection relays. An analytic diagnosis model pro-
posed in [24] and [25] is adopted to identify fault facilities, which 
is briefly described as follows:  

Let 𝐇𝐱 = {ℎ𝑥|𝑥 ∈ Ω𝑋} denote a fault hypothesis of devices in 

the outage area, where ℎ𝑥 = 1 and 0 correspond to the faulted and 

normal states of device x, respectively. The fault diagnosis model 

aims to find the hypothesis that is the most consistent with the 

operation logic of received alarms. In general, the fault diagnosis 

can be expressed by the following model:  

Min  ∑ ∑ |𝑑𝑎 − 𝑑𝑎
ℎ𝑥|𝑎∈ΩA(𝑥)𝑥∈ΩX

                  (1) 

Equation (1) minimizes the inconsistency between the fault 

hypothesis and received alarms. 𝑑𝑎
ℎ𝑥  denotes the expected set of 

alarms if hypothesis ℎ𝑥 is true, and can be derived from the logic 

reasoning of installed protective relays.  

The adopted analytic fault diagnosis model can be efficiently 

solved by a Tabu search algorithm, which generally takes a few 

seconds to obtain the most reasonable hypotheses and identify 

faulted facilities [25]. Typically, the faulted devices should not be 

restored for security concerns, but some devices might suffer 

from temporary faults or disturbances and are actually available 

for restoration. Thus, the identified faulted devices are given 

lower priorities in the PSR process based on the risk preference 

of system operator. For example, a weighting factor 𝜔 ∈ [0,1] 
can be adopted to represent the preferences of system operators: 

𝑓𝑥 = 1 − 𝜔ℎ𝑥                              (2) 

where 𝑓𝑥 is the output index for fault diagnosis and can be calcu-

lated based on the optimized fault hypothesis ℎ𝑥. If x is identified 

as a faulted device (ℎ𝑥 = 1), 𝑓𝑥 equals 1 − 𝜔. Otherwise, x is not 

considered to be faulted and the corresponding availability 𝑓𝑥 
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equals 1. By increasing (decreasing) the value of 𝜔, a more risk-

averse (risk-seeking) 𝑓𝑥 will be obtained from (2) to accommo-

date the risk preferences of the system operator.  

C.  Online Survivability Prediction Module 

The operation of power system facilities is influenced by fac-
tors such as temperature and humidity, and the impacts of these 
environmental factors should be considered more seriously in 
cases of weather-related blackouts. Facilities that have suffered or 
will suffer from severe weather are exposed to higher risks of mal-
function, which should be properly considered during PSR.  

To evaluate the survivability of power equipment encountering 

a severe weather event, a number of environmental factors can be 

identified as key factors according to the features of the specific 

weather event concerned. For example, wind speed and freezing 

precipitation are chosen as key factors in cases of ice storms or 

freezing rain. For any facility x and a given environmental factor 

y, x is believed to withstand y if the value of the environmental 

factor (denoted as 𝑣𝑥,𝑦) is within the designed standard of x, de-

noted as 𝑣𝑥,𝑦
std. If 𝑣𝑥,𝑦 is beyond 𝑣𝑥,𝑦

std, then x becomes vulnerable 

to y. As a commonly used method in extreme value analysis and 

a special case of generalized Pareto distribution [26], the cumula-

tive distribution function of the exponential distribution shown in 

(3) is adopted to evaluate the survivability of device x against en-

vironmental factor y (denoted as 𝑠𝑥,𝑦):  

𝑠𝑥,𝑦 = {
1               , 𝑣𝑥,𝑦 ≤ 𝑣𝑥,𝑦

std

𝑒−𝜀𝑥,𝑦(𝑣𝑥,𝑦/𝑣𝑥,𝑦
std−1), 𝑣𝑥,𝑦 > 𝑣𝑥,𝑦

std
               (3) 

where 𝑠𝑥,𝑦 decreases exponentially as 𝑣𝑥,𝑦 grows larger than 𝑣𝑥,𝑦
std. 

In practice, 𝑣𝑥,𝑦 is measured and forecasted by related authorities 

and is assumed to be accessible to system operators. The parame-

ter 𝜀𝑥,𝑦 can be obtained by introducing an additional set of data. 

For example, the survivability of x in case of an extreme condition 

𝑣𝑥,𝑦
∗  is estimated as 𝑠𝑥,𝑦

∗ , then 𝜀𝑥,𝑦 is calculated using  

𝜀𝑥,𝑦 = −
𝑣𝑥,𝑦

std

𝑣𝑥,𝑦
∗ −𝑣𝑥,𝑦

std ln (𝑠𝑥,𝑦
∗ )                     (4) 

Note that the data set {𝑣𝑥,𝑦
∗ , 𝑠𝑥,𝑦

∗ } also reflects the risk prefer-

ences of system operators in terms of equipment survivability 

against extreme weather. For example, if 𝑠𝑥,𝑦
∗  is approximated to 

be 1% (0.1%) at 𝑣𝑥,𝑦
∗ = 2𝑣𝑥,𝑦

std, then 𝜀𝑥,𝑦  equals 4.6 (6.9). Thus, 

higher 𝜀𝑥,𝑦  indicates that the system operator tends to be more 

conservative in estimating the equipment survivability.  

As a result, the availability of x can be derived from the pre-

dicted survivability of x influenced by different environmental 

factors, which is given by  

𝑠𝑥 = ∏ 𝑠𝑥,𝑦𝑦∈ΩY
                              (5) 

D.  Availability of RES Power Generation 

In conventional PSR planning problems, stochastic optimiza-
tion methods are widely employed to generate robust and con-
servative PSR solutions with RESs long before a blackout hap-
pens [20]. Another solution is to introduce energy storage units as 
a complementary resource for the intermittent RESs in the PSR 
process, the feasibility of which is validated by our previous work 
[21] and [27] and will not be further discussed in this paper. In 
conclusion, RESs are integrated into restoration models to gener-
ate case-insensitive solutions in existing research.  

