
   

Abstract— Power systems with high penetration of wind resources 

must cope with significant uncertainties originated from wind power 

prediction error. This uncertainty might lead to wind power curtailment 

and load shedding events in the system as a big challenge. Efficient 

modeling and incorporation of wind power uncertainty in generation 

and reserve scheduling can prevent these events. This paper presents a 

new framework for wind power cumulative distribution function (CDF) 

modeling and its incorporation in a new chance-constrained economic 

dispatch (CCED) problem. The proposed CDF modeling uses few mo-

ments of wind power random samples. To validly capture the actual 

features of the wind power distribution such as main mass, high skew-

ness, tails, and especially boundaries from the moments, an efficient 

moment problem is presented and solved using the beta kernel density 

representation (BKDR) technique. Importantly, a new polynomial cost 

function for efficient modeling of wind power misestimation costs is 

proposed for the CCED problem that eliminates the need for an analyti-

cal CDF and enables the use of an accurate piecewise linearization tech-

nique. Using this technique, the non-linear CCED problem is converted 

to a mixed-integer linear programming (MILP)-based problem that is 

convex with respect to the continuous variables of the problem. There-

fore, it is solved via off-the-shelf mathematical programming solvers to 

reach more optimal results. Numerical simulations using the IEEE 118-

bus test system show that compared with conventional approaches, the 

proposed MILP-based model leads to lower power system total cost, and 

thereby is suggested for practical applications. 
  

 Index Terms— Chance-constrained optimization, mixed-integer line-

ar programming, wind power probability distribution. 

NOMENCLATURE 

A. Abbreviations 

BKDR Beta kernel density representation  

CCED Chance-constrained economic dispatch 

CCF Conventional cost function 

CCSO Chance-constrained stochastic optimization 

CDF Cumulative distribution function 

CL Confidence level 

CPPs Conventional power plants 

DRCC Distributionally robust chance constraints  

GMM Gaussian mixture model 

GGMM Generalized gaussian mixture model 

MILP Mixed-integer linear programming 

NCF New cost function 

PB Power bin 

PDF Probability density function 

PIs Prediction intervals 

RMSE Root mean square error 

RO Robust optimization  

SSA Simplified sequentially adaptive 
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SLP Sequential linear programming 

SO Stochastic optimization 

TVD Truncated versatile distribution 

VMD Versatile mixture distribution 

WFs Wind farms 

B. Functions 

𝐵(∙) Beta function. 

𝐶𝑡,𝑖
𝑔

 Generation cost of unit 𝑖 at hour 𝑡. 

𝐶𝑡,𝑖
𝑟  Reserve cost of unit 𝑖 at hour 𝑡. 

𝐶𝑡
𝑑𝑤 Direct cost of wind power generation at hour 𝑡. 

𝐸�̂�𝑡
𝑈𝑃 , 𝐸�̂�𝑡

𝐿𝑆, 

 𝐸�̂�𝑡
𝐷𝑁, 𝐸�̂�𝑡

𝑊𝐶  

Estimated expected cost for upward (UP) reserve, load 

shedding (LS), downward (DN) reserve, and wind 

curtailment (WC) at hour 𝑡. 

𝐹(𝑧) A typical non-linear function with variable 𝑧. 

𝑓𝑡(∙), �̂�𝑡(∙) Estimated PDF and CDF at hour 𝑡. 

�̂�𝑡
−1(∙) Inverse of the estimated CDF at hour 𝑡. 

𝑓𝐵 Beta kernel function. 

𝐹𝑒 Empirical CDF. 

𝜅(∙) Kernel function. 

C. Parameters 

𝐴𝑞/𝐴𝑞
′ /𝐵𝑞

/𝐵𝑞
′  

Estimated UP reserve/LS/ DN reserve/WC cost coef-

ficients of wind power generation. 

𝐶𝐿𝑈𝑃/𝐶𝐿𝐷𝑁 Confidence levels for enough UP/DN reserve. 

𝑐𝑖
𝑈𝑃/𝑐𝑖

𝐷𝑁 UP/DN reserve cost coefficients of unit 𝑖. 

ℎ/ℎ Lower/upper values of beta kernel bandwidth. 

𝐼 Number of beta kernel components. 

𝐿𝑡
𝑏 Base load of system at hour 𝑡. 

𝑁 Number of sample moments. 

𝑁𝑃𝐵, 𝑁𝐺, 𝑁𝑊 Number of power bins, CPPs, and WFs. 

𝑃𝑖/𝑃𝑖 Lower /upper limit of generation for unit 𝑖. 

∆𝑃𝑖

𝑈𝑃
/∆𝑃𝑖

𝐷𝑁
 UP/DN maximum ramp limits. 

𝑟𝑖
𝑈𝑃

/𝑟𝑖
𝐷𝑁

  Maximum value of UP/DN reserve for unit 𝑖. 

𝜇𝑛 𝑛𝑡ℎ sample moment of a random variable. 

𝛬 Number of linearization segments. 

𝜓𝜆, 𝑚𝜆, 𝑛𝜆 Constant parameters of piecewise linearization. 

𝛾𝑈𝑃/𝛾𝐿𝑆

/𝛾𝐷𝑁/𝛾𝑊𝐶  

UP reserve/LS/ DN reserve/WC penalty factors for 

wind power uncertainty. 

D. Variables  

�̂� Main-mass interval for PDF construction. 

ℎ Bandwidth of beta kernel for PDF construction. 

𝑃𝑡,𝑖 Scheduled generation of unit 𝑖 at hour 𝑡. 

𝑟𝑡,𝑖
𝑈𝑃/𝑟𝑡,𝑖

𝐷𝑁 Scheduled UP/DN reserve of unit 𝑖 at hour 𝑡. 

𝑅𝑡,𝑗
𝑈𝑃/𝑅𝑡,𝑗

𝐷𝑁  Scheduled UP/DN reserve for managing the uncertain-

ty of wind farm 𝑗 at hour 𝑡. 

𝜐𝑖 , 𝜁𝑖 Parameters of 𝑖𝑡ℎ beta component. 

𝜔 Total wind power generation random variable. 

𝜔𝑡 Scheduled total wind power generation at hour 𝑡. 

𝓌𝑡,𝑗 Scheduled generation of wind farm 𝑗 at hour 𝑡. 

𝓌𝑟,𝑗 Generation capacity of wind farm 𝑗. 

𝑥𝑖/𝑝𝑖 Location/ weight of 𝑖𝑡ℎ beta component.  

𝛿𝜆/∆𝜆 Continuous/binary auxiliary variables of piecewise 

linearization technique. 
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E. Matrices & Vectors 

𝑪𝑁×𝐼 Beta kernel moments matrix. 

𝐻 Bandwidth vector for optimal beta kernel bandwidth 

selection. 

𝒑, 𝝊, 𝜻 PDF reconstruction vectors for a typical PB. 

𝚸, 𝚼, 𝚭 PDF reconstruction matrices for all PBs.  

𝛍 Moment vector of a random sample. 

I. INTRODUCTION 

A. Motivation 

 HE increasing penetration of uncertain wind power in overall gen-

eration around the world can adversely affect the operation, flexi-

bility, and security of large-scale power systems in terms of reserve 

depletion, transmission line overloading, incremental cost of total gener-

ation, etc. [1]. Accurate wind power generation uncertainty modeling 

should be accomplished as the first step to handle the uncertainty in 

power systems [2]-[11]. In the second step, optimal reserve and genera-

tion scheduling in a look-ahead  economic dispatch (ED) problem should 

be carried out using an efficient stochastic methodology. Chance-

constrained ED (CCED) is one such efficient stochastic methodology for 

uncertainty management [2]-[5]. 

Because the conventional cost function (CCF) in the CCED problem 

includes the expected values of wind power overestimation and underes-

timation costs expressed by a non-linear and non-convex structure, it is 

not efficient to solve the CCED problem in a conventional optimization 

framework. In addition, parametric distribution models containing 

closed forms for cumulative distribution functions (CDFs) are usually 

used for wind power [2]-[7], [9], [10]. This structure of CCF prevents 

power system operators from using more accurate distribution models 

(e.g., non-parametric models) and efficient optimization algorithms such 

as mixed-integer linear programming (MILP). Therefore, sequential 

linear programming (SLP) based on Taylor series expansion is often 

used as an optimization approach for the CCED problem [2]-[5]. The 

main motivation of this paper is to propose a generic convex model that 

is convex with respect to the continuous variables of the problem. Also, 

it is adaptable to both parametric and non-parametric wind power distri-

bution models and can provide the opportunity to formulate the CCED 

model like an MILP model while a finite convergence to a global opti-

mal solution for the linearized model is guaranteed. 

B. Literature Review and Challenges 

Wind power distribution modeling is the cornerstone of overall uncer-

tainty modeling in power systems [8]. Recent studies have proposed 

parametric probability density functions (PDFs) (e.g., Cauchy [6], 

Weibull, hyperbolic [7], Gaussian [9], and beta [10]) for wind power 

generation. In [6], a more flexible and complex distribution, i.e., the 

Levy 𝛼-stable distribution, is also proposed for probabilistic reserve 

sizing in power systems. Efficient versatile and truncated versatile dis-

tributions (TVD) for wind power forecast error are proposed and im-

plemented in a look-ahead stochastic ED in [2], [3]. Conditional wind 

power forecast error modeling is presented in [8] using a Gaussian copu-

la function for generation scheduling. Alternatively, a Gaussian mixture 

model (GMM) and a versatile mixture distribution (VMD) are adopted 

in [4], [5], to represent more accurate wind power distribution models. 

