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ABSTRACT In this study, optimal reactive power regulation in distribution networks is achieved through 

the use of distributed reactive power regulators that can 1) perceive their own voltage magnitude and the P/Q 

flows in the connected branches, 2) communicate with nearby regulators, and 3) adjust the reactive power 

injections into the grid to minimize system power losses and maintain the bus voltages of nearby loads. 

Compared with many existing distributed reactive power regulation strategies, the proposed method can 

estimate and maintain the bus voltage of unmeasurable load buses within the limitations. Furthermore, this 

method releases the hardly achieved bus voltage angle requirement, which makes it practical for real-world 

applications. 

INDEX TERMS Distributed reactive power regulation, Distributed optimization, Branch flow measurement, 

Linear model approximation. 

Ⅰ. INTRODUCTION 

Distributed renewable generators (DGs) are deployed 

worldwide in distribution networks to produce clean, 

inexpensive electrical power [1]. By using inverters, DGs 

can provide various ancillary services, such as harmonic 

compensation [2], voltage support [3], and reactive power 

(VAR) regulation [4]. In this study, we focus on reactive 

power regulation. 

The main objective of reactive power regulation is to 

reduce the active power loss in the distribution network and 

to keep the node voltages within the security limits. 

Traditionally, these objectives are accomplished to some 

extent by local reactive regulation [5-7], but it has been 

suggested that these strategies may not be able to guarantee 

the desired regulation due to the lack of communication [8]. 

A centralized reactive power regulation strategy can 

overcome this barrier by solving a centralized optimal 

reactive power flow (OPF) problem with a central 

coordinator that receives all the required measurements of 

the grid [9-11]. Nevertheless, an online centralized reactive 

power regulation strategy requires detailed power flow along 

with feeders, which is difficult for the distribution system to 

achieve in real time. For offline strategies, it is also a great 

challenge to predict the power curve of stochastic DG 

outputs. These difficulties make centralized optimization 

impractical in the real world.  

In terms of both effectiveness and practicability, the 

regulation strategies of distributed OPF methods are used to 

achieve optimal regulation with limited measurement and 

communication requirements.  

The distributed OPF methods decompose the systematic 

optimization target into decoupled subproblems that can be 

solved by agents based on partial information. To achieve the 

decomposition, the OPF problem should be formulated for 

semidefinite programming (SDP) [12-14] or second-order 

cone programming (SOCP) [15], [16] so that the sparsity of 

the coefficient matrix can be utilized. A well-designed 

distributed OPF method exhibits performance close to that 

of the centralized OPF method with much fewer data 

requirements and is therefore preferred in practice. 

The distributed OPF was achieved via linear 

approximation in many earlier works. In this case, the 

detailed power system model and power flow predictions are 

no longer needed, but measurements at all the buses in the 

distribution network are still required to maintain bus 

voltages [17], [18]. The latest reports further relax the above 

requirements, in which only DGs require phasor 

measurements at their own connection node and can 

communicate with adjacent ones; by approximating voltage 

phasors as a linear function of the injected reactive power, 

the function between reactive load demands and the total 

system losses can be formulated as a linear function of the 
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imaginary parts of the DG node voltages, which can be 

calculated at each node [19-23]. However, synchronous 

phasor measurement devices in distribution systems are still 

costly, which prevents the above method from practical 

applications. Furthermore, these methods can maintain only 

the voltage of DG buses that can be measured.  

To cope with the above problem, a distributed optimal 

reactive power regulation method that does not require the 

bus voltage phasor is proposed in this study, where DGs are 

able to perceive their own voltage magnitude and P/Q flows 

in the connected branches, communicate with nearby DG 

buses, and adjust the reactive power injections into the grid, 

while their common objective is to minimize the total power 

losses of the system with maintained bus voltages. The 

proposed method can work under practical conditions, and 

only RTU measurements such as branch flow and bus 

voltage magnitude are obtained. The load bus voltage, which 

cannot be obtained by DG buses, can also be maintained by 

the estimation method proposed in this paper.  

The remainder of the paper is organized as follows. 

Section Ⅱ presents a generalized LinDistFlow model to 

formulate the distribution system reactive power regulation 

problem by considering the load voltage limitation and 

power loss. Section Ⅲ proposes a distributed method to 

solve the reactive power regulation problem based on branch 

flows. Section Ⅴ tests the performance of the strategy with a 

numerical simulation under different circumstances. Finally, 

Section Ⅵ presents the conclusions of this work and future 

research directions. 

Ⅱ. PROBLEM FORMULATION  

A. Reactive Power Regulation Model for Distribution 
Networks 

To avoid an electromagnetic loop, distribution networks 

are radial in operation with one single system bus (SB) 

connected to the power transmission system. Hence, the 

topology of such networks can be described by a tree under 

graph theory, where each branch designates an electric line, 

while each node represents a bus bar. 

Consider a radial distribution network that consists of 𝑁 =
𝑚 + 𝑛 + 1  buses corresponding to a tree with 𝑚 + 𝑛 + 1 

nodes, in which the root node indexed by 0 denotes the SB, 

𝑚  nodes indexed by 𝑮 = {𝐺1, 𝐺2, … , 𝐺𝑚}  denote buses 

connected to DGs (DG buses), and 𝑛 nodes indexed by 𝑳 =
{𝐿1, 𝐿2, … , 𝐿𝑛} denote buses connected to only loads (load 

buses). All the nodes are interconnected by 𝑁 − 1 branches, 

where the branch indexed by 𝑖 denotes the distribution line 

connecting node 𝑖  and its parent node. Then, the reactive 

power regulation problem considering the bus voltage 

limitations and reactive power constraints of DGs can be 

defined by the optimization problem in (1): 

 min
𝑸𝑮

𝑃𝑙𝑜𝑠𝑠  

(1) 
 subject to 

𝑄𝑔,𝑚𝑖𝑛 < 𝑄𝑔 < 𝑄𝑔,𝑚𝑎𝑥, ∀𝑔 ∈ 𝑮

𝑉𝑚𝑖𝑛 < 𝑉𝑖 < 𝑉𝑚𝑎𝑥, ∀𝑖 ∈ 𝑳 ∪ 𝑮
 

where 𝑃𝑙𝑜𝑠𝑠 denotes the total active power loss of the system, 

the decision variable 𝑄𝑔 ∈ 𝑸𝑮  denotes the reactive power 

generation of the DG connected to bus 𝑔 ∈ 𝑮, and 𝑉𝑖 denotes 

the voltage magnitude of bus 𝑖. 𝑃𝑙𝑜𝑠𝑠 and 𝑉𝑖 can be written as 

a quadratic function and a linear function of 𝑸𝑮, respectively. 

Under the approximation model in the following parts, the 

problem can be solved much more easily. 