In the proposed case-sensitive PSR context, the restoration 
strategies are optimized after the blackout occurs. Thus, the short-
term RES forecasts that usually last for a few hours but have high 
accuracy can be employed by the system operators, as shown in 

Fig. 3. Since the short-term RES forecast technique is not the con-
tribution of this paper and has been extensively studied in existing 
literature such as [28]. In this paper, it is assumed that the short-
term RES generation forecasts are available to system operators. 
The following constraints are employed to constrain the power 
output of RESs during restoration.  

0 ≤ 𝑃𝑖,𝑡
G ≤ 𝜂𝑖𝑃𝑖,𝑡

G,est
                              (6) 

𝑄𝑖,𝑡
G ≤ tan(cos−1 𝜛𝑖

lim) 𝑃𝑖,𝑡
G                        (7) 

𝑄𝑖,𝑡
G ≥ − tan(cos−1 𝜛𝑖

lim) 𝑃𝑖,𝑡
G                      (8) 

The active power of RES is constrained by (6), the reserve 
margin 𝜂𝑖 is introduced to accommodate possible forecast errors 
of RES generation outputs. Constraints (7) and (8) are derived 
from [29] to represent the reactive power output limits of RESs. 

Note that the short-term forecast errors are ignored due to the 
following two considerations:  

(i) The RES generation forecast error generally grows consid-
erably with the increase in forecast time length [30]. The 
short-term forecast with a forecast timescale of a few hours 
has the highest forecast accuracy (e.g., the typical forecast 
error of a modern wind farm is less than 10% in 12 hours 
ahead [31]). Thus, it is reasonable to ignore the short-term 
forecast error. Risk-averse operators can also utilize more 
conservative forecasts (e.g., set 𝜂𝑖 = 0.9  to accommodate 
10% forecast errors) at their own preference. 

(ii) Acting as BSUs, the key role of RESs is to provide cranking 
power to NBSUs, especially in the first few hours after the 
blackout when the active power generation capacity is 
scarce. As mentioned above, the forecast error generally 
grows as the increase in forecast time length, which indi-
cates that the error of short-term RES generation forecasts 
may gradually increase as the PSR process proceeds. None-
theless, the restoration and ramping of NBSUs will take the 
place of RESs to produce active power. Thus, the influence 
of larger RES forecast errors in the latter stage of a PSR pro-
cess is not significant. 

IV.  INTEGRATED POWER SYSTEM RESTORATION MODEL AND ITS 

REFORMULATION 

A.  Integrated Power System Restoration Model – Full Model 

The first two stages of the PSR process normally share a com-

mon target, i.e., maximizing the net active power generation ca-

pacity. The objective function of the PSR model can be described 

as: 

Max  ∑ ∑ (𝑃𝑖,𝑡
G − 𝑃𝑖,𝑡

L )𝑡∈ΩT𝑖∈ΩN
                         (9) 

The net active power generation capacity profile of a typical 

NBSU is described in Fig. 4(a), which can be decomposed into a 

power output curve and an auxiliary power consumption curve as 

illustrated in Figs. 4(b) and 4(c), respectively.  

The active power generation capacity is decided by the gener-

ator startup sequences, and can be modeled as follows:  

0 ≤ 𝑃𝑖,𝑡
G ≤ 𝛽𝑖,𝑡(𝑃𝑖

set + 𝑃𝑖
L)                       (10) 

𝛽𝑖,𝑡𝑄𝑖
G,min ≤ 𝑄𝑖,𝑡

G ≤ 𝛽𝑖,𝑡𝑄𝑖
G,max

                  (11) 

𝑃𝑖,𝑡
L − 𝛼𝑖,𝑡𝑃𝑖

L = 0  , 𝑄𝑖,𝑡
L − 𝛼𝑖,𝑡𝑄𝑖

L = 0              (12) 

𝑃𝑖,𝑡
G − 𝑃𝑖,𝑡−1

G −𝛽𝑖,𝑡𝑃𝑖
rp

≤ 0                        (13) 

𝜗𝑖 − ∑ (1 − 𝛼𝑖,𝑡)𝑡∈ΩT
= 0                       (14) 

𝜗𝑖
min ≤ 𝜗𝑖 ≤ 𝜗𝑖

max                            (15) 

𝜗𝑖 + 𝜏𝑖
st + 1 − ∑ (1 − 𝛽𝑖,𝑡)𝑡∈ΩT

= 0                (16) 

𝛼𝑖,𝑡−1 − 𝛼𝑖,𝑡 ≤ 0 , 𝛽𝑖,𝑡−1 − 𝛽𝑖,𝑡 ≤ 0                 (17) 

𝛼𝑖,𝑡 , 𝛽𝑖,𝑡 ∈ {0,1}                               (18) 

Equations (10)-(12) constrain the nodal active/reactive power 
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generation and consumption, (13) constrains the ramping process 

of the NBSUs, (14) calculates the restoration time of NBSUs and 

is further constrained by the corresponding minimum and maxi-

mum restoration intervals in (15), the time that NBSUs start ramp-

ing is calculated in (16), and the binary variables 𝛼𝑖,𝑡 and 𝛽𝑖,𝑡 are 

constrained by (17) and (18). Note that 𝑃𝑖,𝑡
G  denotes the available 

power generation capacity that represents the maximum power 

output based on the restoration status, not the actual active power 

output. The actual power generation output also depends on the 

coordination of load restoration, which will be discussed in the 

power flow constraints.  
 

(a)

(b)

(c)

0

0

0

Time

Capacity

Time

Time

Capacity

Capacity
𝜗𝑖 + 𝜏𝑖

st

𝜗𝑖 + 𝜏𝑖
st + 𝜏𝑖

rp

𝜗𝑖 + 𝜏𝑖
st + 𝜏𝑖

rp

𝜗 

𝜗𝑖 + 𝜏𝑖
st

𝜗 

𝜗 

𝑃𝑖
set

𝑃𝑖
set + 𝑃𝑖

L

𝑃𝑖
L

−𝑃𝑖
L

 
Fig. 4. Typical generation capacity curve of an NBSU: (a) net generation capacity 

(𝑃𝑖,𝑡
G − 𝑃𝑖,𝑡

L ), (b) output capacity (𝑃𝑖,𝑡
G ), and (c) startup and auxiliary power con-

sumption (𝑃𝑖,𝑡
L ). 