However, the constructed distributions might show boundary effects 

because Gaussian and versatile components are not bounded between 0 

and 1 p.u. In recent researches, a generalized gaussian mixture model 

(GGMM) is proposed by [12], [13] for statistical representation and 

probabilistic forecasting of wind power ramps with especial features like 

duration, rate, and magnitude. In [11], the Copula Theory is used as an 

efficient approach to model the dependency structure among wind re-

sources. It uses dependent discrete convolution to obtain the distribution 

of aggregate wind power in high-dimensional cases. Although depend-

ency structure modeling is important, it is a complex process and is not 

in the main scope of this paper for overall uncertainty modeling. To deal 

with the uncertainty of wind power in real-world power system applica-

tions, many researchers have proposed different methodologies. Sto-

chastic optimization (SO) is proposed for look-ahead ED in [14]-[16] to 

 

 
Fig. 1. Overview of the economic dispatch model with the proposed building 

blocks: (a) BKDR block and (b) wind power cost coefficient estimation block. 
manage the uncertainty of renewable energy resources. In SO, several 

scenarios are extracted from a predetermined probability distribution to 

consider the possible values of uncertain variables. However, the opti-

mal solution and computational efficiency strongly depend on the num-

ber of scenarios and the corresponding probabilities. In [2]-[5], [17], 

[18], chance-constrained SO (CCSO) is used as a more efficient method 

by adjusting a predefined level of risk. In this method, accurate distribu-

tion models for wind power sources are required to preserve the security 

of the system with a certain probability level. In [19]-[24] distributional-

ly robust chance-constrained (DRCC) optimization is used, where in-

stead of accurately estimating the wind power probability distribution, a 

moment-based ambiguity set is defined to cover a family of distributions 

for uncertainty sources. It can be used in diverse areas such as distribu-

tion system planning [19], AC optimal power flow [20], [22]-[23], and 

energy and reserve dispatch [21]. The keen readers are referred to [24] 

for mathematical details of DRCC. Robust optimization (RO) as an al-

ternative method that improves the security of the system allows wind 

power to vary in a given uncertainty range [25]-[27]. However, RO 

leads to an overly conservative solution because it minimizes the cost of 

the worst-case scenario. Interval optimization (IO) uses prediction inter-

vals (PIs) and central prediction point to minimize the system operating 

cost. Compared to CCSO and RO, IO is respectively more conservative 

and less precise [17], [18], [25]-[28]. In [29], a two-stage optimization 

process is proposed for battery energy storage capacity for alleviating 

wind curtailment in a second-order cone programming framework while 

wind power is modeled by lower and upper intervals. Considering large 

intra-interval variations of wind power, an intra-interval security dis-

patch is proposed in [30] to provide a trade-off between economics and 

security. A strategic reserve purchasing is proposed in [31] to mitigate 

wind power uncertainty in a real time market and avoid a predetermined 

penalty for wind power producers (WPPs). In [32], a convex model is 

proposed for a risk-based unit-commitment that considers wind power 

uncertainty to manage wind curtailment, load shedding, and line over-

flow. This paper focuses on CCSO technique for wind power uncertain-

ty management. Based on the literature, the approaches utilized in 

CCED have used approximate calculations for partial derivatives of the 

CCF, which might lead to a non-optimal solution [2]-[5]. The above-

mentioned methodologies for wind power uncertainty modeling and 

handling in ED problems have their own merits and demerits. The litera-

ture, however, lacks an efficient CCED model for simultaneous incorpo-

ration of non-parametric distribution models and highly accurate lineari-

zation techniques for the cost function. Fig.1 shows an overview of the 

proposed MILP-based CCED model in this study where the building 

blocks (a) and (b), as the main novelty of this study, are proposed for an 

efficient rolling dispatch system. All details of each block are explained 

in Section II to Section IV through representation of Algorithm 1, Algo-

rithm 2, Algorithm 3, and the general structure of the proposed frame-

work. 

C. Contribution 

 This paper proposes an efficient CCED model and makes the follow-

ing contributions: 

1) An efficient methodology for construction of a new cost function 

(NCF) is proposed for nonlinear CCED models by which power sys-

tem operators can use parametric and non-parametric distribution 

models for wind power.  
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2) Because of the proposed NCF, a highly accurate linearization 

technique, i.e., piecewise linearization, can be used to convert the 

non-linear CCED into an efficient MILP-based model.  

3) For the first time, an efficient wind power distribution modeling is 

proposed using finite sample moments (e.g., 10 to 20) and the beta 

kernel density representation (BKDR) technique. 

4) Because the BKDR technique represents the target distribution 

using several beta components with restricted parameters’ range, it 

avoids boundary effects while capturing certain features of wind pow-

er distribution without reflecting overfitting problem.  

D. Organization 

This paper is organized as follows. In Section II, a new approach for 

wind power distribution modeling is proposed based on the information 

provided by several sample moments. Section III and IV present the 

CCED model and the challenges along with the solution methodology, 

respectively. Comprehensive simulation results are presented in Section 

V. Finally, Section VI concludes the paper. 

II. WIND POWER DISTRIBUTION MODELING USING THE BETA KERNEL 

DENSITY REPRESENTATION TECHNIQUE 

The reconstruction of a probability distribution 𝑓(𝑥) using a limited 

number of moment data 𝜇𝑛 is called the truncated moment problem first 

proposed by Stieltjes and stated as follows [33].  

𝜇𝑛 = ∫ 𝑥𝑛𝑓(𝑥) 𝑑𝑥    ,      𝑛 = 0,1,2, … , 𝑁  (1) 

The question is how to use the information available in 𝜇𝑛 to recover 

the corresponding target function 𝑓(𝑥) with high accuracy. If the target 

PDF 𝑓(𝑥) is bounded in interval 𝑥 ∈ [𝑎, 𝑏], the truncated Hausdorff 

moment problem is realized [34]. To obtain a satisfactory solution to 

this problem, two steps should be followed. First, an appropriate repre-

sentation methodology, i.e., kernel density representation (KDR), for the 

function to be recovered should be chosen. Second, some important 

features or a priori knowledge about the target PDF 𝑓(𝑥), such as 

boundary conditions, tail behavior, modality information, and the main-

mass interval, need to be determined to improve the solution [34]. For a 

truncated Hausdorff moment problem, it suffices to determine the main-

mass interval referred to as �̂�. 

A. KDR-Based Wind Power PDF Representation 

KDR is a parametric representation of PDF 𝑓(𝑥) by means of a 

weighted sum of known non-negative kernel density functions (KDFs), 

as shown in (2) [33], [34]. 

𝑓(𝑥; 𝒑) = ∑ 𝑝𝑖  𝜅(𝑥; 𝑥𝑖 , ℎ)𝐼
𝑖=1             𝑥 ∈ [0,1]  (2) 

∑ 𝑝𝑖
𝐼
𝑖=1 = 1   ,   𝑝𝑖 ≥ 0    ,   𝒑 = [𝑝1, … , 𝑝𝐼]T  (3) 

Bandwidth parameter ℎ, which controls the smoothness of the overall 

fit, can be determined either from a predetermined optimal range or by 

minimizing the estimated error of the KDR model as it is proposed in 

this work. Equation (2) means that an unknown density function 𝑓(𝑥) 

can be represented by 𝐼 kernels placed at uniformly distributed locations 

𝑥𝑖 of the sample space [0,1], where 𝑝𝑖 measures the contribution of the 

𝑖𝑡ℎ kernel to the overall density evaluation and should meet the con-

straints in (3). According to (2), the KDF 𝜅(∙), the kernel weights 𝑝𝑖, the 

kernel locations 𝑥𝑖, and bandwidth ℎ should be optimally determined to 

efficiently reconstruct 𝑓(𝑥). The optimal values of parameters 𝑝𝑖, 𝑥𝑖, 

and , ℎ are obtained through minimizing a performance criterion, e.g., 

‖𝑓 − 𝑓‖
2
. Also, instead of using the whole interval [0,1] in (2), a main-

mass interval, e.g., �̂�, can be estimated by which the performance of the 

proposed technique is improved. The details of each part are provided in 

sections II.B, II.C, and II.D, respectively. 

B. A Proper Choice for KDF: Beta Distribution 

For 𝑥 ∈ [0,1], the beta PDF with two main parameters (𝜐, 𝜁)  ex-

pressed by (4) is an efficient choice for the KDR process because of four 

main advantages expressed as follows: (i) it is bounded between 0 and 1 

like normalized wind power distribution; thus, by summation of several 

beta distributions over the range [0,1] a bona fide PDF is obtained with-

out occurring boundary effects; (ii) the set of beta parameters (𝜐𝑖 , 𝜁𝑖) is 

easily related to the set of location and bandwidth parameters (𝑥𝑖 , ℎ) 

 

Fig. 2. Illustration of several beta distribution over the range [0,1]. 

using a closed form (i.e., algebraic system (6)-(7)); (iii) there is a simple 

function by which the moments of beta distribution can be calculated 

(i.e., equation (9)); (iv) the flexible shape of the beta distribution sym-

metrically changes so that it coincides with the skewness of wind power 

PDF from the lower boundary region to the upper boundary region [10]. 

Thus, according to (2), the target PDF, 𝑓(𝑥), can be approximated by 

(5). To calculate the parameters 𝜐𝑖 and 𝜁𝑖, a natural choice is to use 

mode and variance expressions of 𝑓𝐵 in (6)-(7). Thus, for a given set of 

values (𝑥𝑖 , ℎ), the parameters (𝜐𝑖 , 𝜁𝑖) are obtained by solving the alge-

braic system (6)-(7). Fig.2 shows beta distributions with five sets of 

parameters (𝜐𝑖 , 𝜁𝑖) over the range [0,1]. 