B. LinDistFlow Approximation of the Reactive Power 
Regulation Model 

The LinDistFlow model [24], which is the linearization of 

the DistFlow model, is a widely used approximation model 

of distribution systems with a mainline and no laterals, as 

shown in Fig. 1 [25]. Since the branch flow is much larger 

than the power loss, it can be approximated as the total power 

injections from the downstream nodes of the branch. Since 

the nodal voltages are close to the voltage of the system bus 

when the system is operating in a steady state, the voltage 

drop of a branch can be approximated as a linear function of 

the branch flow. 

0 j-1 j j+1 N

Pj-1+iQj-1 Pj+iQj Pj+1+iQj+1 PN+iQN

𝑷𝒋−𝟏
𝑩𝒓 + 𝐢𝑸𝒋−𝟏

𝑩𝒓  𝑷𝒋+𝟏
𝑩𝒓 + 𝐢𝑸𝒋+𝟏

𝑩𝒓  𝑷𝒋
𝑩𝒓 + 𝐢𝑸𝒋

𝑩𝒓 

 
FIGURE 1. Distribution systems with no laterals. 

 

Under such approximation, the LinDistFlow model can be 

formulated as (2): 

 𝑃𝑖−1
𝐵𝑟 = ∑ 𝑃𝑗𝑗∈[𝑖,𝑁]   

(2) 

 𝑄𝑖−1
𝐵𝑟 = ∑ 𝑄𝑗𝑗∈[𝑖,𝑁]   

 𝑉𝑗 = 𝑉0 +
∑ (𝑃𝑖

𝐵𝑟𝑟𝑖+𝑄𝑖
𝐵𝑟𝑥𝑖)𝑖∈[1,𝑗]

𝑉0
  

 𝑃𝑙𝑜𝑠𝑠 =
∑ (𝑃𝑖

𝐵𝑟2
+ 𝑄𝑖

𝐵𝑟2
) 𝑟𝑖  𝑖∈[1,𝑁]

𝑉0
 

where the impedance of branch 𝑖 is defined by 𝑧𝑖 = 𝑟𝑖 + i𝑥𝑖 . 

𝑃𝑖−1
𝐵𝑟 /𝑄𝑖−1

𝐵𝑟  denotes the branch flows of branch 𝑖 − 1, while 

𝑃𝑗/𝑄𝑗  denotes the power injection on bus 𝑗. 𝑉𝑗  denotes the 

voltage magnitude. Specifically, SB is indexed by 0, whose 

voltage is assumed to be 𝑉0 = 1.00 p.u. 

In this study, we extend this model to radial systems with 

laterals, the topology of which is similar to the example 

shown in Fig. 2.  
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FIGURE 1. An example of the topology of a radial system with laterals.  
  

We denote the path set PATH𝑖,𝑗 = {𝒆𝑖𝑗 , 𝒗𝑖𝑗}, where 𝒆𝑖𝑗 is 

composed of all the branches (edges) in the path between 

buses < 𝑖, 𝑗 >, and 𝒗𝑖𝑗 is composed of all the buses (vertexes) 

in the path set. For example, buses 7, 2 and 3 and branches 7 

and 3 constitute PATH7,3 in Fig. 2. 

The matrix 𝑨  with a size of (𝑁 − 1) × (𝑁 − 1)  is 

introduced to describe the topology of the system. The 

element at row 𝑖 column 𝑗 of 𝑨 is defined as: 

 𝐴𝑖,𝑗 = {
1, 𝑖 ∈ e0,𝑗

0, 𝑖 ∉ e0,𝑗
 (3) 

In this definition, 𝐴𝑖,𝑗 = 1 means node 𝑗 is a downstream 

node of branch 𝑖 , and branch 𝑖  is a part of the path from 

system bus to node 𝑗. For example, only 𝐴6,6 equals 1 in the 

6th row of 𝑨 since only node 6 is the downstream node of 

branch 6; only 𝐴1,6 and 𝐴6,6 in the 6th column equal 1 since 

only branch 1 and 6 are in the path from system bus to node 

6. Thus, 𝑨 can describe the sensitivity of bus injections to 

branch flows, while 𝑨𝐓 can describe the sensitivity of branch 

voltage drops to the bus voltage:  

 𝑷𝑩𝒓 = 𝑨𝑷 

(4)  𝑸𝑩𝒓 = 𝑨𝑸 

 𝑽 = 𝟏 + 𝑨𝐓𝑽𝑩𝒓 

where 𝑷𝑩𝒓/𝑸𝑩𝒓 denotes the active/reactive power vectors of 

all the branches, while 𝑷/𝑸  denotes the active/reactive 

power vectors of all the buses except for SB, 𝑽𝑩𝒓 denotes the 

voltage drop vector of all the branches, 𝑽 denotes the voltage 

magnitude vectors of all the buses except for SB, and 𝟏 is an 

all-one vector. Since the voltage drop of a branch is 

approximated as a linear function of the branch flow, the 

LinDistFlow model for radial systems with laterals can be 

given as: 

 𝑽𝑩𝒓 = 𝑑𝑖𝑎𝑔(𝒓)𝑨𝑷 + 𝑑𝑖𝑎𝑔(𝒙)𝑨𝑸 

(5)  𝑽 = 𝟏 + 𝑨𝐓𝑑𝑖𝑎𝑔(𝒓)𝑨𝑷 + 𝑨𝐓𝑑𝑖𝑎𝑔(𝒙)𝑨𝑸 

 𝑃𝑙𝑜𝑠𝑠 = 𝑷T𝑨T𝑑𝑖𝑎𝑔(𝒓)𝑨𝑷 + 𝑸T𝑨T𝑑𝑖𝑎𝑔(𝒓)𝑨𝑸 

where 𝒛 = 𝒓 + i𝒙 is the vector of branch impedances. 

Using the approximation given in [22] and [23] that all the 

branches in the system are assumed to have the same 

impedance angle 𝜃, the model can be further simplified: 

 𝑽 = 𝟏 + 𝑯𝑷𝑐𝑜𝑠𝜃 + 𝑯𝑸𝑠𝑖𝑛𝜃 

(6)  𝑃𝑙𝑜𝑠𝑠 = (𝑷T𝑯𝑷 + 𝑸T𝑯𝑸)𝑐𝑜𝑠𝜃 

 𝑯 = 𝑨T𝑑𝑖𝑎𝑔(|𝒛|)𝑨 

According to 3 and 4, the element at row 𝑖 column 𝑗 of 𝑯 

can be formulated by: 

 𝐻𝑖𝑗 = ∑ |𝑧𝑘|

𝑘∈𝐞0𝑖∩𝐞0𝑗

 (7) 

where 𝐞0𝑖 ∩ 𝐞0𝑗  is the common part of 𝐞0𝑖  and 𝐞0𝑗 . For 

example, 𝐻8,10  can be calculated by the total impedance 

magnitude of branches 1 and 2. 