 

The restoration timestamp 𝜗𝑖 is the most important variable in 

the NBSU startup sequence modeled in (10)-(18). At the same 

time, 𝜗𝑖 is also influenced by the cranking paths and the formation 

of the restoration network. Because each blackout bus can be re-

stored from one of its adjacent buses by energizing the transmis-

sion line connecting them, constraints (19)-(25) are proposed to 

build the connections between the restoration network and 𝜗𝑖.  

𝜉𝑖𝑗 + 𝜉𝑗𝑖 ≤ 1                                 (19) 

∑ 𝜉𝑗𝑖𝑖𝑗∈ΩL
− 𝜇𝑖 = 0                             (20) 

0 ≤ 𝜇𝑖 ≤ 1                                   (21) 

𝑀(1 − 𝜇𝑖) − 𝜗𝑖 ≤ 0                          (22) 

𝜗𝑖 − 𝜗𝑗 + ∆𝜏𝑖𝑗 − 𝑀(1 − 𝜉𝑖𝑗) ≤ 0                 (23) 

𝜗𝑗 − 𝜗𝑖 + ∆𝜏𝑖𝑗 − 𝑀(1 − 𝜉𝑗𝑖) ≤ 0                 (24) 

𝜉𝑖𝑗 ∈ {0,1}                                (25) 

where M is a sufficiently large positive number. Equation (19) 

constrains the restoration status and direction of transmission 

lines, (20) and (21) constrain each blackout bus to be restored by 

at most one available transmission line, (22) assigns large positive 

values for restoration time intervals of non-restored buses, and 

(23) and (24) calculate the restoration time intervals based on res-

toration directions and the required time of restoration operations, 

respectively. 

Moreover, power flow constraints should be taken into consid-

eration to achieve a feasible PSR solution. An ancillary variable 

𝑃𝑖,𝑡
𝐺∗ is introduced in the power flow equations to denote the active 

power generation of generating units. The linearized AC power 

flow proposed in [32] is adopted to calculate the power flows dur-

ing the restoration process, and is described as follows to accom-

modate the time-varying network topologies during the PSR.  

𝑃𝑖,𝑡
G∗ − 𝑃𝑖,𝑡

G ≤ 0                               (26) 

𝑃𝑖,𝑡 = 𝑃𝑖,𝑡
G∗ − 𝑃𝑖,𝑡

L = ∑ 𝑃𝑖𝑗,𝑡𝑖𝑗∈ΩL
                     (27) 

𝑄𝑖,𝑡 = 𝑄𝑖,𝑡
G − 𝑄𝑖,𝑡

L = ∑ 𝑄𝑖𝑗,𝑡𝑖𝑗∈ΩL
                     (28) 

𝑃𝑖𝑗,𝑡 + 𝜑𝑖𝑗,𝑡
p

= 𝑔𝑖𝑗(𝑉𝑖,𝑡 − 𝑉𝑗,𝑡) − 𝑏𝑖𝑗(𝜃𝑖,𝑡 − 𝜃𝑗,𝑡)            (29) 

𝑄𝑖𝑗,𝑡 + 𝜑𝑖𝑗,𝑡
q

= −𝑏𝑖𝑗(𝑉𝑖,𝑡 − 𝑉𝑗,𝑡) − 𝑔𝑖𝑗(𝜃𝑖,𝑡 − 𝜃𝑗,𝑡) −
𝑏𝑖𝑗

lc

2
𝑉𝑖,𝑡 (30) 

−(1 − 𝛾𝑖𝑗,𝑡)𝑀 ≤ 𝜑𝑖𝑗,𝑡
p

≤ (1 − 𝛾𝑖𝑗,𝑡)𝑀                   (31) 

−(1 − 𝛾𝑖𝑗,𝑡)𝑀 ≤ 𝜑𝑖𝑗,𝑡
q

≤ (1 − 𝛾𝑖𝑗,𝑡)𝑀                  (32) 

−𝛾𝑖𝑗,𝑡𝑃𝑖𝑗
max ≤ 𝑃𝑖𝑗,𝑡 ≤ 𝛾𝑖𝑗,𝑡𝑃𝑖𝑗

max                         (33) 

−𝛾𝑖𝑗,𝑡𝑄𝑖𝑗
max ≤ 𝑄𝑖𝑗,𝑡 ≤ 𝛾𝑖𝑗,𝑡𝑄𝑖𝑗

max                         (34) 

𝛾𝑖𝑗,𝑡 − (𝜉𝑖𝑗 + 𝜉𝑗𝑖) ≤ 0                               (35) 

𝛾𝑖𝑗,𝑡 − 𝛼𝑖,𝑡 ≤ 0 , 𝛾𝑖𝑗,𝑡 − 𝛼𝑗,𝑡 ≤ 0                      (36) 

𝛼𝑗,𝑡 + 𝛼𝑖,𝑡 + (𝜉𝑖𝑗 + 𝜉𝑗𝑖) − 2 − 𝛾𝑖𝑗,𝑡 ≤ 0                  (37) 

𝑉𝑖
min ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑖

max                             (38) 

𝛾𝑖𝑗,𝑡 ∈ {0,1}                                      (39) 

Equation (26) constrains the ancillary variable 𝑃𝑖,𝑡
G∗ so it does 

not exceed the generation capacity 𝑃𝑖,𝑡
G . For RESs and conven-

tional BSUs, 𝑃𝑖,𝑡
G  respectively denote the forecasted generation 

capacity at time slot t and rating capacity. For NBSUs, 𝑃𝑖,𝑡
G  is con-

strained by (10)-(13). The nodal power balance equations are ex-

pressed by (27) and (28). Equations (29) and (30) represent line-

arized power flow equations considering nodal voltage magni-

tudes and phase angles, (31) and (32) relax branch flow equations 

(29) and (30) by relaxing the ancillary variables 𝜑𝑖𝑗,𝑡
p

 and 𝜑𝑖𝑗,𝑡
q

 if 

the branch is not restored at time slot t (i.e., 𝛾𝑖𝑗,𝑡 = 0), respec-

tively. Equations (33) and (34) constrain the active and reactive 

branch flow based on the capacity and on/off status of power lines, 

respectively. Equations (35)-(37) constrain the binary variable 

𝛾𝑖𝑗,𝑡, which indicates the on-off status of transmission line ij at 

time slot t (note that, based on (35)-(37), 𝛾𝑖𝑗,𝑡 cannot be positive 

at time slot t unless the corresponding line ij and both terminal 

buses i and j are restored). Equation (38) constrains the nodal volt-

age magnitudes during the PSR process.  