 

𝜅(𝑥; 𝑥𝑖 , ℎ) = 𝑓𝐵(𝑥; 𝜐, 𝜁) =
1

𝐵(𝜐,𝜁)
 𝑥(𝜐−1)(1 − 𝑥)(𝜁−1)   (4) 

𝑓(𝑥; 𝒑, 𝝊, 𝜻) = ∑
𝑝𝑖

𝐵(𝜐𝑖,𝜁𝑖)
 𝑥(𝜐𝑖−1)(1 − 𝑥)(𝜁𝑖−1)𝐼

𝑖=1      (5) 

𝑥𝑖 = 𝑚𝑜𝑑𝑒(𝑓𝐵(𝑥; 𝜐𝑖 , 𝜁𝑖)) =
𝜐𝑖−1

𝜐𝑖+𝜁𝑖−2
   (6) 

ℎ2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑓𝐵(𝑥; 𝜐𝑖 , 𝜁𝑖)) =
𝜐𝑖 𝜁𝑖

(𝜐𝑖+𝜁𝑖)2(𝜐𝑖+𝜁𝑖+1)
  (7) 

C. Optimal Calculation of KDF Weights 

Given a finite number of sample moments 𝛍 = [𝜇1, … , 𝜇𝑁]T of an 

unknown target PDF 𝑓(𝑥), 𝐼 locations on the sample space [0,1] 
(𝐼 ≤ 𝑁), and bandwidth value ℎ, the weights 𝑝𝑖 are calculated by solv-

ing the simple minimization problem (8). For the numerical solution of 

(8), the function lsqnonneg of the MATLAB optimization package is 

employed. The matrix 𝑪𝑁×𝐼, which contains 𝑁 moments of the beta 

kernel on each location, is obtained by (9) [34]. Therefore, the set 

of (𝜐𝑖 , 𝜁𝑖) or the locations 𝑥𝑖 and bandwidth ℎ should be optimally se-

lected to achieve an optimal solution for (8). 

�̂� = arg min
𝑝𝑖

1

2
‖𝛍 − 𝑪𝒑‖2        s.t. (3) (8) 

𝑪𝑛,𝑖 = ∫ 𝑥𝑛𝑓𝐵(𝑥; 𝜐𝑖 , 𝜁𝑖) 𝑑𝑥
1

0
= ∏

𝜐𝑖+𝑠

𝜐𝑖+𝜁𝑖+𝑠
𝑛−1
𝑠=0   (9) 

𝑛 = 0,1, … , 𝑁       ,       𝑖 = 1,2, … , 𝐼  

𝑅𝑀𝑆𝐸 = [
1

𝑁𝑠

∑ (�̂�(𝑥𝑖) − 𝐹𝑒(𝑥𝑖))
2𝑁𝑠

𝑖=1 ]
1/2

  (10) 

D. Optimal Parameters of the Beta KDF  

Simulations show that kernel locations 𝑥𝑖 and bandwidth ℎ have a 

sizable impact on the quality of the overall estimation. It is much easier 

to find the optimal set (𝑥𝑖 , ℎ) than (𝜐𝑖 , 𝜁𝑖) because the ranges of 𝑥𝑖  and ℎ 

are definite. To find the above-mentioned parameters, a strategy is 

adopted in this section and shown by Algorithm 1 in Fig. 3. It uses an 

iterative simplified sequentially adaptive (SSA)algorithm to find optimal 

locations 𝑥𝑖 and a parallel computing-based procedure to find the opti-

mal value of bandwidth ℎ [33]. The basic idea behind the SSA algorithm 

is to propagate an initial set of kernel locations based on the values of 

their weights and the distance between successive locations. SSA algo-

rithm is based on two criteria: (i) the death of insignificantly weighted 

kernels and (ii) the birth of new kernel locations. The first criterion is 

fulfilled by defining a small threshold value denoted by 𝜀𝑑. Using this 

criterion, the kernels with weights smaller than 𝜀𝑑 are removed. The 

second criterion is met by identifying the kernels with the highest weight 

and adding two location points nearby. The progressive impoverishment 

of the resulting KDR model is avoided by considering a small number of 

iterations 𝑘 (e.g., 𝕂 =5). Algorithm 1 finds the optimal bandwidth ℎ𝑜𝑝𝑡 

through a parallel-computing process based on the minimization of the 

root mean square error (𝑅𝑀𝑆𝐸) in (10).  

  

 

𝜐 = 2    , 𝜁 = 30   (𝑥𝑖 = 0.034 , ℎ = 0.042 ) 

𝜐 = 30 , 𝜁 = 2      (𝑥𝑖 = 0.966 , ℎ = 0.042 ) 

𝜐 = 30 , 𝜁 = 30   (𝑥𝑖 = 0.500 , ℎ =  0.064) 

𝜐 = 30 , 𝜁 = 10   (𝑥𝑖 = 0.763 , ℎ = 0.067 ) 

𝜐 = 10 , 𝜁 = 30   (𝑥𝑖 = 0.237 , ℎ = 0.067 ) 
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Fig. 3. Flowchart of Algorithm 1 which determines optimal values of beta kernels 

parameters 𝑝𝑖, 𝑥𝑖, and ℎ where ∆𝑥 = 𝑚𝑖𝑛{𝑥𝑖𝑚𝑎𝑥
− 𝑥𝑖𝑚𝑎𝑥−1 , 𝑥𝑖𝑚𝑎𝑥+1 − 𝑥𝑖𝑚𝑎𝑥

}. 

 

Fig. 4. Flowchart of Algorithm 2 which determines main-mass interval �̂�. 

The 𝑅𝑀𝑆𝐸𝑚𝑖𝑛 is based on CDF estimation and ensures that the esti-

mated CDF contains existing features of the empirical CDF. The 𝑅𝑀𝑆𝐸 

minimization procedure is very fast and simple. Suppose ℎ lies in the 

range 𝐻 = [ℎ, ℎ], and let ℎ𝑗, 𝑗 = 1, … , 𝑚 be 𝑚 evenly spaced points 

in 𝐻. The SSA algorithm is performed for each ℎ𝑗 and iteration 𝑘 to 

estimate �̂� and compute 𝑅𝑀𝑆𝐸 to find optimal set {𝒑, 𝝊, 𝜻}. In order to 

avoid PDFs with many peaks and valleys as an over-fitted modeling, 

three input parameters 𝐼, ℎ, and 𝕂 in the proposed SSA algorithm are set 

on reasonable ranges 𝐼 ∈ [5,20], ℎ ∈ [0.01,0.10], and 𝕂 ∈ [2,5]. There-

fore, high computational efficiency and accuracy of distribution model-

ing can be assured without overfitting. As indicated, the overall im-

provement of the PDF reconstruction procedure is achieved by deter-

mining the main-mass interval �̂� in which the beta functions are placed. 

In this work, instead of setting the main-mass interval to be equal to the 

support (i.e., �̂� = [0,1]) and varying the number of location points 𝐼 

based on some criteria, an initial main-mass interval [𝑥𝐿
(0)

, 𝑥𝑅
(0)

] is cho-

sen, then the endpoints of the main-mass interval change. In this way, a 

set of intervals are obtained, and Algorithm 1 can be applied to each 

interval. A reasonable and simple choice for endpoints [𝑥𝐿
(0)

, 𝑥𝑅
(0)

] that 

covers the main part of the probability mass is based on the empirical 

PDF. The main steps of this procedure are given by Algorithm 2 in 

which Algorithm 1 is the main part as shown in Fig. 4. 

E. Proposed Conditional Modeling of Wind Power CDF 

As the level of wind power uncertainty greatly depends on the fore-

cast value, the wind power PDF has a conditional relationship with the 

wind power forecast value [7], [8]. In this section, the conditional model 

of wind power PDF is presented based on the proposed wind power 

distribution modeling. However, the performance of the proposed prob-

ability distribution modeling does not depend on the deterministic pre-

diction accuracy since the proposed model tunes the range of input pa-

rameters 𝐼, ℎ, �̂� , and 𝕂 by pre-processing of received actual and pre-

dicted time series. For given forecast value �̂�𝑡, the wind power PDF is 

specified using (11) with predetermined optimal sets of 𝒑, 𝝊, and 𝜻. To 

assign a certain set of 𝒑, 𝝊, and 𝜻 to forecast value �̂�𝑡, the forecast range 
[0,1] p.u. is first divided into several equally sized power bins (PBs). 

𝑁𝑃𝐵 depends on the length of the wind power time series under study, 

which usually equals to 20 if there are sufficient samples (i.e., 𝑋𝑖) inside 

each PB. Then, using the wind power samples inside each PB, the sam-

ple moments (i.e., 𝜇𝑛) of wind power are calculated via (12). Finally, 

using Algorithm 2, the optimal sets 𝚸, 𝚼, and 𝚭, expressed by (13), are 

obtained for the related time series. Therefore, different PBs have differ-

ent sets of 𝒑, 𝝊, and 𝜻 that lead to PDFs with diverse features. The ma-

trices {𝚸, 𝚼, 𝚭} can be updated weekly. The proposed wind power CDF 

modeling might be run every day, every week, etc. whenever enough 

new wind power samples are available for updating the inputs. 

In this paper, for the sake of simplicity, the time series of real and 

predicted wind power are supposed to have 10-min resolution with 10-

min prediction horizon. However, for conditional PDF modeling, the 

evolution of estimated PDFs depends on the prediction horizon and 

resolution. The prediction horizon and resolution of the time series un-

der study should be consistent with the power system generation and 

reserve dispatch because, for example, the PDF of wind power looking 

10-min ahead is different from 1-hour ahead. If the dispatch system is 

run every hour with 10-min resolution, the prediction horizon of histori-

cal data can be one hour with the same resolution.  It is worth noting 

that, without loss of generality, the proposed conditional PDF modeling 

can be done for various prediction horizons and resolutions.  