To separate the components related to 𝑸𝑮 in 𝑽 and 𝑃𝑙𝑜𝑠𝑠, 

𝑯 can be blocked as 𝑯 = [
𝑴 𝑵
𝑵T 𝑼

], where 𝑴 is an 𝑚 × 𝑚 

matrix, of which element is defined by 𝑀𝑖𝑗 = 𝐻𝐺𝑖,𝐺𝑗
, 𝑵 is an 

𝑚 × 𝑛 matrix, of which element is defined by 𝑁𝑖𝑗 = 𝐻𝐺𝑖,𝐿𝑗
, 

and 𝑼  is an 𝑛 × 𝑛  matrix whose elements are defined as 

𝑈𝑖𝑗 = 𝐻𝐿𝑖,𝐿𝑗
. Thus, the model can be reformulated as: 

𝑽𝑮 = 𝟏 + (𝑴𝑷𝑮 + 𝑵𝑷𝑳)𝑐𝑜𝑠𝜃 + (𝑴𝑸𝑮

+ 𝑵𝑸𝑳)𝑠𝑖𝑛𝜃 

(8) 

𝑽𝑳 = 𝟏 + (𝑵T𝑷𝑮 + 𝑼𝑷𝑳)𝑐𝑜𝑠𝜃 + (𝑵T𝑸𝑮

+ 𝑼𝑸𝑳)𝑠𝑖𝑛𝜃 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑙𝑜𝑠𝑠
𝑃 + 𝑃𝑙𝑜𝑠𝑠

𝑄
 

where 

𝑃𝑙𝑜𝑠𝑠
𝑃 = (𝑷𝑮

T𝑴𝑷𝑮 + 2𝑷𝑮
T𝑵𝑷𝑳 + 𝑷𝑳

T𝑼𝑷𝑳)𝑐𝑜𝑠𝜃 

𝑃𝑙𝑜𝑠𝑠
𝑄

= (𝑸𝑮
T𝑴𝑸𝑮 + 2𝑸𝑮

T𝑵𝑸𝑳 + 𝑸𝑳
T𝑼𝑸𝑳)𝑐𝑜𝑠𝜃 

In (8), 𝑃𝑙𝑜𝑠𝑠
𝑃  is the contribution of the active power 

injection of the system to the active power loss, while 𝑃𝑙𝑜𝑠𝑠
𝑄

 

is the contribution of the reactive power injection of the 

system to the active power loss. Since 𝑃𝑙𝑜𝑠𝑠
𝑃  and 𝑸𝑳

T𝑼𝑸𝑳 are 

irrelevant to the decision vector 𝑸𝑮 , the optimization 

problem (1) can be simplified to the following quadratic 

form:  

 min
𝑸𝑮

𝑸𝑮
T𝑴𝑸𝑮 + 2𝑸𝑮

T𝑵𝑸𝑳  

(9) 
subject to 

 𝑸𝑮,𝒎𝒊𝒏 < 𝑸𝑮 < 𝑸𝑮,𝒎𝒂𝒙 

 𝑽𝑮,𝒎𝒊𝒏 < 𝑽𝑮 < 𝑽𝑮,𝒎𝒂𝒙 

 𝑽𝑳.𝒎𝒊𝒏 < 𝑽𝑳 < 𝑽𝑳.𝒎𝒂𝒙 

where 𝑸𝑮,𝒎𝒊𝒏 , 𝑸𝑮,𝒎𝒂𝒙 , 𝑽𝑮,𝒎𝒊𝒏 , 𝑽𝑮,𝒎𝒂𝒙 , 𝑽𝑳.𝒎𝒊𝒏 , and 𝑽𝑳,𝒎𝒂𝒙 

are the vectors of all the limitations. 

As a quadratic programming problem, Formulation (9) can 

be solved with a distributed dual ascent algorithm, as shown 

in Section III. 

III. SOLUTION FORMS 

A. Centralized Dual Decomposition Solution 

The Lagrangian of 9 can be formed as: 

 

  𝐽(𝑸𝑮, 𝒗) = 𝑸𝑮
T𝑴𝑸𝑮 + 2𝑸𝑮

T𝑵𝑸𝑳

+ 𝛌𝑮,𝐦𝐢𝐧
T (𝑽𝑮,𝒎𝒊𝒏 − 𝑽𝑮)

+ 𝛌𝑮,𝐦𝐚𝐱
T (𝑽𝑮 − 𝑽𝑮,𝒎𝒂𝒙)

+ 𝛌𝑳,𝐦𝐢𝐧
T (𝑽𝑳,𝒎𝒊𝒏 − 𝑽𝑳)

+ 𝛌𝑳,𝐦𝐚𝐱
T (𝑽𝑳 − 𝑽𝑳,𝒎𝒂𝒙)

+ 𝝁𝐦𝐢𝐧
T (𝑸𝑮,𝒎𝒊𝒏 − 𝑸𝑮)

+ 𝝁max
T (𝑸𝑮 − 𝑸𝑮,𝒎𝒂𝒙) 

(10) 

where 𝒗 =[ 𝛌𝐺,min
T , 𝛌𝐺,max

T , 𝛌𝐿,min
T , 𝛌𝐿,max

T , 𝝁min
T , 𝝁max

T  ]T is 

the vector of the Lagrangian multipliers of the constraints. 

Thus, the partial derivatives of 10 can be calculated: 

 ∂𝐽

∂𝛌𝑮,𝐦𝐚𝐱
= 𝑽𝑮 − 𝑽𝑮,𝒎𝒂𝒙 

(11) 
 ∂𝐽

∂𝛌𝑮,𝐦𝐢𝐧
= 𝑽𝑮,𝒎𝒊𝒏 − 𝑽𝑮 
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 ∂𝐽

∂𝛌𝑳,𝐦𝐚𝐱
= 𝑽𝑳 − 𝑽𝑳,𝒎𝒂𝒙 

 ∂𝐽

∂𝛌𝑳,𝐦𝐢𝐧
= 𝑽𝑳,𝒎𝒊𝒏 − 𝑽𝑳 

 ∂𝐽

∂𝝁𝐦𝐚𝐱

= 𝑸𝑮 − 𝑸𝑮,𝒎𝒊𝒏 

 ∂𝐽

∂𝝁𝐦𝐢𝐧

= 𝑸𝑮,𝒎𝒊𝒏 − 𝑸𝑮 

 ∂𝐽

∂𝑸𝑮

= 2(𝑴𝑸𝑮 + 𝑵𝑸𝑳) + 𝑠𝑖𝑛𝜃𝑴(𝛌𝑮,𝐦𝐚𝐱 −

𝛌𝑮,𝐦𝐢𝐧) + 𝑠𝑖𝑛𝜃𝑵(𝛌𝑳,𝐦𝐚𝐱 − 𝛌𝑳,𝐦𝐢𝐧) +
𝝁𝐦𝐚𝐱 − 𝝁𝐦𝐢𝐧  

Then, the optimization model can be solved with a dual 

ascent algorithm with two iterative steps: 

1) Update the Lagrangian multipliers with dual gradient 

ascent. 