Constraints (26)-(39) are simplified from nonlinear AC power 

flow constraints. The effectiveness and accuracy of the adopted 

linearized AC power flow have been extensively investigated in 

[33] and thus will not be further discussed herein. Note that the 

linearized AC power flow (26)-(39) does not take the power loss 

into account. This is because the restored power loads during the 

first two PSR stages, i.e., the start-up of NBSUs and the formula-

tion of restoration networks, are generally very small. Moreover, 

PSR studies the restoration of high-voltage transmission systems 

whose power loss is small even under nominal operating condi-

tions. Thus, limited load consumption at these two PSR stages 

leads to a low level of power loss, and it is feasible to implement 

the lossless linearized AC power flow in the proposed PSR study. 

In summary, the proposed integrated PSR model consists of 

the objective function (9) and constraints (10)-(39), and is de-

noted as the full model (FM). 

B.  Reformulated Model 

The FM developed in the previous subsection is comprehen-

sive as it integrates all the steady-state constraints in the generator 

startup and network reconfiguration stages. At the same time, 

solving the FM could be time-consuming. If it takes too long to 

solve the PSR model, the short-term RES forecasts discussed in 

Section III-D become out of date and errors cannot be neglected. 

To effectively utilize the short-term forecasts of RESs and timely 

support system operators make case-sensitive PSR decisions after 

a blackout, it is necessary to explore the possibility to reformulate 

the FM model and accelerate the solution speed.  

The power flow constraints proposed in (26)-(39) are complex 

because the topology of the restored system is dynamic and varies 
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with time. The power flow constraints are employed to guarantee 

that: 1) for any NBSU to be cranked, there exists an energized 

transmission path with sufficient capacity so that the required 

cranking power can be delivered, and 2) the active and reactive 

power of each restoration island can be balanced throughout the 

entire PSR process so that the operating constraints of power sys-

tems can be accommodated. The task of constructing a reformu-

lated model (RM) is to simplify constraints (26)-(39) while main-

taining the abovementioned two functions. 

To simplify constraints (26)-(39), it is assumed that the active 

power loads are generally very small at the beginning of a PSR 

process and thus the transmission lines and transformers are 

lightly loaded. This assumption is valid and widely adopted in ex-

isting works such as [9], [17], [21]. Under this assumption, the 

major concern associated with constraints (26)-(39) is the exces-

sive capacitive reactive power consumption caused by the ener-

gizing of light loaded transmission lines. The worst-case scenario 

is identified where no power loads are restored, and the restora-

tion of no-load lines will result in the largest amount of capacitive 

reactive power consumption. As a result, if the PSR solution is 

able to balance the active and reactive power in each restoration 

island under the worst-case scenario, the power flow constraints 

(26)-(39) in the FM should be accommodated as well. Here, the 

power flow constraints (26)-(39) is modified to (40)-(45), where 

the active and reactive power balances at each restoration island 

throughout the PSR process are guaranteed. 

𝑃𝑖,𝑡 − ∑ 𝑃𝑖𝑗,𝑡𝑖𝑗∈ΩL
= 0                      (40) 

𝑄𝑖,𝑡 + ∆𝑄𝑖,𝑡
lc − ∑ 𝑄𝑖𝑗,𝑡𝑖𝑗∈ΩL

= 0                  (41) 

(𝛼𝑖,𝑡 + 𝜉𝑖𝑗 − 1)𝑏𝑖𝑗
lc(𝑉𝑖

max)2 + ∆𝑄𝑖,𝑡
lc ≤ 0         (42) 

∆𝑄𝑖,𝑡
lc ≤ 0                                (43) 

−𝜉𝑖𝑗𝑃𝑖𝑗
max ≤ 𝑃𝑖𝑗,𝑡 ≤ 𝜉𝑖𝑗𝑃𝑖𝑗

max                 (44) 

−𝜉𝑖𝑗𝑄𝑖𝑗
max ≤ 𝑄𝑖𝑗,𝑡 ≤ 𝜉𝑖𝑗𝑄𝑖𝑗

max                  (45) 

Equations (40) and (41) are respectively derived from (27) and 

(28) to balance the nodal active and reactive power injection. A 

new variable ∆𝑄𝑖,𝑡
lc  denoting the reactive power associated with 

the charging of light loaded transmission lines is introduced to 

(41). Equations (42) and (43) calculate the reactive power of 

transmission line charging capacitors (∆𝑄𝑖,𝑡
lc ) based on restoration 

operations, and (44) and (45) constrain the line flows with respect 

to the restoration decisions, respectively. 

Note that special emphasis is given to the balance of reactive 

power in (40)-(45). The introduced ∆𝑄𝑖,𝑡
lc  represents the increment 

of reactive power due to the restoration of transmission lines. For 

transmission lines, 𝑏𝑖𝑗 ≫ 𝑏𝑖𝑗
lc generally holds. Thus, the increment 

of reactive power injection ∆𝑄𝑖
lc at bus i due to the restoration of 

line ij can be approximated by (46). 