𝑓(𝑥|�̂�𝑡) = 𝑓(𝑥|𝒑, 𝝊, 𝜻) = 𝑓(𝑥; 𝒑, 𝝊, 𝜻) (11) 

𝜇𝑛 =
1

𝑁𝑠

∑ 𝑋𝑖
𝑛𝑁𝑠

𝑖=1     ,        𝑛 = 0,1,2, … , 𝑁  (12) 

𝚸 = {𝒑𝒌}
𝑘=1
𝑁𝑃𝐵    , 𝚼 = {𝝊𝒌}

𝑘=1
𝑁𝑃𝐵    , 𝚭 = {𝜻𝒌}

𝑘=1
𝑁𝑃𝐵  (13) 

F. Comparisons with Other Distribution Models 

To show the superiority of the proposed wind power distribution 

modeling, a quantitative analysis is provided to compare with TVD, 

GMM, VMD, and GGMM [3]-[7], [12], [13] using three wind power 

datasets. Dataset 1- Canada’s Alberta Electric System Operator (AESO) 

dataset with 1463 MW capacity (WF1); Dataset 2- Canada’s Centennial 

wind farm in Saskatchewan province with 150 MW capacity (WF2); and 

Dataset 3- Spain’s Sotavento wind farm with 17 MW capacity (WF3) 

[36], [37].  

This study uses the 𝑅𝑀𝑆𝐸 index to calculate the closeness of approx-

imate CDF models to actual distributions. Table I shows that the BKDR 

technique outperforms others by presenting the minimum value of 

𝑅𝑀𝑆𝐸 for the related PB of three different wind farms. However, 

BKDR and GMM show the same performance for {PB19} of WF1, 
{PB3, PB18} of WF2, and {PB9, PB10, PB18, PB20} of WF3. Importantly, 

GMM cannot give a reasonable solution for PB1 of WF2 and WF3. Two 

datasets WF2+WF3 and WF1+WF2+WF3 are used to demonstrate the 

performance of BKDR, GGMM, and VMD for aggregate wind power 

generation in Table II. Because these approaches use approximately the 

same strategy for distribution modeling, they reflect the same perfor-

mance for generation levels far from boundaries, and for boundary areas 

such as PB1, PB19, and PB20, BKDR makes a little difference. A quali-

tative comparison is shown in Figs. 5 and 6 to have a visual sense of 

BKDR performance. Fig. 5 shows the CDF of WF1, WF2, and WF3 

obtained by TVD and BKDR along with the actual distribution for dif-

ferent levels of generation. Because the CDFs acquired by GMM are 

very close to those obtained by BKDR, they are not shown in Fig. 5 for 

the sake of clarity. Fig. 5 shows that the BKDR can follow the variations 

of actual distributions quite well. Fig. 6 indicates the actual histogram 

and fitted distribution models for datasets WF2+WF3, 

WF1+WF2+WF3, and WF1. It is obvious that single-mode Gaussian, 

beta, and TVD models cannot compete with GMM, VMD, GGMM, and 

BKDR while the performance of the last three models is quite close to 

each other. Table III shows the computation time for different distribu-

tion models. Compared with other models, the proposed BKDR model 
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Algorithm 1 

Find ℎ𝑜𝑝𝑡  and �̂�𝑜𝑝𝑡 with optimal set {𝒑, 𝝊, 𝜻} that leads to 𝑅𝑀𝑆𝐸𝑚𝑖𝑛     

   END 

Algorithm 1 



TABLE I  
RMSE INDEX FOR DIFFERENT LEVELS OF WIND GENERATION 

PB𝑖 

RMSE(%) 

WF1 WF2 WF3 
TVD   GMM    BKDR TVD   GMM     BKDR TVD    GMM    BKDR 

PB1 3.50 2.50 1.67 2.80 --- 1.06 1.85 --- 0.83 

PB2 2.27 0.61 0.54 0.81 0.71 0.63 0.33 0.28 0.27 

PB3 1.58 0.65 0.63 0.62 0.57 0.57 0.28 0.27 0.25 

PB9 1.22 0.78 0.70 0.84 0.66 0.32 0.67 0.26 0.26 

PB10 1.15 0.52 0.50 1.05 0.74 0.70 0.83 0.57 0.57 

PB14 0.60 0.40 0.34 1.21 1.15 1.14 0.52 0.50 0.49 

PB15 0.98 0.68 0.53 1.10 0.88 0.78 0.60 0.45 0.42 

PB18 1.15 0.57 0.46 1.84 0. 09  0.90 1.17 0.65 0.65 

PB19 1.91 0.44 0.44 1.56 0.83 0.69 1.70 0.79 0.78 

PB20 1.31 1.00 0.98 1.85 0.81 0.72 3.87 1.00 1.00 

TABLE II  
RMSE INDEX FOR DIFFERENT LEVELS OF AGGREGATE WIND GENERATION 

PB𝑖 

RMSE(%) 

WF2+WF3 WF1+WF2+WF3 
VMD        GGMM       BKDR   VMD         GGMM          BKDR 

PB1 0.72     0.70      0.67    0.60 0.58   0.58 

PB3 0.25    0.25      0.25    0.23 0.23   0.23 

PB15 0.33    0.33      0.34    0.33 0.33   0.33 

PB19 0.42    0.40      0.40    0.40 0.39   0.38 

PB20 0.92    0.92      0.90    0.91 0.90   0.87 

 

 

 
Fig. 5. Actual, BKDR, and TVD fits of the CDF for WF1 (a)-(c), WF2 (d)-(f), 

and WF3 (g)-(i) for wind power forecast values of 0.05 (a-d-g), 0.5 (b-e-h), and 

0.98 (c-f-i) p.u., respectively. 

 

 

 
Fig. 6. Comparison of PDFs for WF2+WF3 dataset (upper figures), 

W1+WF2+WF3 dataset (middle figures), and WF1 dataset (lower figures). 
 
 

TABLE III 
COMPUTATION TIME FOR DIFFERENT DISTRIBUTION MODELS  

Distribution 
Model 

Gaussian Beta TVD VMD GGMM BKDR 

Average 
Time (sec.) 

24.50 26.20 17.30 22.50 21.70 21.30 

has a reasonable computation time for real applications in wind power 

generation modeling. 

III. PROPOSED CHANCE-CONSTRAINED ED PROBLEM 

A look-ahead ED problem, which affects the online operation of 

power systems, is a submodule of multiple time-scale coordinated active 

power control systems. It is performed once per hour to determine the 

active power output of all generation units over the forthcoming four 

hours with a time resolution of 10 or 15 minutes [2], [3], [5], [26]. With 

high penetration of wind generation, a cost function is minimized while 

satisfying several constraints in a look-ahead CCED problem as an effi-

cient stochastic optimization methodology that allows the uncertainties 

to be handled by mitigating wind power underestimation and overesti-

mation impacts. In [2], [3], and [5] efficient formulations for generation 

and reserve scheduling are proposed in look-ahead and real-time CCED 

models. In the next sections, these formulations are expanded and ex-

plained to reach the proposed NCF and MILP-based CCED model.  

A. Cost Function and Constraints of the CCED Problem  

To make decisions under uncertain situations, a classical two-stage 

stochastic problem is recommended where some of the decisions must 

be made before the uncertainty is realized (first stage), and then the re-

course decisions can be made after the realizations (second stage) [38]. 

The classical two-stage linear stochastic problems can be formulated as 

𝑚𝑖𝑛
𝑥∈𝑋

𝐴𝑇𝑥 + 𝔼[𝑍(𝑥, 𝜉)] where 𝑥 ∈ ℝ𝑛 is the first-stage decision vector, 𝜉 

is the data of the second stage, and 𝑍(𝑥, 𝜉) is the optimal solution of the 

second stage defined as 𝑚𝑖𝑛
𝑦

𝑧𝑇𝑦 subject to 𝐵𝑥 + 𝐶𝑦 ≤ 𝐷 where 𝑦 ∈

ℝ𝑚 is the second-stage decision vector and 𝜉 = (𝑧, 𝐵, 𝐶, 𝐷). In this kind 

of formulation, a “here-and-now” decision should be made for 𝑥 at the 

first stage before knowing the realization of uncertain data 𝜉. At the 

second stage, after a realization of 𝜉, another optimization problem 

should be solved to optimize the decision-making procedure. Therefore, 

the solution of the second-stage problem is viewed as a recourse action 

where the term 𝐶𝑦 mitigates the inconsistency of 𝐵𝑥 ≤ 𝐷, and 𝑧𝑇𝑦 

would be the cost of this recourse action. If the random variable 𝜉 has a 

finite support, a linear programming equivalent to the two-stage model 

can be used as 𝑚𝑖𝑛
𝑥

𝐴𝑇𝑥 + ∫ 𝑍(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉 which after solving this 

problem, an optimal solution which can cover all possible scenarios of 𝜉 

is found. 