 𝒗(𝑡 + 1) = [𝒗(𝑡) + 𝛾
∂𝐽(𝑡)

∂𝒗
]

+

 (12) 

Here, 
∂𝐽(𝑡)

∂𝒗
 can be calculated by (11), [·]+  denotes a 

projection operator on the positive orthant, and 𝛾 denotes a 

suitable positive constant. 

2) Minimize the Lagrangian to update 𝑸𝑮. Since (10) has 

a quadratic form, the minimum value can be reached when 
∂𝐽

∂𝑸𝑮
= 0, and the optimal solution can be calculated: 

 𝑸𝑮
(𝑡 + 1)  = −𝑴−1𝑵𝑸𝑳

(𝑡) + 𝑸̃𝑮

𝒗
 

(13) 
 

𝑸̃𝑮

𝒗
=

𝑠𝑖𝑛𝜃

2
((𝛌𝑮,𝐦𝐚𝐱(𝑡) − 𝛌𝑮,𝐦𝐢𝐧(𝑡)) +

𝑴−1𝑵 (𝛌𝐿,max(𝑡) − 𝛌𝐿,min(𝑡))) +

𝑴−1

2
(𝝁max

(𝑡) − 𝝁min
(𝑡))  

where 𝑸̃𝑮
𝒗  is the contribution of 𝒗(𝑡 + 1) to 𝑸𝑮(𝑡 + 1). 

Alternately executing the given steps can drive the system 

toward the optimal configuration, but the calculation 

depends on the power injection and bus voltage 

measurements of all the buses in the system. To overcome 

this limitation, the sparsity of matrices 𝑴−1 and 𝑴−1𝑵 will 

be utilized, as discussed in the following subsections. 

B. Distributed Solution Exploiting Matrix Sparsity 

According to 8, if we replace DG on bus 𝐺𝑖 with a unitary 

voltage source, connect all other DG buses to the ground and 

open all the loads, then [𝑴−1]𝑖𝑗 is numerically proportional 

to the magnitude of power injection in bus 𝐺𝑗 . Thus, the 

sparsity values of 𝑴−1 and 𝑴−1𝑵 are easy to obtain from 

circuit theory considerations: 

· [𝑴−1]𝑖𝑗 = 0 if there is at least one other DG in the path 

between 𝐺𝑖 and 𝐺𝑗. 

Similarly, if we replace the load on bus 𝐿𝑗 with a unitary 

current source, connect all DG buses to the ground and open 

all other loads, then [𝑴−1𝑵]𝑖𝑗  is proportional to the current 

injection to bus 𝐺𝑖  in numeral. The sparsity of 𝑴−1𝑵 can 

also be obtained: 

· [𝑴−1𝑵]𝑖𝑗 = 0 if there is at least one other DG in the path 

between 𝐺𝑖 and 𝐿𝑗. 

The above sparsity allow us to define the neighborhood 

relationship between buses: 

· Two buses are neighbors if and only if there is no other 

DG bus in the path between them.  

· For each DG bus 𝐺𝑖, define its neighborhood ℕ(𝐺𝑖) as 

the collection of all its neighbors. In particular, 𝐺𝑖 itself is 

seen as a member of ℕ(𝐺𝑖). 

Fig. 3 is an example of a neighborhood where the buses 

𝐺1, 𝐺2, 𝐺3, 𝐺5, 𝐺6, and 𝐿1, 𝐿2, 𝐿3 are neighbors of 𝐺2, while 

𝐺4 and 𝐿4 are not.  

SB G1 G2 G3

G1

G4

G5

G6

L1 L2

L3
L4

 
FIGURE 3. An example of a neighborhood. 

 

Based on these definitions, we can transform (13) into a 

distributed form: 

𝑄𝐺𝑖
(𝑡 + 1) = 𝑄̃𝐺𝑖

𝒗
− ∑ [𝑴−1]

𝑖𝑘
𝑤𝑖,𝑘(𝑡)𝐺𝑘∈ℕ(𝐺𝑖)   

(14) 
𝑄̃𝐺𝑖

𝒗
=

1

2
∑ [𝑴−1]

𝑖𝑘
(𝜇𝐺𝑘,max

(𝑡) −𝐺𝑘∈ℕ(𝐺𝑖)

𝜇𝐺𝑘,min
(𝑡) + 𝑠𝑖𝑛𝜃 ∑ 𝐻𝐺𝑘,𝐿𝑗

(λ𝐿𝑗,max(𝑡) −𝐿𝑗∈ℕ(𝐺𝑖)

λ𝐿𝑗,min(𝑡))) + 
𝑠𝑖𝑛𝜃

2
(λ𝐺𝑖,max(𝑡) − λ𝐺𝑖,min(𝑡))  

where 𝑄̃𝐺𝑖

𝒗  is the contribution of 𝒗(𝑡 + 1) to 𝑄𝐺𝑖
(𝑡 + 1), and 

𝑤𝑖,𝑘(𝑡) = ∑ 𝐻𝐺𝑘,𝐿𝑗
𝑄𝐿𝑗

(𝑡)𝐿𝑗∈ℕ(𝐺𝑖)  is the weighted sum of the 

load reactive injections in ℕ(𝐺𝑖).  

The equations in (14) indicate that the optimal reactive 

power at a single DG bus can be calculated from 

measurements of its neighborhood buses so that the 

communication cost can be effectively reduced. However, 

the power consumption and voltage of all the buses in the 

neighborhood are required, which could be relieved by the 

estimation methods in the following part. 

C. Further Relief of the Data Requirements 

To update the Lagrangian multipliers 𝑽𝑳,𝒎𝒊𝒏  and 𝑽𝑳,𝒎𝒂𝒙 

in 11, the measurement of bus voltages is required. To 

calculate 𝑤𝑖,𝑘(𝑡) in 14, the measurement of power injections 

of load buses is required. Since these data are hard to obtain 

for privacy and economic reasons, we will estimate them by 

the measurements in DG buses in the following part of this 

section. 

1) Estimation of the weighted sum of the load reactive 

injections 

𝑤𝑖,𝑘(𝑡) can be estimated by branch flows and the voltage 
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drop between DGs in a neighborhood. 