∆𝑄𝑖
lc = −

1

2
𝑏𝑖𝑗

lc|𝑉𝑖,𝑡|
2

−
1

2
𝑏𝑖𝑗

lc
𝑔𝑖𝑗

2 + 𝑏𝑖𝑗(𝑏𝑖𝑗 + 𝑏𝑖𝑗
lc/2)

𝑔𝑖𝑗
2 + (𝑏𝑖𝑗 + 𝑏𝑖𝑗

lc/2)
2 |𝑉𝑖,𝑡|

2
 

          ≈ −𝑏𝑖𝑗
lc|𝑉𝑖,𝑡|

2
≥ −𝑏𝑖𝑗

𝑙𝑐(𝑉𝑖
max)2                                   (46) 

The approximation (46) is adopted to formulate (42). Because 

(46) overestimates the reactive power increment caused by resto-

ration operations, the feasible solution based on reformulated con-

straints (40)-(45) will always satisfy the original constraints (26)-

(39).  

Furthermore, the original generator startup constraints (10)-

(18) utilize two sets of binary variables, 𝛼𝑖,𝑡 and 𝛽𝑖,𝑡, to represent 

the startup and ramping status of NBSUs. Because 𝜏𝑖
st is a con-

stant value for any NBSU, either 𝛼𝑖,𝑡 or 𝛽𝑖,𝑡 can be relaxed as a 

continuous variable. The following reformulations (47) and (48) 

are adopted to modify (16) and (17) so that 𝛼𝑖,𝑡 can be relaxed by 

a continuous variable �̅�𝑖,𝑡:  

𝜏𝑖
st + 1 = ∑ �̅�𝑖,𝑡𝑘=𝑡−𝜏𝑖

st−1 − ∑ 𝛽𝑖,𝑘𝑘=𝑡               (47) 

𝛽𝑖,𝑡 ≤ �̅�𝑖,𝑡 ≤ 1                               (48) 

where (47) and (48) together guarantee the continuous variable 

�̅�𝑖,𝑡 has exactly the same value as 𝛼𝑖,𝑡 based on constraints (16) 

and (17). By doing so, the number of binary variables in con-

straints (10)-(18) is reduced by half. 

V.  INTEGRATING AVAILABILITY ASSESSMENT AND POWER 

SYSTEM RESTORATION MODELS 

The constraints of short-term RES forecasts (i.e., (6)-(8)) can 
directly apply to the mathematical models proposed in Section IV. 
On the other hand, the assessed availability of transmission com-
ponents consists of different modules that should be combined 
before integrating into the PSR models.  

Based on both offline and online assessments, the comprehen-
sive availability of a certain facility can be calculated by (49). The 
calculated 𝜓𝑥 is case sensitive because it integrates the online as-

sessment results 𝑓𝑥  and 𝑠𝑥  that are relevant to specific blackout 
cases. The integrated availability (represents the success rate) for 
restoring a set of facilities (denoted as ΩX′) can be further calcu-

lated by (50). 
𝜓𝑥 = 𝑟𝑥𝑓𝑥𝑠𝑥                                 (49) 

𝛹∑ 𝑥 = ∏ 𝜓𝑥𝑥∈ΩX′                            (50) 

Equation (50) can be further simplified to (51), where 𝜓𝑥
− and 

𝛹∑ 𝑥
−  are defined by 𝜓𝑥

− = 1 − 𝜓𝑥  and 𝛹∑ 𝑥
− = 1 − 𝛹∑ 𝑥 , respec-

tively. Because 𝜓𝑥 and Ψ∑ 𝑥 represent the success rate of restor-

ing one and a certain number of facilities, 𝜓𝑥
− and 𝛹∑ 𝑥

−  can be re-

garded as risk measures of the corresponding restoration opera-
tions. 

𝛹∑ 𝑥 = 1 − 𝛹∑ 𝑥
− ≈ 1 − ∑ 𝜓𝑥

−
𝑥∈ΩX′

               (51) 

The risk of restoring a blackout bus can be approximated as 
the cumulative risk of associated restoration operations using (51). 
For instance, to restore a blackout bus i from bus j, the risk of 
restoring line ij (𝜓𝑖𝑗

−) and bus i (𝜓𝑖
−) should be summed to esti-

mate the risk of this restoration operation. Similar to the calcula-
tion of restoration timing discussed in (19)-(25), the cumulative 
risk of restoring blackout buses can be obtained from (52)-(55).  

𝛹𝑖
− = 0 , ∀ ∉ ΩN                           (52) 

−𝛹𝑖
− ≤ 0                                  (53) 

𝛹𝑖
− − 𝛹𝑗

− + 𝜓𝑖𝑗
− + 𝜓𝑗

− − 𝑀(1 − 𝜉𝑖𝑗) ≤ 0         (54) 

𝛹𝑗
− − 𝛹𝑖

− + 𝜓𝑖𝑗
− + 𝜓𝑖

− − 𝑀(1 − 𝜉𝑗𝑖) ≤ 0        (55) 

Equation (52) assigns zero risks to buses in the non-blackout 
area, while the buses in the blackout area have non-negative risk 
measures according to (53). Equations (54) and (55) calculate the 
cumulative risk of restoring a certain blackout bus with respect to 
the direction of the restoration operation. If bus i is restored from 
bus j by energizing line ij, then the cumulative restoring risk of 
bus i (𝛹𝑖

−) equals the summation of cumulative risk of bus j (𝛹𝑗
−), 

𝜓𝑖𝑗
− , and 𝜓𝑖

−.  

As the availability assessments illustrate the success rate of 
restoration decisions, they should be integrated into the proposed 
FM and RM. The expectations of restored generation capacities 
will be adopted to replace original objective function (9) as shown 
in (56). However, the objective function (56) contains a bilinear 

term 𝛹𝑖
−(𝑃𝑖,𝑡

G − 𝑃𝑖,𝑡
L ), which will significantly increase the compu-

tational burden. In this paper, the parameter 𝑃𝑖
𝑠𝑒𝑡  is employed to 
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replace the variable 𝑃𝑖,𝑡
G − 𝑃𝑖,𝑡

L  in the bilinear term, and a non-neg-

ative risk factor 𝜋 is introduced to represent the risk preference of 
system operators. Thus, (56) can be reformulated as (57). 