In this paper, similarly, the cost function of the stochastic look-ahead 

ED problem is shown in (14)-(21). The costs related to the uncertainty 

of wind power generation originate from the overestimation and under-

estimation of wind power. Fig. 7 shows four main areas of wind power 

generation uncertainty as well as the actual and fitted distributions for 

the forecast value �̂�𝑡 =0.1 p.u. The main goal of Fig. 7 is to show the 

main areas of wind power distribution model and their relations with the 

scheduled value. To mitigate the impact of wind power overestimation, 

one strategy is to take upward reserve. If the upward reserve does not 

suffice, a load shedding strategy will be added. Similarly, wind power 

underestimation is mainly alleviated using downward reserve, and a 

wind curtailment strategy is added when downward reserve is not ade-

quate. Therefore, wind power overestimation cost equals the expected 

upward reserve cost 𝐸𝐶𝑡
𝑈𝑃 with penalty factor 𝛾𝑈𝑃plus the expected load 

shedding cost 𝐸𝐶𝑡
𝐿𝑆 with penalty factor 𝛾𝐿𝑆shown in (18) and (19), re-

spectively. Also, wind power underestimation cost equals the expected 

downward reserve cost 𝐸𝐶𝑡
𝐷𝑁 with penalty factor 𝛾𝐷𝑁 plus the expected 

wind curtailment cost 𝐸𝐶𝑡
𝑊𝐶 with penalty factor 𝛾𝑊𝐶  expressed by (20) 

and (21), respectively. Although not all electricity markets apply penalty 

factors 𝛾𝑈𝑃 and 𝛾𝐷𝑁 for deviation of wind power generation from the 

scheduled values, in this paper these penalty factors are considered for 

generalization of the proposed model [2], [3], [5]. 
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Fig. 7. Illustration of wind power uncertainty and overestimation/underestimation 

areas for forecast value �̂�𝑡 = 0.1 (p. u. ) for PB3 of WF2.  

 

 
Fig. 8. Illustration of wind power overestimation cost variations ((a) upward 

reserve cost, (b) load shedding cost) and underestimation cost variations ((c) 

downward reserve cost, (d) wind curtailment cost) for PB10 of WF2. 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ ∆𝑡. (∑ 𝐶𝑡,𝑖
𝑔𝑁𝐺

𝑖=1 + ∑ 𝐶𝑡,𝑖
𝑟𝑁𝐺

𝑖=1 + 𝐶𝑡
𝑑𝑤 + 𝐸𝐶𝑡

𝑈𝑃 +𝑇
𝑡=1

𝐸𝐶𝑡
𝐿𝑆 + 𝐸𝐶𝑡

𝐷𝑁 + 𝐸𝐶𝑡
𝑊𝐶)  

(14) 

𝐶𝑡,𝑖
𝑔

= 𝑎𝑖(𝑃𝑡,𝑖
2) + 𝑏𝑖(𝑃𝑡,𝑖) + 𝑐𝑖  ∀𝑡, 𝑖 (15) 

𝐶𝑡,𝑖
𝑟 = 𝑐𝑖

𝑈𝑃(𝑟𝑡,𝑖
𝑈𝑃) + 𝑐𝑖

𝐷𝑁(𝑟𝑡,𝑖
𝐷𝑁) , ∀𝑡, 𝑖 (16) 

𝐶𝑡
𝑑𝑤 = 𝑑𝑡(𝜔𝑡)   ,  ∀𝑡 (17) 

𝐸𝐶𝑡
𝑈𝑃 = 𝛾𝑈𝑃 (∫ (𝜔𝑡 − 𝜔)𝑓𝑡(𝜔)𝑑𝜔

𝜔𝑡

𝜔𝑡−𝑅𝑡
𝑈𝑃 +

∫ 𝑅𝑡
𝑈𝑃𝑓𝑡(𝜔)𝑑𝜔

𝜔𝑡−𝑅𝑡
𝑈𝑃

0
)  ,   ∀𝑡 

(18) 

𝐸𝐶𝑡
𝐿𝑆 = 𝛾𝐿𝑆 (∫ ((𝜔𝑡 − 𝑅𝑡

𝑈𝑃) − 𝜔)
𝜔𝑡−𝑅𝑡

𝑈𝑃

0
𝑓𝑡(𝜔)𝑑𝜔)  , ∀𝑡 (19) 

𝐸𝐶𝑡
𝐷𝑁 = 𝛾𝐷𝑁 (∫ (𝜔 − 𝜔𝑡)𝑓𝑡(𝜔)𝑑𝜔

𝜔𝑡+𝑅𝑡
𝐷𝑁

𝜔𝑡
+

∫ 𝑅𝑡
𝐷𝑁𝑓𝑡(𝜔)𝑑𝜔

𝜔𝑟

𝜔𝑡+𝑅𝑡
𝐷𝑁 ) ,  ∀𝑡 

(20) 

𝐸𝐶𝑡
𝑊𝐶 = 𝛾𝑊𝐶 (∫ (𝜔 − (𝜔𝑡 + 𝑅𝑡

𝐷𝑁))
𝜔𝑟

𝜔𝑡+𝑅𝑡
𝐷𝑁 𝑓𝑡(𝜔)𝑑𝜔)  , ∀𝑡 (21) 

s.t. 
∑ 𝑃𝑡,𝑖

𝑁𝐺
𝑖=1 + 𝜔𝑡 = 𝐿𝑡

𝑏           ∀𝑡 (22) 

∑ 𝓌𝑡,𝑗
𝑁𝑊
𝑗=1 = 𝜔𝑡                 ∀𝑡 (23) 

0 ≤ 𝓌𝑡,𝑗 ≤ 𝓌𝑟,𝑗                ∀𝑡, 𝑗 (24) 

{
∑ 𝑟𝑡,𝑖

𝑈𝑃𝑁𝐺
𝑖=1 = 𝑅𝑡

𝑈𝑃

∑ 𝑟𝑡,𝑖
𝐷𝑁𝑁𝐺

𝑖=1 = 𝑅𝑡
𝐷𝑁

              ∀𝑡 (25) 

{
0 ≤ 𝑅𝑡

𝑈𝑃 ≤ 𝜔𝑡                         

0 ≤ 𝑅𝑡
𝐷𝑁 ≤  𝜔𝑟 − 𝜔𝑡             

   ∀𝑡 (26) 

{
ℙ𝕣{𝑅𝑡

𝑈𝑃 ≥ 𝜔𝑡 − 𝜔} ≥ 𝐶𝐿𝑈𝑃

ℙ𝕣{𝑅𝑡
𝐷𝑁 ≥ 𝜔 − 𝜔𝑡} ≥ 𝐶𝐿𝐷𝑁     ∀𝑡 (27) 

𝑃𝑖 + 𝑟𝑡,𝑖
𝐷𝑁 ≤ 𝑃𝑡,𝑖 ≤ 𝑃𝑖 − 𝑟𝑡,𝑖

𝑈𝑃        ∀𝑡, 𝑖 (28) 

{
0 ≤ 𝑟𝑡,𝑖

𝑈𝑃 ≤ 𝑟𝑖
𝑈𝑃

0 ≤ 𝑟𝑡,𝑖
𝐷𝑁 ≤ 𝑟𝑖

𝐷𝑁                         ∀𝑡, 𝑖 (29) 

{
𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖 ≤ ∆𝑃𝑖

𝑈𝑃

𝑃𝑡−1,𝑖 − 𝑃𝑡,𝑖 ≤ ∆𝑃𝑖

𝐷𝑁                  ∀𝑡, 𝑖 (30) 

where (22) reflects system’s power balance constraints, (23) shows that 

the summation of WFs’ scheduled wind power equals the scheduled 

aggregate  wind  power, and (24) defines the  range  of  scheduled  WFs’  

 
Fig. 9. Fitting error of four parts of the proposed NCF for three different wind 

farms WF1, WF2, and WF3 from left to right, respectively. 

 
Fig. 10. Structure of Algorithm 3 for wind power cost coefficients estimation. 

 

Fig. 11. General structure of the solution algorithm for the proposed MILP-based 

CCED model. 

generation. The constraints in (25) show the equality of total CPPs re-

serves with required reserves for aggregate wind power, and (26)-(27) 

denote the range of required reserve at each hour. The uncertain random 

variable of the system shown by 𝜔 reflects the possible values of actual 

wind power generation. The operator ℙ𝕣{∙} in (27) is a probability 

measure and indicates the chance constraints applied to the upward and 

downward reserves considered for aggregate wind power. The genera-

tion and reserve constraints as well as ramp-rate constraints are repre-

sented by (28)-(30). Note that the chance-constrained limits in (27) can 

be rewritten as (31). 

{
𝑅𝑡

𝑈𝑃 ≥ 𝜔𝑡 − �̂�𝑡
−1(1 − 𝐶𝐿𝑈𝑃)

𝑅𝑡
𝐷𝑁 ≥ �̂�𝑡

−1(𝐶𝐿𝐷𝑁) − 𝜔𝑡       
           ∀𝑡 (31) 

IV. CHALLENGES AND SOLUTIONS FOR CCED PROBLEM 

A. Existing Challenges  

Regarding the implementation of the CCED problem, there are two 

main challenges as follows. 

1) The distribution model of wind power, shown by 𝑓𝑡(𝜔), should re-

flect the main features of the actual distribution such as mode, long tail, 

high skewness, etc. while avoiding boundary effects. Fig. 7 compares 

the appropriate BKDR fit (proposed model) and unsuited Gaussian fit 

and highlights the existing differences in overestimation area with two 

hatched areas. Considering equations (18)-(19), the difference between 

the actual and fitted distributions leads to the miscalculation of the up-

ward reserve and the load shedding costs, as will be shown in Section V. 

Likewise, considering (20)-(21), the existing mismatch in the underes-

timation area of the probability distribution causes a misjudgment about 

the downward reserve and wind curtailment costs. As a result, the solu-

tions of the CCED problem might not be optimal if fed by the distribu-

tion models such as Gaussian, beta, stable, versatile, etc., that suffer 

from either boundary effects or low flexibility in terms of showing the 

above main features [2]-[7], [9], [10]. However, the boundary effects 

challenge is alleviated using TVD in [3]. 