The neighbors of each DG bus 𝐺𝑖  and the branches 

interconnecting them constitute a subtree of the whole 

system, and the root node of the subtree is denoted as 𝑂𝑖 . For 

example, 𝑂3 = 𝐺2 is the root node of ℕ(𝐺3) in Fig. 3. Thus, 

we can divide 𝐻𝐺𝑘,𝐿𝑗
 in 14 into two parts: 

 𝐻𝐺𝑘,𝐿𝑗
= 𝐻𝑂𝑖,𝐿𝑗

+ 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗
 

(15) 
 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗 = 𝐻𝐺𝑘,𝐿𝑗
− 𝐻𝑂𝑖,𝐿𝑗

 

where 𝐻𝑂𝑖,𝐿𝑗
= e0,𝑂𝑖

 is the total impedance of branches 

outside ℕ(𝐺𝑖)  in e0,𝐺𝑘
∩ e0,𝐿𝑗

 and 𝐻𝑂𝑖−𝐺𝑘,𝐿𝑗
= e𝑂𝑖,𝐺𝑘

∩

e𝑂𝑖,𝐿𝑗
 is the total impedance of branches inside ℕ(𝐺𝑖)  in 

e0,𝐺𝑘
∩ e0,𝐿𝑗

. Then, 𝑤𝑖,𝑘(𝑡) can also be divided into two parts:  

 𝑤𝑖,𝑘(𝑡) = 𝑤𝑖,𝑘
𝑜𝑢𝑡(𝑡) + 𝑤𝑖,𝑘

𝑖𝑛 (𝑡) 

(16) 
 𝑤𝑖,𝑘

𝑜𝑢𝑡(𝑡) = ∑ 𝐻𝑂𝑖,𝐿𝑗
𝑄𝐿𝑗

𝐿𝑗∈ℕ(𝐺𝑖)

 

 𝑤𝑖,𝑘
𝑖𝑛 (𝑡) = ∑ 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗 𝑄𝐿𝑗

𝐿𝑗∈ℕ(𝐺𝑖)

 

Since 𝑂𝑖  is the root node of ℕ(𝐺𝑖), e0,𝑂𝑖
 will be the subset 

of e0,𝐿𝑗
for every 𝐿𝑗 ∈ ℕ(𝐺𝑖). Then, according to 7, we have: 

 
𝐻𝑂𝑖,𝐿𝑗

= 𝐻𝑂𝑖,𝑂𝑖
= ∑ |𝑧𝑘|

𝑘∈𝐞0,𝑂𝑖

, ∀𝐿𝑗 ∈ ℕ(𝐺𝑖) 

(17) 

 𝑤𝑖,𝑘
𝑜𝑢𝑡(𝑡) = 𝐻𝑂𝑖,𝑂𝑖

𝑄𝐿,ℕ(𝐺𝑖)
(t) 

where 𝑄𝐿,ℕ(𝐺𝑖)  = ∑ 𝑄𝐿𝑗𝐿𝑗∈ℕ(𝐺𝑖)  is the total reactive power 

demand in ℕ(𝐺𝑖). According to the power balance equation 

under LinDistFlow approximation, ℕ(𝐺𝑖) is the opposite of 

the total reactive power injected from DG buses into ℕ(𝐺𝑖), 

which can be calculated by the branch flows and power 

injections measured in the DG buses in ℕ(𝐺𝑖): 

𝑄𝐿,ℕ(𝐺𝑖)
= 𝑄𝑂𝑖

𝐵𝑟 + 𝑄𝑂𝑖
+ 𝑄𝐺𝑖

− ∑ 𝑄𝐺𝑙

𝐵𝑟

𝐺𝑙∈ℕ(𝐺𝑖)\{𝐺𝑖,𝑂𝑖}

 (18) 

where 𝑄𝐺𝑙
𝐵𝑟  is the branch flow from 𝐺𝑙  to its parent node, 

which can be seen as the reactive power injection of the 

equivalent node of 𝐺𝑙  and all its descendant nodes. 

According to 17 and 18, 𝑤𝑖,𝑘
𝑜𝑢𝑡(𝑡) can be accurately estimated. 

According to 4 and 6 , 𝑤𝑖,𝑘
𝑖𝑛 (𝑡)  can be estimated by the 

voltage drop between 𝑂𝑖  and 𝐺𝑗, which can be calculated by: 

𝑉𝑂𝑖−𝐺𝑘
= 𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐿 + 𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐺 

(19) 

𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐿 = ∑ 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗 (𝑠𝑖𝑛𝜃𝑄𝐿𝑗
+ 𝑐𝑜𝑠𝜃𝑃𝐿𝑗

)
𝐿𝑗∈ℕ(𝐺𝑖)

 

𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐺

= 𝐻𝑂𝑖−𝐺𝑘

𝐺𝑖 (𝑠𝑖𝑛𝜃𝑄𝐺𝑖
+ 𝑐𝑜𝑠𝜃𝑃𝐺𝑖

)

+ ∑ 𝐻𝑂𝑖−𝐺𝑘

𝐺𝑙 (𝑠𝑖𝑛𝜃𝑄𝐺𝑙

𝐵𝑟 + 𝑐𝑜𝑠𝜃𝑃𝐺𝑙

𝐵𝑟)
𝐺𝑙∈ℕ(𝐺𝑖)\{𝐺𝑖,𝑂𝑖}

 

where 𝑉𝑂𝑖−𝐺𝑘
 is the voltage drop between 𝑂𝑖  and 𝐺𝑘, which 

can be calculated by the voltage measurements in DG buses. 

𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐺is the contribution of the branch flow injected from 

𝐺𝑗 ∈ ℕ(𝐺𝑖)  into ℕ(𝐺𝑖) , which can be calculated by the 

branch flows measured in DG buses; 𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐿  is the 

contribution of power injection on all the load buses to 

𝑉𝑂𝑖−𝐺𝑘
, which can be calculated by 𝑉𝑂𝑖−𝐺𝑘

− 𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐺 . By 

denoting the power factor of load 𝐿𝑗 as 𝑐𝑜𝑠𝜙𝐿𝑗
, where 𝜙𝐿𝑗

 is 

the phase angle between the current and voltage injection of 

node 𝐿𝑗, we have: 

𝑃𝐿𝑗
= 𝑄𝐿𝑗

𝑐𝑜𝑡𝜙
𝐿𝑗

 

(20) 𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐿 = ∑ 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗 𝑄𝐿𝑗
(𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑡𝜙

𝐿𝑗
)

𝐿𝑗∈ℕ(𝐺𝑖)

 

By defining the power factor of the total power injection 

of all the load buses in ℕ(𝐺𝑖) as 𝑐𝑜𝑠𝜙ℕ(𝐺𝑖), we have: 

𝑐𝑜𝑡𝜙ℕ(𝐺𝑖) =
𝑃𝐿,ℕ(𝐺𝑖)

𝑄𝐿,ℕ(𝐺𝑖)
 