Max  ∑ ∑ (1 − 𝛹𝑖
−)(𝑃𝑖,𝑡

G − 𝑃𝑖,𝑡
L )𝑡∈ΩT𝑖∈ΩN

              (56) 

Max  ∑ ∑ (𝑃𝑖,𝑡
G − 𝑃𝑖,𝑡

L ) − ∑ 𝜋𝛹𝑖
−

𝑖∈ΩN𝑡∈ΩT𝑖∈ΩN
𝑃𝑖

set         (57) 

By using modified objective function (57), the proposed PSR 

models, i.e., FM and RM, are categorized as MILP models. Table 

I summarizes and compares the characteristics of the proposed 

FM and RM. The number of binary variables is significantly re-

duced based on the proposed reformulation. Thus, RM is expected 

to be superior to the FM in terms of computational efficiency.  
 

TABLE I 
COMPARISON OF PROPOSED FULL PSR MODEL AND REFORMULATED MODEL 

 FM RM 

Objective (57) (57) 

Constraints 
(6)-(8), (10)-(39), 

(52)-(55) 

(6)-(8), (10)-(15), (19)-(25), 

(40)-(45), (47)-(48), (52)-(55) 

Number of binary 

variables 
2NBNT+2NL+NLNT NBNT+2NL 

VI.  CASE STUDIES 

A.  Test Systems Descriptions 

In this section, the following two test systems are employed to 
validate the effectiveness of the proposed PSR models: 

1. The standard IEEE 118-bus test system with 19 generating 
units, 118 buses, and 186 transmission lines [34].  

2. An actual power system in Guangzhou, China. This system 
contains 29 generating units, 162 buses, and 212 transmis-
sion lines [21].  

The proposed models are solved by GAMS/CPLEX solver on 

a desktop computer with an Intel i7-7700 processor and 12 GB 

RAM. The blackouts are assumed to occur at time t=0 min, the 

required restoration time ∆𝜏𝑖𝑗  for power lines and the length of 

the time slot are set to 10 min, and a total time span of 5 hours is 

considered (30 time slots in total). Each device in the outage area 

is assigned a randomly generated value ranging from 99 to 100% 

to represent the reliability (𝑟𝑥). Parameters 𝜋, 𝜔, and 𝜀𝑥,𝑦 are set 

to 5, 0.8, and 4.6, respectively. The assigned values of 𝜔, and 𝜀𝑥,𝑦 

are discussed in Section III, and the influences of 𝜋  will be 

demonstrated in the case studies. 

B.  A Regional Blackout in the IEEE 118-bus System  

A regional blackout is introduced to the IEEE 118 bus system 
with the non-outage area, severe weather-affected area (lightly & 
dark shaded), and initial fault area (dark shaded) as illustrated in 
Fig. 5. Four connection lines, namely 15-33, 19-34, 23-24, and 
30-38, connect the non-outage area to the blackout area. In addi-
tion to the proposed models, a mathematical programming-based 
method B-1 [8] and a graph theory-based method B-2 [12] are 
selected as benchmarks. Lines 69-75 and 69-77 are assumed to be 

diagnosed as actual fault (fault signs in Fig. 5) lines and the 𝑣𝑥,𝑦 

of facilities in the severe weather-affected area are randomly as-

signed values ranging from (𝑣𝑥,𝑦
std,1.25𝑣𝑥,𝑦

std]. The following cases 

are simulated: 
Case I: PSR without availability assessment. 
Case II: PSR with availability assessment. 
The optimized PSR solutions in these two cases are indicated 

by solid lines in Fig. 5. The proposed FM, RM, and benchmarks 
B-1 and B-2 result in the same PSR solution in Case I, as demon-
strated by solid lines in Fig. 5(a). With availability assessment 
module discussed in Section III integrated into the proposed PSR 

model, the optimized PSR solution is demonstrated by Fig. 5(b). 
Because availability assessment cannot be integrated into models 
in B-1 and B-2, their optimized PSR solutions remain the same as 
shown in Fig. 5(a). The CPU times of FM and RM to solve Case 
I (Case II) are 20160.7 s and 826.2 s (19811.4 s and 861.6 s), re-
spectively. 

In Fig. 5(a), two parallel restoration paths are generated start-
ing from lines 23-24 and 30-38. But, the absence of an availability 
assessment leads to the restoration of faulted line 69-77 in Fig. 
5(a). In Fig. 5(b), in which the availability assessment is consid-
ered, three parallel restoration paths are generated starting from 
lines 15-33, 19-34, and 30-38, and neither faulted lines are re-
stored. As can be observed from Fig. 5, the restoration of certain 
buses and lines in the severe weather-affected area are inevitable 
to crank the NBSUs at buses 46 and 49. Table II lists the restora-
tion results of buses and lines in the severe weather-affected area 
(lightly & dark shaded) of both Cases I and II. Note that only the 
differences in the results between Cases I and II are shown while 
the common parts are not shown. The average assessed availabil-
ity against severe weather (𝑠𝑥) of restored buses and lines in Case 
I (Case II) are 0.461 and 0.535 (0.469 and 0.750), respectively. 
With the proposed availability assessment taken into account, the 
devices (especially the transmission lines) selected to be restored 
in Case II generally have higher probabilities to withstand the 
negative impacts of severe weather. Thus, the integration of avail-
ability assessment into PSR models is very crucial to identify vul-
nerable devices and alleviate restoration risks, especially in cases 
of weather-related blackouts. 
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(b) 

Fig. 5. IEEE 118 bus test system and simulated regional blackout: (a) PSR without 

availability assessment (Case I), (b) PSR with availability assessment (Case II). 
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TABLE II 
DIFFERENCES IN PSR SOLUTIONS IN SEVERE WEATHER AFFECTED AREA 

BETWEEN CASES I AND II 

 Restored buses (𝑠𝑥) Restored lines (𝑠𝑥) 

Case I 
24 (0.549), 47 (0.398), 

70 (0.436) 

23-24 (0.387), 24-70 (0.858),  

69-70 (0.470), 46-47 (0.569),  

47-69 (0.486), 69-77 (0.441) 

Case II 43 (0.551), 45 (0.387) 

34-43 (0.982), 43-44 (0.323),  

44-45 (0.825), 45-46 (0.885),  

42-49 (0.734) 