2) The most important challenge is that the CCF in (14) contains the 

non-linear functions (18)-(21) defined by integrals, which makes tack-

ling such an optimization problem difficult. This mainly originates from 

the dependency of the integral operators’ boundaries in (18)-(19) on the 
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Wind power forecast values of all wind farms for four-hour 

ahead prediction horizon with predetermined resolution. 

Select the cost coefficients 𝐴𝑞 , 𝐴𝑞
′ , 𝐵𝑞 , and 𝐵𝑞

′  which correspond 

to the forecast value of aggregated wind power.  

Underestimation and 

overestimation cost 

coefficients database. 

Form the proposed new cost function (36) and linearize with 

the proposed piecewise linearization technique. 

Solve the created MILP-based CCED problem. 

START 

END 



pair decision variables { 𝑅𝑡
𝑈𝑃, 𝜔𝑡} and dependency of integral operators’ 

boundaries in (20)-(21) on {𝑅𝑡
𝐷𝑁, 𝜔𝑡}, such that there is not a closed 

form for the CCED cost function versus the decision variables. Conse-

quently, the partial derivatives of the CCF with respect to these variables 

(as required for interior-point and SLP optimization techniques) might 

not be correctly derived. Nevertheless, based on partial derivative for-

mulations in [2]-[5], the boundaries of integrals are ignored, and approx-

imate partial derivatives are proposed for integral functions that might 

lead to misleading results.  

B. Potential Solutions  

The first challenge is remediated by the proposed BKDR technique in 

Section II. The proposed BKDR technique can well estimate the PDF of 

wind power generation and avoid boundary effect. To address the sec-

ond challenge, an NCF is explicitly proposed for the CCED problem; 

specifically, it can be formulated like an MILP model and efficiently 

solved using standard MILP solvers. To this end, 𝐸𝐶𝑡
𝑈𝑃and 𝐸𝐶𝑡

𝐿𝑆 in 

(18)-(19) are explicitly reformulated with respect to the decision varia-

bles 𝑅𝑡
𝑈𝑃 and 𝜔𝑡, and 𝐸𝐶𝑡

𝐷𝑁and 𝐸𝐶𝑡
𝑊𝐶 in (20)-(21) are rewritten versus 

𝑅𝑡
𝐷𝑁 and 𝜔𝑡. These reformulated functions are expressed using polyno-

mial functions with degree 𝑞 (4 ≤ 𝑞 ≤ 8) to accurately model wind 

power overestimation and underestimation costs. The polynomials are 

single-variable functions with the variables 𝑅𝑡
𝑈𝑃 or 𝑅𝑡

𝐷𝑁, and just the 

coefficients depend on variable 𝜔𝑡. The polynomial fitting procedure is 

done for every value of wind power over the range [0,1] with a certain 

resolution. For this procedure, first, suppose 𝜔𝑡 takes on a constant val-

ue over PB𝑘 where 𝑘 = 1 … 𝑁PB, and the integral operators in (18)-(21) 

are expanded independently while the main variables 𝑅𝑡
𝑈𝑃 and 𝑅𝑡

𝐷𝑁 take 

on the valid values over the specific ranges defined by (26) and (31). By 

repeating this procedure for each value of 𝜔𝑡, the integral-based func-

tions can be represented by few lookup tables. Then, they can be pre-

cisely expressed in the form of an octic function with decision variables 

𝑅𝑡
𝑈𝑃 or 𝑅𝑡

𝐷𝑁, as shown in (32)-(35) where  𝑛=8. Also, the cost coeffi-

cients 𝐴𝑞, 𝐴𝑞
′ , 𝐵𝑞, and 𝐵𝑞

′  of the octic functions only depend on 𝜔𝑡, and 

the hat sign shows that the cost functions are approximate functions. 

Note, for each value of wind power inside each PB, a separate octic 

function is fitted. As an example, the fitted cost functions (32)-(35) are 

shown in Fig. 8 for all wind power values in PB10 of WF2 dataset. It 

shows the nonlinearity and convexity of each function for a certain level 

of generation; however, it is not guaranteed that the summation of these 

functions for different generation levels to be a convex function. The 

fitting error of approximate underestimation and overestimation cost 

functions are shown in Fig. 9 for WF1 to WF3. The fitting error for 

wind farms with high generation capacity is more than those with low 

generation capacity because the non-linearity of the cost functions in 

(18)-(21) increases proportional to wind farm generation capacity. 

𝐸�̂�𝑡
𝑈𝑃 = ∑ 𝐴𝑞 . (𝑅𝑡

𝑈𝑃)𝑞𝑛
𝑞=0      (32) 

𝐸�̂�𝑡
𝐿𝑆 = ∑ 𝐴𝑞

′  . (𝑅𝑡
𝑈𝑃)𝑞𝑛

𝑞=0       (33) 

𝐸�̂�𝑡
𝐷𝑁 = ∑ 𝐵𝑞  . (𝑅𝑡

𝐷𝑁)𝑞𝑛
𝑞=0      (34) 

𝐸�̂�𝑡
𝑊𝐶 = ∑ 𝐵𝑞

′  . (𝑅𝑡
𝐷𝑁)𝑞𝑛

𝑞=0      (35) 

𝑁𝐶𝐹 = ∑ ∆𝑡. (∑ 𝐶𝑡,𝑖
𝑔𝑁𝐺

𝑖=1 + ∑ 𝐶𝑡,𝑖
𝑟𝑁𝐺

𝑖=1 + 𝐶𝑡
𝑑𝑤 + 𝐸�̂�𝑡

𝑈𝑃 +𝑇
𝑡=1

𝐸�̂�𝑡
𝐿𝑆 + 𝐸�̂�𝑡

𝐷𝑁 + 𝐸�̂�𝑡
𝑊𝐶)  

(36) 

The main process of obtaining the proposed NCF in (36) is based on 

the estimation of cost coefficients 𝐴𝑞 , 𝐴𝑞
′ , 𝐵𝑞, and 𝐵𝑞

′  as shown by Algo-

rithm 3 in Fig. 10. One of the main building blocks of Algorithm 3 is 

Algorithm 2 which estimates the wind power PDF of PBs. The estimat-

ed cost coefficients for total wind power generation 𝜔𝑡 with a certain 

resolution over the range [0,1] are stored in a database. In the proposed 

MILP-based CCED model, the corresponding cost coefficients for each 

wind power forecast value are chosen from the database, and estimated 

functions (32)-(35) can be explicitly formed versus decision variables 

𝑅𝑡
𝑈𝑃 and 𝑅𝑡

𝐷𝑁. The structure of the proposed MILP-based CCED model 

is depicted in Fig. 11 where the utilized linearization technique is pre-

sented in Section III-C and the detailed solution methodology is present-

ed in Section III-D. 

 

 
Fig. 12. Piecewise linear approximation of a typical non-linear function. 

C. Piecewise Linearization of the Proposed NCF 

The CCF is a non-linear function without a closed form that makes 

achieving the global optimal solution difficult [3]-[5]. Using the pro-

posed reformulation process, an NCF is reproduced to lead to a solution 

closer to the global solution. To overcome the non-linearity of the pro-

posed NCF, a highly accurate piecewise linearization technique is used 

[19]. By doing so, the CCED problem is converted to a tractable MILP-

based model that can be solved using off-the-shelf mathematical pro-

gramming solvers such as CPLEX and Gurobi. The non-linearity of the 

cost function arises from the quadratic function in (15) as well as the 

proposed octic functions (32)-(35). Let us express each of these non-

linear functions as 𝐹(𝑧). Using a highly accurate piecewise linearization 

technique, 𝐹(𝑧) can be linearized as (37)-(41), where 𝑧 and 𝑧 represent 

the upper and lower limits of the variable 𝑧, respectively. 

𝐹(𝑧) = ∑ (𝑚𝜆𝛿𝜆 + 𝑛𝜆∆𝜆)𝛬
𝜆=1   (37) 

𝑧 = ∑ 𝛿𝜆
𝛬
𝜆=1   (38) 

𝜓𝜆−1∆𝜆≤ 𝛿𝜆 ≤ 𝜓𝜆∆𝜆  ,    𝜆 = 1, … , 𝛬 (39) 

∑ ∆𝜆
𝛬
𝜆=1 ≤ 1  (40) 

𝛿𝜆 ≥ 0  ,  ∆𝜆∈ {0,1} ,      𝜆 = 1, … , 𝛬 (41) 

where 𝛿𝜆 and ∆𝜆 are required to obtain the piecewise linear representa-

tion of 𝐹(𝑧), and constant parameters 𝜓𝜆, 𝑚𝜆, and 𝑛𝜆 can be obtained 

from (42)-(44). 

𝜓𝜆 = 𝑧 + 𝜆(1/𝛬)(𝑧 − 𝑧)                          , 𝜆 = 1, … , 𝛬 (42) 

𝑚𝜆 = [𝐹(𝜓𝜆) − 𝐹(𝜓𝜆−1)]/[𝜓𝜆 − 𝜓𝜆−1]   , 𝜆 = 1, … , 𝛬 (43) 

𝑛𝜆 = 𝐹(𝜓𝜆) − 𝑚𝜆𝜓𝜆                                 , 𝜆 = 1, … , 𝛬 (44) 

To shed light on the proposed linearization technique, the piecewise 

linear approximation of a typical non-linear function is illustrated in Fig. 