(21) 𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐿 = (𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑡𝜙
ℕ(𝐺𝑖)

) 𝑤𝑖,𝑘
𝑖𝑛 (𝑡) +

𝑐𝑜𝑠𝜃 ∑ 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗 𝑄𝐿𝑗
(𝑐𝑜𝑡𝜙

𝐿𝑗
− 𝑐𝑜𝑡𝜙

ℕ(𝐺𝑖)
)𝐿𝑗∈ℕ(𝐺𝑖)   

Then, 𝑤𝑖,𝑘 can be calculated by:  

𝑤𝑖,𝑘
𝑖𝑛 (𝑡) = 𝑤̂𝑖,𝑘

𝑖𝑛 (𝑡) + res(𝑤𝑖,𝑘
𝑖𝑛 (𝑡)) 

(22) 

𝑤̂𝑖,𝑘
𝑖𝑛 (𝑡) =

𝑉𝑂𝑖−𝐺𝑘

ℕ(𝐺𝑖)𝐿

𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑡𝜙
ℕ(𝐺𝑖)

 

res(𝑤𝑖,𝑘
𝑖𝑛 (𝑡))

=
𝑐𝑜𝑠𝜃 ∑ 𝐻𝑂𝑖−𝐺𝑘

𝐿𝑗 𝑄𝐿𝑗
(𝑐𝑜𝑡𝜙ℕ(𝐺𝑖) − 𝑐𝑜𝑡𝜙𝐿𝑗

)𝐿𝑗∈ℕ(𝐺𝑖)

𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑡𝜙ℕ(𝐺𝑖)
 

In most countries, retail customers may be required to 

correct their power factors to a standard (e.g., 0.95) or pay an 

additional electricity tariff for a low power factor. In that 

case, the power factors of load buses in a neighborhood will 

have similar power factors. Then, res(𝑤𝑖,𝑘
𝑖𝑛 (𝑡))  can be 

ignored so that 𝑤𝑖,𝑘
𝑖𝑛 (𝑡)  can be approximated by 𝑤̂𝑖,𝑘

𝑖𝑛 (𝑡) , 

which can be calculated without the requirement of the 

measurement of load buses. Then, 𝑤𝑖,𝑘(𝑡) can be estimated 

as 𝑤𝑖,𝑘
𝑜𝑢𝑡(𝑡) + 𝑤̂𝑖,𝑘

𝑖𝑛 (𝑡). 

2) Estimation of the load voltage 

Since there is no DG connected to load buses, load buses 

will not undergo overvoltage. Thus, 𝛌𝑳,𝐦𝐚𝐱 can be fixed to all 

0 vectors so that only the risk of low voltage needs to be 

considered for the load buses.  

To find the buses with low voltage, neighborhood ℕ(𝐺𝑖) 

can be further segmented into 𝑛(𝐺𝑖) different 

subneighborhoods by cutting it off at bus 𝐺𝑖, where 𝑛(𝐺𝑖) is 

the number of branches connected with 𝐺𝑖. In this case, 𝐺𝑖 

will be the only common node of all the subneighborhoods. 

For the subneighborhood, the load bus 𝐿𝑗 can be denoted as 

ℕ (𝐿𝑗) . For example, ℕ(𝐺2)  in Fig. 3 can be cut into 2 

subneighborhoods: ℕ(𝐿1)={𝐺1 , 𝐺2 , 𝐺5 , 𝐿1 , 𝐿3} and ℕ(𝐿2) 

= {𝐺2, 𝐺3, 𝐺6, 𝐿2}.  

The load voltage will be estimated with a 

subneighborhood as a unit. If the bus with the lowest voltage 

can meet the voltage constraints, then the buses in the 

subneighborhood will not offend the voltage constraints; 
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thus, we do not need to estimate the load voltage in a 

subneighborhood. 

According to the network topology, subneighborhoods 

can be classified into three types, as shown in Fig. 4.  

 

G1

A)

G1

B)

G1

C)

 
FIGURE 4. Types of subneighborhoods. 

 

Type I: As shown in Fig. 4-A, there is only one DG bus 

that injects power flow into a type I subneighborhood where 

all the buses at the edge of the subneighborhood are equipped 

with DG. In that case, there will be no reverse flows in the 

subneighborhood so that load buses will not be under voltage 

if all the DG buses are in the same subneighborhood. Hence, 

we do not need to estimate the load voltages in a type I 

subneighborhood so that the Lagrange multipliers 

corresponding to the lower bounds of the load buses in a type 

I subneighborhood can be set to 0. 

Type II: As shown in Fig. 4-B, branch flows are not in the 

same direction in a type II subneighborhood, but every load 

bus is directly connected with at least one DG bus with a 

branch whose power flow can be measured directly by the 

DG bus. In that case, the load voltage in the subneighborhood 

can be calculated by the LinDistFlow model. 

Type III: As shown in Fig. 4-C, the branch flows are not 

in the same direction, and not all load buses are connected 

with a DG bus directly in a type III subneighborhood. In this 

case, the load voltages of some buses are determined by the 

load distribution inside the subneighborhood.  

To describe the load distribution, define d𝑽ℕ(𝐿𝑗)
𝐿

 as a 

vector of all the d𝑉𝐿𝑘
=  𝑠𝑖𝑛𝜃𝑄𝐿𝑘

+ 𝑐𝑜𝑠𝜃𝑃𝐿𝑘
, 𝑯𝑂𝐿𝑗

−𝐿𝑗

ℕ(𝐿𝑗)
𝐿  as a 

vector of all the 𝐻𝑂𝐿𝑗
−𝐿𝑗

𝐿𝑘 = 𝐻𝐿𝑗,𝐿𝑘
− 𝐻𝑂𝐿𝑗

,𝑂𝐿𝑗
 for each 𝐿𝑘 ∈

ℕ(𝐿𝑗). Define the root node of ℕ(𝐿𝑗) as 𝑂𝐿𝑗
 and denote its 

voltage as 𝑉𝑂𝐿𝑗
. Similarly, define d𝑽ℕ(𝐿𝑗)

𝐺
 as a vector of all 

the d𝑉𝐺𝑙
𝐵𝑟 =  𝑠𝑖𝑛𝜃𝑄𝐺𝑙

𝐵𝑟 + 𝑐𝑜𝑠𝜃𝑃𝐺𝑙
𝐵𝑟  and define 𝑯𝑂𝐿𝑗

−𝐿𝑗

ℕ(𝐿𝑗)
𝐺  as a 

vector of all the 𝐻𝑂𝐿𝑗
−𝐿𝑗

𝐺𝑙 = 𝐻𝐿𝑗,𝐺𝑙
− 𝐻𝑂𝐿𝑗

,𝐺𝑙
 for each 𝐺𝑙 ∈

ℕ(𝐿𝑗)\{𝑂𝐿𝑗
}. Since d𝑽ℕ(𝐿𝑗)