 

TABLE III 

RESTORATION OF NBSU AT BUS 69 

Solution 
Restoration 

path 

Restoration 

time (min) 

Assessed 

risk Ψ69
−  

Actual success 

rate Ψ69 

Optimized 49-69 60 0.689 43.2% 

Alternative 
68-69 40 1.225 19.9% 

23-24-70-69 30 2.317 3.6% 

 

TABLE IV 

RESTORATION OF NBSU AT BUS 59 

Solution 
Restoration 

path 

Restoration 

time (min) 

Assessed 

risk Ψ59
−  

Actual success 

rate Ψ59 

Optimized 63-59 50 1.245 26.2% 

Alternative 54-59 70 1.085 28.7% 

 

TABLE V 

THE IMPACT OF RISK PREFERENCE 𝜋 

𝜋 Highest Ψ𝑖
− (NBSU bus) Latest cranking time (NBSU bus) 

0 4.399 (46) 100 min (111) 

1 3.315 (46) 100 min (111) 

5 2.670 (46) 110 min (87) 

10 2.356 (46) 150 min (87) 

15 2.356 (46) 150 min (87) 

 

Tables III and IV compare the optimized restoration paths 
(shown in Fig. 5(b)) and alternative restoration paths (obtained 
from the topology information) to crank buses 69 and 59 (ellipses 
in Fig. 5(b)), respectively. According to Table III, bus 69 is re-
stored at 60 min with an assessed risk of 0.689. Two alternative 
restoration paths that may restore bus 69 at earlier times are not 
selected, as those paths lead to higher risks (1.225 and 2.317, re-
spectively). Judging from Ψ∑ 𝑥  which accurately evaluates the 

success rate, restoring bus 69 through the optimized path has a 
success rate of 43.2% which is much higher than those of the al-
ternative paths (19.9% and 3.6%, respectively). On the contrary, 
Table IV shows that path 63-59 is selected instead of path 54-59 
to restore bus 59. The assessed risk and the actual success rate of 
the former path are respectively 1.245 and 26.2%. Although the 
alternative path has a lower risk and higher success rate (1.085 
and 28.7%, respectively), it is not selected by the proposed model 
because the alternative path will postpone the restoration of bus 
59 by 20 minutes. In addition, the effectiveness of the proposed 
risk approximation method in Section V is also validated because 
the restoration operations with higher assessed risks have lower 

success rates (i.e., higher Ψ𝑖
− indicates lower Ψ∑ 𝑥). 

The reason that Tables III and IV demonstrate the opposite re-
sults roots in the value of the selected risk factor 𝜋. Based on the 
default risk factor (𝜋 = 5), the optimized restoration paths out-
weigh the alternative solutions in terms of balancing the risk man-
agement and restoration speed during the PSR process. The risk 
preference can be adjusted by modifying the value of 𝜋. Table V 

lists the highest Ψ𝑖
− and latest cranking time of NBSUs with var-

ious 𝜋, and clearly demonstrates that the optimized restoration 
strategy is more risk-averse and time-consuming with higher 𝜋. 

System operators can obtain PSR solutions with various risk pref-
erences by adjusting 𝜋 to accommodate the conditions of specific 
blackouts. 

C.  A Global Blackout in the IEEE-118-bus system with RESs 

A global blackout scenario is simulated in this section. In the 

system studied, a conventional BSU located at bus 26 and two 

wind farms respectively located at buses 61 and 89 functions as 

BSUs (ellipses in Fig. 6). The optimized PSR solutions are indi-

cated by solid red lines in Fig. 6. The CPU times of FM and RM 

to solve the global blackout scenario are 8481.5 s and 316.1 s, 

respectively. 
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Fig. 6. Optimized PSR in the global blackout scenario with RESs. 
 

 

Fig. 7. Profiles of the net active generation capacity and the ratio of RES genera-

tion capacity during the first two hours of the PSR. 
 

Fig. 6 shows that three restoration islands are formulated in the 
global blackout scenario because there are three units with black-
start capability. To investigate the influences of renewable wind 
farms on the PSR process, the net active generation capacity (i.e., 

𝑃𝑖,𝑡
G − 𝑃𝑖,𝑡

L ) and the ratio of RES generation capacity in the total 

generation capacity during the first two hours of the PSR process 
are demonstrated in Fig. 7. At the beginning of the PSR process, 
BSUs must supply cranking power to the NBSUs, thus the net 
active power capacity gradually decreases in the first hour in Fig. 
7. During this period when the error in short-term generation fore-
casts is very small, the proposed PSR model is able to effectively 
utilize the forecasted RES generation capacity and deploy the 
RESs as the major source of power supply. As the PSR process 
proceeds, the net active power capacity grows rapidly thanks to 
the ramping of restored NBSUs. Hence, the share of RES capacity 
in the total generation capacity drops significantly. Although 
larger RES generation forecast error may occur as the PSR pro-
cess proceeds, the restored system already has sufficient genera-
tion capacity to deal with the uncertainty and fluctuation of RESs. 
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In summary, employing short-term RES generation forecasts is a 
feasible solution to handle RESs during the PSR process. 

D.  A Global Blackout in an Actual Power System with RESs 

A global blackout in an actual power system in Guangzhou, 
China, is employed to verify the effectiveness of the proposed 
PSR models considering the integration of RESs. The studied sys-
tem has three BSUs, i.e., a conventional BSU located at bus 9 and 
two wind farms respectively located at buses 88 and 121. Without 
loss of generality, the generation forecast of the wind farm at bus 
88 (121) is assumed to be higher (lower) than its typical genera-
tion outputs after the occurrence of the blackout. Two scenarios 
(named as scenarios S1 and S2) with different weather-affected 
areas and faulted devices are simulated, and the optimized PSR 
solutions of RM are indicated by solid red lines in Fig. 8. The 
average CPU times of FM and RM to solve these two scenarios 
are 10390.1 s and 278.3 s, respectively. 