12. The feasible range of the variable 𝑧 is partitioned into 𝛬 segments. 

Then, a line with a slope of 𝑚𝜆 and intercept of 𝑛𝜆 is considered corre-

sponding to each segment 𝜆. Finally, using the binary variables denoted 

by ∆𝜆, only one of the lines is chosen to represent the non-linear func-

tion 𝐹(𝑧). Note that the parameter 𝛬 determines the number of addition-

al variables and constraints required to linearize 𝐹(𝑧). Therefore, the 

approximation error will obviously decrease as this parameter increases. 

Using the above-described linearization technique, the proposed CCED 

problem is now converted to an MILP-based model, which guarantees 

the solution optimality and computational tractability.  

D. Solution Methodology 

The detailed steps of the proposed solution methodology are as fol-

lows. 

Step (1) Initialization: Set decision vector 𝒙 on zero where  𝒙 =
[𝑃𝑡,𝑖 , 𝓌𝑡,𝑗 , 𝑟𝑡,𝑖

𝑈𝑃, 𝑟𝑡,𝑖
𝐷𝑁, 𝑅𝑡

𝑈𝑃 , 𝑅𝑡
𝐷𝑁, 𝛿𝜆, ∆𝜆], 𝛬 = 10, 𝐶𝐿𝑈𝑃 = 𝐶𝐿𝐷𝑁 = 0.95, 

UB = +∞, LB = −∞, and MILP gap tolerance ε = 1e − 3. 

Step (2) Receiving system data: NG, NW, 𝑑𝑡, 𝐿𝑡
𝑏, 𝑐𝑖

𝑈𝑃, 𝑐𝑖
𝐷𝑁, 𝑃𝑖, 𝑃𝑖, 

∆𝑃𝑖

𝑈𝑃
, ∆𝑃𝑖

𝐷𝑁
, 𝑟𝑖

𝑈𝑃
, 𝑟𝑖

𝐷𝑁
, 𝛾𝑈𝑃, 𝛾𝐿𝑆, 𝛾𝐷𝑁, and 𝛾𝑊𝐶 . 

Step (3) Modeling NCF: Obtain 𝐴𝑞 , 𝐴𝑞
′ , 𝐵𝑞 , and 𝐵𝑞

′  of aggregate wind 

generation based on the wind power forecast values and 𝐶𝐿𝑈𝑃 and 𝐶𝐿𝐷𝑁 

(Algorithm 3), and obtain 𝐸�̂�𝑡
𝑈𝑃, 𝐸�̂�𝑡

𝐿𝑆, 𝐸�̂�𝑡
𝐷𝑁, and 𝐸�̂�𝑡

𝑊𝐶 to create NCF 

as shown by (36). 

Step (4) Linearizing NCF: linearize 𝐶𝑡,𝑖
𝑔

, 𝐸�̂�𝑡
𝑈𝑃, 𝐸�̂�𝑡

𝐿𝑆, 𝐸�̂�𝑡
𝐷𝑁, and 

𝐸�̂�𝑡
𝑊𝐶 simultaneously using piecewise linearization in (37)-(44). 

Step (5) Solving linearized NCF: Minimize the linearized NCF with 

CPLEX (i.e., cplexmilp) subject to constraints (22)-(31) where 𝐍𝐂𝐅 =

z
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∑ ∆𝑡. (∑ 𝐶𝑡,𝑖
𝑔𝑁𝐺

𝑖=1 + ∑ 𝐶𝑡,𝑖
𝑟𝑁𝐺

𝑖=1 + 𝐶𝑡
𝑑𝑤 + 𝐸�̂�𝑡

𝑈𝑃 + 𝐸�̂�𝑡
𝐿𝑆 + 𝐸�̂�𝑡

𝐷𝑁 +𝑇
𝑡=1

𝐸�̂�𝑡
𝑊𝐶).  

Step (6) Updating cost coefficients of aggregate wind generation: 

After a specific time period (e.g., one week), update the coefficients 

𝐴𝑞 , 𝐴𝑞
′ , 𝐵𝑞 , and 𝐵𝑞

′  by receiving new wind power samples that lead to 

new wind power distribution 𝑓𝑡(𝜔), then go to Step (3). 

V. CASE STUDIES 

A. Test System 

To show the efficiency of the proposed approach, the widely used 

IEEE 118-bus test system with 54 CPPs is simulated in this study. The 

total base loads in the system considered over a 4-hour scheduling peri-

od are 3.6, 3.9, 4.1, and 4.2 GW. The developed MILP-based CCED 

model is solved by CPLEX 12.6.1 using MATLAB R2015a on a Corei7-

6700 CPU@3.40 GHz personal computer with 16GB RAM.  

B. Experimental Datasets and Wind Power Penetration Scenarios 

Three different wind power datasets, introduced in Section II-E, are 

used to examine the proposed MILP-based CCED problem. Three pene-

tration scenarios with different combinations of wind power datasets are 

considered in the system under study. Case 1- 150 MW wind power 

generation using WF2; Case 2- 167 MW wind generation using two 

different wind farms (WF2 and WF3); and Case 3- High penetration of 

wind power is assessed in this case with WF1, WF2, and WF3 with total 

capacity of 1630 MW. The correlation level among wind farms in Case 

1 to Case 3 are not considered. To demonstrate the effect of correlation 

on total cost of the system, Case 4 and Case 5 are defined. Case 4 is like 

Case 2 with three values 𝜌 = 0, 0.50, and 0.95 as correlation coeffi-

cients. Case 5 is like Case 3 considering two correlation matrices ℝ1 

and ℝ2 shown below. Note that to construct wind power datasets with 

abovementioned correlation coefficients in Case 4 and Case 5, wind 

power time series WF1 to WF3 are checked and appropriate time lags 

are found in each time series to construct desired correlated time series. 

ℝ𝟏 = [
1.00 0.00 0.07
0.00 1.00 0.06
0.07 0.06 1.00

]                       ℝ2 = [
1.00 0.95 0.90
0.95 1.00 0.95
0.90 0.95 1.00

] 

C. Simulation Results of the Proposed MILP-based CCED Problem 

This section examines the proposed model using the IEEE 118-bus 

test system with Cases 1 to 5 with the proposed model. The results are 

compared with conventional approaches in which either an SLP optimi-

zation technique or TVD model (as a parametric distribution model) is 

used. In this study, 𝑐𝑖
𝑈𝑃 and 𝑐𝑖

𝐷𝑁are considered to be $15/MWh, and 

𝛾𝑈𝑃, 𝛾𝐿𝑆, 𝛾𝐷𝑁, and 𝛾𝑊𝐶are set at $120, $200, $60, and $120/MWh, 

respectively. The generation of CPPs and wind farms as well as the sys-

tem’s required reserve are determined for the next 4-hour scheduling 

period with 10-min resolution. It is assumed that wind farms’ forecast 

values change from 0.06 to 0.94 p.u.  Tables IV, V, and VI show the 

value of different parts of the CCED cost function in (14) for Cases 1, 2, 

and 3, respectively. The results of the proposed MILP-based model (i.e., 

MILP-NCF-BKDR) are shown in the first numerical column. The sec-

ond numerical column reflects the results of the approach, which in-

cludes NCF and BKDR while it is solved using SLP technique (i.e., 

SLP-NCF-BKDR). The third numerical column indicates the results of 

the CCED model comprised of the CCF in (14) and TVD model and 

solved by SLP technique (i.e., SLP-CCF-TVD). 

The comparisons show that if the proposed NCF is linearized with the 

piecewise linearization technique, compared to SLP-NCF-BKDR, the 

developed MILP-based model can decrease the total cost of the system 

by $985, $1,147, and $2,474 over just four hours for Cases 1 to 3, re-

spectively. Compared with SLP-CCF-TVD, the reductions in total cost 

are, respectively, $3,150, $2,303, and $6,154 for Cases 1 to 3 over four 

hours. A significant reduction in the system’s total cost will occur over a 

year if power system operators use the proposed model for two reasons. 

First, the proposed model, based on wind power forecast values, incor-

porates accurate wind power distribution models and efficiently identi-

fies four main areas of wind power distribution (Fig. 7) so that there is 

no miscalculation for upward reserve, load shedding, downward reserve, 

TABLE IV 
TOTAL COST OF THE IEEE 118-BUS TEST SYSTEM IN CASE 1 

Cost ($) 
(CL=95%) 

MILP-NCF-BKDR SLP-NCF-BKDR SLP-CCF-TVD 

𝐸𝐶𝑈𝑃 3,668 3,725 3,731 
𝐸𝐶𝐿𝑆 204 171 193 
𝐸𝐶𝐷𝑁 1,093 1,041 1,082 
𝐸𝐶𝑊𝐶 233 337 396  

𝐶𝑑𝑤 583 600 608  
𝐶𝑟 2,673 2,614 3,510 
𝐶𝑔 218,571 219,522 220,655  

Total 227,025 228,010 230,175 
 

TABLE V 

TOTAL COST OF THE IEEE 118-BUS TEST SYSTEM IN CASE 2 
Cost ($) 

(CL=95%) 
MILP-NCF-BKDR SLP-NCF-BKDR SLP-CCF-TVD 

𝐸𝐶𝑈𝑃 1,844 1,742 1,805 
𝐸𝐶𝐿𝑆 113 174 179 
𝐸𝐶𝐷𝑁 579 557 568 
𝐸𝐶𝑊𝐶 131 176 192 

𝐶𝑑𝑤 646 654 679 
𝐶𝑟 1,219 1,353 1,397 
𝐶𝑔 218,079 219,102 220,094 

Total 222,611 223,758 224,914 
 

TABLE VI 
TOTAL COST OF THE IEEE 118-BUS TEST SYSTEM IN CASE 3 

Cost ($) 
(CL=95%) 