𝐿
 cannot be measured directly, 

the estimate d𝑽̂ℕ(𝐿𝑗)
𝐿
 is used instead, where an element is 

denoted as d𝑉̂𝐿𝑘
. Then, the voltage of load 𝐿𝑗  can be 

estimated by: 

𝑉̂𝐿𝑗
= 𝑉𝑂𝐿𝑗

+ 𝑉̂𝑂𝐿𝑗
−𝐿𝑗

ℕ(𝐿𝑗)
𝐿 + 𝑉𝑂𝐿𝑗

−𝐿𝑗

ℕ(𝐿𝑗)
𝐺  

(23) 𝑉̂𝑂𝐿𝑗
−𝐿𝑗

ℕ(𝐿𝑗)
𝐿 = (𝑯𝑂𝐿𝑗

−𝐿𝑗

ℕ(𝐿𝑗)
𝐿 )

T

d𝑽̂ℕ(𝐿𝑗)
𝐿
 

𝑉𝑂𝐿𝑗
−𝐿𝑗

ℕ(𝐿𝑗)
𝐺 = (𝑯𝑂𝐿𝑗

−𝐿𝑗

ℕ(𝐿𝑗)
𝐺 )

T

d𝑽ℕ(𝐿𝑗)
𝐺
 

where 𝑉𝑂𝑖−𝐿𝑗

ℕ(𝐺𝑖)𝐺 is the contribution of the branch flow injected 

from all the DG buses into ℕ(𝐿𝑗) and 𝑉𝑂𝐿𝑗
−𝐿𝑗

ℕ(𝐿𝑗)
𝐺  is the 

contribution of power injection on all the load buses to the 

voltage drop between 𝑉𝐿𝑗
 and 𝑉𝑂𝐿𝑗

. The accent mark ‘^’ 

denotes the estimation. 

In (23), d𝑽ℕ(𝐿𝑗)
𝐿

 cannot be obtained directly, but the 

voltage of DG buses can constrain its value range. Similar to 

the load voltage, for each DG bus 𝐺ℎ ∈ ℕ(𝐿𝑗)  and 𝐿𝑘 ∈

ℕ(𝐿𝑗) , define 𝑯𝑂𝐿𝑗
−𝐺ℎ

ℕ(𝐿𝑗)
𝐿  as a vector of all the 𝐻𝑂𝐿𝑗

−𝐺ℎ

𝐿𝑘 =

𝐻𝐺ℎ,𝐿𝑘
− 𝐻𝑂𝐿𝑗

,𝑂𝐿𝑗
. Define 𝑯𝑂𝐿𝑗

−𝐺ℎ

ℕ(𝐿𝑗)
𝐺  as a vector of all the 

𝐻𝑂𝐿𝑗
−𝐺ℎ

𝐺𝑙 = 𝐻𝐺ℎ,𝐺𝑙
− 𝐻𝑂𝐿𝑗

,𝐺𝑙
 for each 𝐺𝑙 ∈ ℕ(𝐿𝑗)\{𝑂𝐿𝑗

} . 

Then, d𝑽̂ℕ(𝐿𝑗)
𝐿
 can be constrained by: 

∀𝐺ℎ ∈ ℕ(𝐿𝑗)\{𝑉𝑂𝐿𝑗
}, 𝑉𝐺ℎ

= 𝑉𝑂𝐿𝑗
+ 𝑉̂𝑂𝐿𝑗

−𝐺ℎ

ℕ(𝐿𝑗)
𝐿 + 𝑉𝑂𝐿𝑗

−𝐺ℎ

ℕ(𝐿𝑗)
𝐺  

(24) 
𝑉̂𝑂𝐿𝑗

−𝐺ℎ

ℕ(𝐿𝑗)
𝐿 = (𝑯𝑂𝐿𝑗

−𝐺ℎ

ℕ(𝐿𝑗)
𝐿 )

T

d𝑽̂ℕ(𝐿𝑗)
𝐿
 

𝑉𝑂𝐿𝑗
−𝐺ℎ

ℕ(𝐿𝑗)
𝐿 = (𝑯𝑂𝐿𝑗

−𝐺ℎ

ℕ(𝐿𝑗)
𝐿 )

T

d𝑽ℕ(𝐿𝑗)
𝐺
 

In addition, all the load buses absorb power from the 

system, and the total demand in the subneighborhood can be 

determined by the branch flows:  

∀𝐿𝑘 ∈ ℕ(𝐿𝑗), d𝑉̂𝐿𝑘
< 0 

(25) 
∑ d𝑉̂𝐿𝑘𝐿𝑘∈ℕ(𝐿𝑗) =− ∑ d𝑉𝐺𝑙𝐺𝑙∈ℕ(𝐿𝑗)  

According to the LinDistFlow model, for all d𝑽̂ℕ(𝐿𝑗)
𝐿
 that 

satisfy Eqs. (24)-(25), it is easy to prove that 𝑉̂𝐿𝑗
= 𝑉𝐿𝑗

 if 

ℕ(𝐿𝑗) is a type II subneighborhood, and 𝑉̂𝐿𝑗
 will higher than 

the lowest 𝑉𝐺ℎ
 if ℕ(𝐿𝑗) is a type I subneighborhood. That is, 

using (23) to estimate the lowest voltage in a type I or II 

subneighborhood will not introduce any error, regardless of 

the error of d𝑽̂ℕ(𝐿𝑗)
𝐿
. 

For a type III subneighborhood, the error of d𝑽̂ℕ(𝐿𝑗)
𝐿
 may 

introduce error to the estimation of 𝑉̂𝐿𝑗
 if there is no branch 

directly connecting 𝐿𝑗 and a DG bus and the equations in (24) 

are not enough to determine d𝑽̂ℕ(𝐿𝑗)
𝐿
. The estimation of the 

lowest voltage in a type III neighborhood will be more 

conservative if the estimation of load distribution is more 

clustered at a location close to DG buses, and it will be more 

aggressive if the estimation of load distribution is more 

clustered at the location far from DG buses. As a 

compromise, we assumed that the power demand is 

distributed as evenly as possible in the unmeasurable loads 

under the constraints in Eqs. (24)-(25)  

min
d𝑽̂

ℕ(𝐿𝑗)
𝐿

𝑠2(d𝑽̂ℕ(𝐿𝑗)
𝐿
) 

(26) 

subject to Eqs. (24)-(25) 
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where 𝑠2(d𝑽̂ℕ(𝐿𝑗)
𝐿
) denotes the variance in all the elements 

in d𝑽̂ℕ(𝐿𝑗)
𝐿
.  