Fig. 8 shows that three restoration islands are formulated in 
both scenarios. The proposed models will clearly generate differ-
ent PSR solutions that are sensitive to the diagnosed faults and the 
weather-affected area. Unlike the simulation results in Section 
VI-B and VI-C where all the NBSUs are restored, at least one 
NBSU located in the severe weather-affected areas is not restored 

in both Figs. 8(a) and 8(b). Although these NBSUs can be cranked 
through lines that have not suffered from faults, the restoration 
risks associated with the severe weather are the primary reason 
that they are not included in the optimized PSR solutions.  

Table VI is introduced to compare the proposed case-sensitive 
PSR solution in the simulated scenario in Fig. 8(a) with conven-
tional PSR planning models that utilize stochastic optimization to 
model the uncertainty of RESs [21]. Because the wind farm at bus 
88 (121) has a higher (lower) short-term generation forecast, the 
proposed case-sensitive PSR solution is quite different from that 
obtained from conventional models that utilize historical data and 
probability distributions to estimate the generation profiles of 
RESs. According to the solution to the conventional PSR model, 
NBSUs at buses 111, 114, and 138 will be restored by the wind 
farm at bus 121, while the proposed case-sensitive PSR solution 
clusters these NBSUs into the restoration island of the wind farm 
at bus 88. Table VI shows the NBSUs generally enjoy a faster 
recovery speed based on the proposed case-sensitive PSR solution 
as the forecast for RESs are more accurate. Although the startup 
of the NBSU at bus 138 is accelerated based on the case-insensi-
tive solution, the restoration of other NBSUs will be postponed 
due to the scarce generation capacity of RES at bus 121. 
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Fig. 8. Simulated restoration solutions of an actual power system with renewables: (a) scenario S1. (b) scenario S2.  
 

 

TABLE VI 

NBSU CRANKING TIME COMPARISON WITH RESS FOR SCENARIO S1 

 
Proposed case-sensitive 

solution 

Case-insensitive solution 

based on [21] 

NBSU at bus 111 60 min 110 min 

NBSU at bus 114 80 min 100 min 

NBSU at bus 138 70 min 60 min 

Average cranking time 

of all restored NBSUs 
56.8 min 63.2 min 

 

E.  Discussions 

Although the impact of severe weather is emphasized in this 

paper, the proposed PSR also works for other situations without 

severe weather. The proposed availability assessment in Section 

III consists of three parts: reliability, fault diagnosis, and impact 

of severe weather. If a blackout is not caused by the severe 

weather, the assessed availability of buses/lines is mainly influ-

enced by the historical reliability performance and the fault diag-

nosis results. For non-weather-related blackouts, the proposed 

availability assessment method and the PSR model do not need to 

be modified and the PSR solution will be automatically opti-

mized. If the blackout is not associated with physical damages on 

the transmission components, the case-sensitive PSR method is 

not different from other existing methods. However, we wish to 
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emphasize that the generator startup and network formulation 

should remain integrated when the transmission components are 

not damaged. During the restoration, the power flow constraints 

can be violated due to the high voltage issues caused by restoring 

light-loaded transmission lines. Using methods such as [8] and 

[12], the feasibility check will reject the generator startup results, 

but the convergence of these optimization-feasibility check pro-

cess is not guaranteed. 

Observed from the simulation results in Sections VI-C and VI-

D, several islands are formulated as restoration subsystems. These 

islands are capable of accelerating the cranking of NBSUs while 

minimizing the energizing of transmission lines/substations to 

avoid risks. On the other hand, the islanded operation is chal-

lenged by stability concerns such as frequency issues and voltage 

issues, especially when the black-start sources are renewable en-

ergy sources. The frequency issue is mainly caused by the gener-

ation forecast error of renewable energy sources. Because the pro-

posed PSR is case-sensitive and is optimized after the blackout, 

the highly accurate short-term forecast is employed to handle the 

first factor and the effectiveness is validated in Section VI-C. 

Moreover, the integration of energy storage system is another vi-

able solution as discussed in Section III-D.  

The voltage issue during restoration stage is normally caused 

by the energizing of light-loaded transmission lines. The inverters 

of renewable energy sources can provide flexible reactive power 

support (both consumption and generation) utilizing the capacity 

of the inverters. In addition, the reactive power is usually locally 

compensated in bulk power systems, and the reactive power flow 

and reactive power balance have been properly considered in the 

proposed PSR models in Section IV. Thus, the islanded restora-

tion subsystems with renewables will not cause significant volt-

age issues as discussed in [19]. 

According to the simulation results, it takes hours to obtain a 

PSR solution based on the FM, which is not feasible for real-

world application because the case-sensitive PSR models are 

solved after the blackout occurs. The RM can be solved in several 

minutes, which is much faster than FM. With the improved com-

putational efficiency, the short-term RES forecasts are still valid 

to be employed in the RM. Considering the fact that the system 

operators have to spend some time restarting the black-start units 

before initiating the PSR operations, the RM is computationally 

efficient to provide case-sensitive PSR solutions to support the 

decision-making of system operators during restoration. 

VII.  CONCLUSIONS 

This paper proposes a case-sensitive PSR method for bulk 
power systems that integrates the startup of NBSUs, the formula-
tion of a restoration network, and the evaluated availability of 
equipment. The availability of transmission components after 
blackouts is assessed based on both offline reliability data and 
online fault diagnosis and weather data. An integrated PSR model 
(FM) is proposed to integrate the NBSU startup optimization and 
network topology formulation. To accommodate the short-term 
RES generation forecasts, a reformulated model (RM) is devel-
oped to accelerate the computational speed. The assessed availa-
bility is further integrated into both the FM and RM to generate 
case-sensitive PSR solutions after blackouts.  

The effectiveness of the proposed models in optimizing case-
sensitive PSR solutions has been verified in case studies. Com-
pared to existing studies, the proposed methods are sensitive to 
the features of blackout scenarios and can steer clear from com-
ponents with high risks. Simulation results have also validated 

that the reformulated PSR model can be solved in minutes, mak-
ing the implementation of short-term RES generation forecasts 
feasible in optimizing case-sensitive PSR solutions for blackout 
power systems with RESs. 
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