MILP-NCF-BKDR SLP-NCF-BKDR SLP-CCF-TVD 

𝐸𝐶𝑈𝑃 11,705 8,390 9,560 
𝐸𝐶𝐿𝑆 366 2,355 2,354 
𝐸𝐶𝐷𝑁 3,806 3,604 3,764 
𝐸𝐶𝑊𝐶 333 736 892 

𝐶𝑑𝑤 6,243 6,409 6,580 
𝐶𝑟 5,970 7,243 7,435 
𝐶𝑔 178,000 180,160 181,992 

Total 206,423 208,897 212,577 
 

TABLE VII 

TOTAL COST OF THE IEEE 118-BUS TEST SYSTEM IN CASE 4 
CL=95% 

Base Load Coefficient=1 
𝜌 = 0 𝜌 = 0.5 𝜌 = 0.95 

MILP-NCF-BKDR 

𝐶𝑔 218,099 218,091 218,098 

𝐶𝑟 1,218 1,284 1,319 

𝐶𝑑𝑤 643 645 644 

Σ𝐸𝐶 2,708 2,772 2,840 

Total  222,668 222,792 222,901 

SLP-NCF-BKDR 

𝐶𝑔 219,090 219,093 219,068 

𝐶𝑟 1,285 1,415 1293 

𝐶𝑑𝑤 657 657 660 

Σ𝐸𝐶 2,718 2,775 2,888 

Total  223,750 223,940 223,909 

TABLE VIII 

TOTAL COST OF THE IEEE 118-BUS TEST SYSTEM IN CASE 5 
CL=95% 

Base Load Coefficient=1 
ℝ𝟏 ℝ𝟐 

MILP-NCF-BKDR 

𝐶𝑔 177,966 177,966 

𝐶𝑟 11,635 12,631 

𝐶𝑑𝑤 6,249 6249 

Σ𝐸𝐶 26,390 27,771 

Total 222,240 224,617 

SLP-NCF-BKDR 

𝐶𝑔 180,164 180,703 

𝐶𝑟 11,635 12,780 

𝐶𝑑𝑤 6,408 6,324 

Σ𝐸𝐶 27,034 26,974 

Total 225,242 226,783 

TABLE IX 

COMPUTATION TIME OF CCED MODELS FOR IEEE 118-BUS TEST SYSTEM 

CCED Model 
MILP-NCF 

BKDR 
SLP-NCF-

BKDR 
SLP-CCF-

TVD 

Average Time (sec.) 8.15 4.28 14.20 

and wind curtailment costs. Second, the NCF is used that allows the 

system operators to convert the CCED problem to an MILP-based prob-

lem and efficiently solve it using powerful off-the-shelf solvers to obtain 



TABLE X 
AVERAGE CONVERGENCE TIME IN THE PROPOSED MILP-BASED APPROACH 

                   MILP Gap 

       𝛬   
ε = 1e-3 ε = 5e-3 ε = 1e-2 ε = 5e-2 

       5 1.31s 1.27s 1.25s 1.26s 

       10 5.6s 5.4s 5.5s 5.6s 

 
Fig. 13. Total cost and solution time of the proposed MILP-based CCED problem 

versus the number of linearization segments. 

 

Fig. 14. Illustration of total cost hyperplane vs. confidence level and system load 

level for, (a) Case 1, (b) Case 2, and (c) Case 3. 

the more optimal solution. For example, unlike the upward reserve and 

wind curtailment costs, the costs of load shedding and downward re-

serve in Case 1 obtained by MILP-NCF-BKDR are more than those 

obtained by SLP-CCF-TVD. However, the total cost of wind power 

generation and its uncertainty for the proposed approach is $5,781 while 

for the other two approaches are $5,874 and $6,010, respectively. The 

same interpretation can be made for Cases 2 and 3. In Case 2, the total 

costs of wind power generation for MILP-NCF-BKDR, SLP-NCF-

BKDR, and SLP-CCF-TVD are $3,313, $3,303, and $3,423, respective-

ly. These costs for Case 3 are higher at $22,453, $21,494, and $23,150, 

respectively. Although wind power related cost in the proposed model is 

more than other models in Cases 2 and 3, the generation and reserve 

costs of CPPs are less. Also, increasing wind power penetration, if ap-

propriately managed, leads to less CPPs’ generation cost. It is worth 

mentioning that if the chance constraints (27) are applied for each indi-

vidual wind farm without considering the joint distribution of wind 

farms, the solution would be over conservative. In such a case, Case 2 

and Case 3 result in $227,172 and $212,443 as total cost, respectively. 

The high accuracy of the piecewise linearization technique guarantees 

that the solution of the MILP-based model is the more optimal solution 

of the initial non-linear CCED problem. Tables VII and VIII examine 

the effect of correlation among wind farms on each part of total cost. 

The results of MILP-based model show that high levels of correlation 

necessitate more reserve cost, i.e., 𝐶𝑟 and more expected cost of wind 

power misestimation, i.e., Σ𝐸𝐶, and the other costs, i.e., 𝐶𝑔 and 𝐶𝑑𝑤are 

almost unchanged. However, with the SLP-based model, such statement 

cannot be concluded because SLP-based model might not reach the 

optimal solution for different correlation levels. The computation time 

for three utilized CCED model is indicated in Table IX. Note that for the 

linearization purpose in the proposed MILP-based model, the number of 

segments and the MILP gap equal 15 and 1%, respectively. Table X 

reflects the effect of the number of linearization segments and MILP gap 

on the convergence of the proposed MILP-based algorithm. Also, Fig. 

13 shows that, by increasing the number of segments 𝛬 for linearization 

purposes, the accuracy of the MILP-based model increases, but it reach-

es a plateau after a certain value. Fig. 14 shows the total cost of the sys-

tem versus total base load changes and different values for confidence 

level over the range [0.90, 0.99]. The total base load varies with prede-

fined base load coefficients from 0.75 to 1 for Case 1 and from 0.9 to 

1.2 for Case 2 and Case 3. The red arrows in Fig. 14 show the results 

presented in Tables IV to VI, which are for CL=95%, and the base load 

coefficient equals one. Also, Fig. 15 shows the performance of MILP-

based and SLP-based CCED models with different values of CL and 

correlation level. The red arrows in Fig. 15 reflect the results in Table 

VII and Table VIII.  The Figs. 14  and 15 indicate  the  superiority of the 

 
Fig. 15. Illustration of total cost hyperplane vs. correlation level and system load 

level, (a)-(b) Case 4, and (c)-(d) Case 5. 

 
Fig. 16. Scheduled vs. forecasted wind power generation in Case 2. 

proposed MILP-based model under all conditions. Fig. 16 shows the 

scheduled and forecast values in Case 2 for the proposed MILP-based 

and SLP-based models. Usually, with SLP-NCF-BKDR model, the 

scheduled wind power generation is lower than the corresponding fore-

cast values for lower confidence levels (i.e., 90%) while for higher con-

fidence levels (i.e., 99%) the scheduled wind power generation is greater 

than the forecast values. On the contrary, for all confidence levels in the 

proposed MILP-based model, the scheduled wind power generation is 

very close to the forecast values. The average values of RMSE for the 

proposed MILP-based model are 1.26, 0.87, and 0%, for 90, 95, and 

99% confidence levels, respectively. In contrast, the average values of 

RMSE for the SLP-based model reach higher values of 2.97, 3.14, and 

3.01%, respectively. 

VI. CONCLUSION 

This paper proposes an efficient wind power probability distribution 

modeling using sample moments of wind power data and BKDR tech-

nique. The proposed model shows high accuracy and low computational 

burden for practical applications. Also, an efficient methodology for 

obtaining an NCF is proposed to be able to convert the conventional 

non-linear CCED model to an MILP-based model using an accurate 

piecewise linearization technique. The proposed MILP-based CCED 

model is convex with respect to the continuous variables of the system 

and can effectively minimize the total cost. Moreover, the proposed 

CCED model enables power system operators to use both parametric 

and non-parametric models of wind power CDF. The NCF includes a set 

of cost coefficients which are stored in a database and calculated 

through CDF calculation before running CCED model. As a result, the 

solution process is computationally efficient and much closer to the 

global solution of the initial non-linear CCED problem. In addition, the 

proposed MILP-based model can consistently reflect the effect of WFs’ 

correlation on the total reserve and wind power misestimation costs. 

Furthermore, because the nonlinearity of the CCED cost function in-

creases proportional to wind power generation capacity, the proposed 

model is very efficient in high wind power penetration scenarios. Com-

pared to the existing approaches, the proposed CCED model leads to a 

more optimal generation and reserve scheduling, thereby achieving a 

reasonable reduction in total system costs. As future works, in the pro-

posed MILP-based CCED model, the uncertainty of solar generation and 

electricity load can also be efficiently considered. Without loss of gener-

ality, the proposed NCF and MILP-based CCED model can be formed 

after probability distribution modeling of correlated uncertain resources 

such as wind power, solar power, and electricity load. Moreover, as 

wind farms might have different levels of uncertainty, certain penalty 
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factors and chance constraints might be defined for individual wind 

farms owning by different producers. Therefore, the required reserve for 

managing the underestimation and overestimation of each wind farm can 

be efficiently determined proportional to its level of uncertainty without 

calculating the aggregate wind power generation. In addition, the pro-

posed MILP-based model might be adopted by look-ahead CCED prob-

lems using DRCC optimization approaches. In DRCC, instead of accu-

rate distribution modeling, by defining an ambiguity set for wind power 

generation, a family of simple distributions are covered to compensate 

inaccurate distribution modeling.  
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