Substituting the estimates of 𝑤𝑖,𝑘
𝑖𝑛 (𝑡) and 𝑉𝐿𝑗

 into 12 and 

14, the reactive power regulation problem can be solved only 

with the measurement of DG buses. 

IV. REAL-TIME CONTROL SYSTEM 

According to the distributed solution method given in 

Section III, a real-time distributed reactive power regulation 

system can be designed for a distribution system.  

In this system, all the DG buses are assumed to be 

equipped with reactive power regulators that can gather the 

local bus voltage, bus power injection, and branch flows 

measured by the CT on local buses. Regulators in a 

neighborhood can communicate with each other and regulate 

the reactive power injection of the local DG.  

The control law for the regulator in each DG bus 𝐺𝑖  is 

given below: 

SECTION Algorithm 

Executed at time step 0： 

Initialize the local Lagrangian multiplier vector 𝒗(0) as an all-zero vector. 

Executed at each step t： 

1. Gather the measurement of local power injection, local voltage and 

branch flows. 

2. Gather the measurements of DG voltages, DG power injections and 

branch flows measured on DG buses as well as the Lagrangian multipliers 

of DG voltages and DG reactive power injections from the neighborhood. 

3. Estimate the load distribution for all subneighborhoods in the 

neighborhood by 26. 

4. Estimate all the load voltages by 23. 

5. Update local Lagrangian multipliers by 12. 

6. Calculate 𝑤𝑖,𝑘
𝑜𝑢𝑡 and 𝑤̂𝑖,𝑘

𝑖𝑛 (𝑡) by 17 and 22, respectively. 

7. Estimate 𝑤𝑖,𝑘(𝑡) as 𝑤𝑖,𝑘(𝑡) = 𝑤̂𝑖,𝑘
𝑖𝑛 (𝑡) + 𝑤𝑖,𝑘

𝑜𝑢𝑡 

8. Calculate 𝑄𝐺𝑖
(𝑡 + 1) by 14. 

9. Update the local reactive power reference by 𝑄𝐺𝑖
(𝑡 + 1). 

V. CASE STUDY 

The proposed algorithm has been simulated on a testbed 

inspired by the IEEE 33-bus radial distribution system [26]. 

A schematic diagram of the test system is shown in Fig. 5. 
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FIGURE 5. Schematic representation of the IEEE 33-bus test feeder. Solid 

points represent agents, while hollow points represent load buses. 

 

The default load injections of the system, as shown in Fig. 

6, are not distributed uniformly in each neighborhood, and 

the power factors of the loads in each neighborhood are not 

the same. These characteristics reflect the actual situation of 

the real-world distribution system and will produce errors in 

the estimations given by 22 and 26.  

 
FIGURE 6. Default load demands in the 33-bus system. 

 

The voltage limit of the nodes is set to ±5% of the nominal 

level 1.0; thus, the lower and upper bounds of the bus voltage 

are 0.95 and 1.05 p.u., respectively. The DGs are assumed to 

be installed at 8 buses, each with a default capacity of 550 

kVA. 

In addition to the proposed method, a centralized 

optimizer is used to give the optimum output of the case. The 

DORPF method given in [23], which requires the PMU data 

of all the DG buses without considering the load voltage 

constraints, is used as a positive control group, while a 

negative control group in which all the DG buses are used as 

pure active sources is also given. The simulation lasts 100 

steps, while the load demands and the DG capacity are 

increased by 1.2 times the default value and considered static. 

The curves of the lowest bus voltage in the system and the 

active power losses are shown in Fig. 7 and 8, respectively. 

The simulation result shows that both the given method and 

the DORPF can maintain the bus voltages and reduce the 

power losses; the estimate used in part C of Section III does 

not introduce error to the regulation even though the power 

factor and load distribution in each neighborhood are not 

ideal. 

 

 
FIGURE 7. The lowest voltage in the system under a load level of 1.2x. 
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FIGURE 8. The system active loss under a load level of 1.2x. 

 

By increasing the load demand in the system and the 

capacity of DG buses to 1.4 times the default value, the 

curves of the lowest bus voltage in the system and the active 

power losses are shown in Fig. 9 and 10, respectively. The 

simulation result shows that the DORPF method cannot 

maintain the under voltage of load buses, while the given 

method can maintain the load voltage within 80 steps. The 

active power loss after the voltage is maintained by the 

proposed method is slightly larger than the optimal solution 

given by the centralized optimizer, but the difference is 

acceptable relative to the total active loss. 

 

 
FIGURE 9. The lowest voltage in the system under a load level of 1.4x. 

 

 
FIGURE 10. The system active loss under a load level of 1.4x. 

 

To determine whether the method works in more general 

scenarios with different load power factors and load 

distributions, we generate 1000 scenarios in which the active 

and reactive power injections of buses follow the normal 

distribution, where the mean value is the default value of a 

33- bus system and the standard deviation is 4%, resulting in 

different power injections and power factors for each bus in 

each scenario. For each scenario, the DG reactive power will 

be regulated by 100 steps of the proposed method and the 

ORPF method, respectively, and we can validate the 

performance of the proposed method through comparison.  

When we set the load level of the system as 1.2x of the 

default value, both the given method and the DORPF method 

can maintain the load voltage and reduce the power losses. 

The lowest bus voltage and the active power losses for each 

sample are shown in Fig. 11 and 12, respectively. 

 
FIGURE 11. The lowest voltage for each scenario under a load level of 
1.2x. 
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FIGURE 12. The system active loss for each scenario under a load level 
of 1.2x. 

 

When we increase the load level to 1.4x, the proposed 

method can still maintain the load voltage, whereas DORPF 

cannot. Although the proposed method undergoes a higher 

power loss than DORPF to maintain the load voltage, the loss 

is still significantly reduced compared with that of the 

negative control group. 

These results show that the proposed method performs 

similarly to the existing distributed method, which uses PMU 

under light-load conditions, in terms of its ability to reduce 

the active loss while maintaining the load voltage, and it can 

better maintain the load voltage than the existing method 

under heavy load conditions. 

 

 
FIGURE 13. The lowest voltage for each scenario under a load level of 
1.4x. 

 
FIGURE 14. The system active loss for each scenario under a load level 
of 1.4x. 

VI. CONCLUSIONS 

In this paper, we propose a distributed reactive power 

regulation strategy that works in an environment in which no 

PMU data can be obtained. In the proposed strategy, 

distributed generators can perceive their own voltage 

magnitude and the P/Q flows in the connected branches, 

communicate with nearby DG buses, and then adjust the 

reactive power injections into the grid to minimize power 

losses and maintain bus voltages. Compared with the existing 

methods, the proposed method can be implemented more 

easily due to its low measurement requirements. Furthermore, 

it can keep not only the DG buses but also the unmeasurable 

load buses within the voltage constraints. 
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