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Abstract: An optimization model for offshore wind farm maintenance scheduling is presented, considering 

minimum maintenance costs and maximum power generation. For power generation, the wind speed at 

each tower site plays an important role that is impacted not only by the dynamically changing wake 

overlap area and the consequence of variation of wind direction but also by the relative position of the 

wake affected by the maintenance status. This paper combines the wake model with the maintenance 

status to accurately express the input wind speed of the wind turbine (WT) in each period. Because the 

optimization model includes complex dynamical coupling relationships and a number of nonlinear 

constraints, mixed integer second-order cone programming (MISOCP) are employed to address these 

issues. The MISOCP model is relaxed as a mixed integer linear programming (MILP) model to improve 

computational efficiency and the ε-constraint method is utilized to handle the multi-objective function. The 

proposed model and method are tested in a short-term maintenance case of an offshore wind farm. The 

numerical results demonstrate that the proposed approach can achieve sound economic benefits and 

provide comprehensive decision support. 

Keywords：offshore wind farm; maintenance; wake effect; mixed integer linear programming; multi-

objective 

Nomenclature 

Indexes and sets 

i, j Index of offshore WTs. 

t Index of time periods [h]. 

ω Index of scenarios. 

Optimization of Maintenance Scheduling for 

Offshore Wind Turbines Considering the Wake 

Effect of Arbitrary Wind Direction 
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Parameters 

m Number of WTs in the offshore wind farm 

n Number of periods in time horizon 

Ω Number of scenarios after reduction  

πω Probability of scenario ω 

kj,i Wake reduction coefficient of WT i to WT j 

α Wind direction [°] 

v0j,t Input wind speed of WT j in period t assuming it is not affected by any wake [m/s] 

v0j,t,ω Input wind speed of WT j in period t under scenario ω assuming it is not affected by any 

wake [m/s] 

P
b 

i,t,ω Predicted power output of WT i in period t under scenario ω [kW] 

A
o 

j,i Wake obstruction area of WT i to WT j [m
2
] 

A
o 

j,i,t Wake obstruction area of WT i to WT j in period t [m
2] 

Aj Sweeping area generated by WT j [m2] 

ηj,i , ηj,i,t Wake obstruction area ratio of 
o

,j i jA A  and 
o

, ,j i t jA A  

ηj,i,t,ω Wake obstruction area ratio of 
o

, ,j i t jA A  under scenario ω 

Oi Center of WT i 

O
w 

i  Center of the wake that developed from upstream WT i  

e1 Angle between line Oi - Oj  and y-axis [°] 

Rj,i Radius of the wake generated by WT i to WT j [m] 

Rj Impeller radius of WT j [m] 

Lj,i Distance between upstream WT i and downstream WT j [m] 

dj,i Distance from Oj to O
w 

i  [m] 

ui Maintenance duration required by WT i [h] 

c
e 

i,t , c
g 

i,t Material equipment and environmental monitoring cost for WT i in period t [$] 

c
r 

i,t,ω , c
y 

i,t,ω Transportation and manpower cost for WT i in period t under scenario ω [$] 
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c
f 

t  Infrastructure cost in period t [$]  

cv , ch Unit vessel and helicopter fixed cost [$] 

ζi , θi Vessel and helicopter demand for maintaining WT i 

c
s 

t,ω , c
z 

t,ω Unit vessel and helicopter transport cost in period t under scenario ω [$] 

c
d 

t,ω , c
q 

t,ω , c
l 

t,ω Vessel, helicopter and onshore per capita  manpower cost in period t under scenario ω [$] 

δ
v 

i , δ
h 

i , δ
l 

i  Vessel, helicopter and onshore manpower demand for WT i 

w Unit price of wind power [$/kW·h] 

Δt Duration of period t [h] 

ηi Maintenance deadline of WT i  

Uω Time period set not allowed for maintenance under scenario ω due to the weather  

δ
a 

t , θ
a 

t , ζ
a 

t  Number of available manpower, helicopters and vessels in period t 

Di Distance from shore to WT i [km] 

qv, qh Vessel and helicopter gas emissions [kg/kg·km] 

ϑ Average weight of an employee [kg] 

z
v 

i , z
h 

i  Equipment on vessels and helicopters for WT i [kg] 

GHG Greenhouse gas emission standard regulated by the industry [kg] 

ζ
p 

t  Permitted moving vessels in period t for protecting the marine environment 

θ
p 

t  Permitted moving helicopters in period t for protecting the lives of birds 

Y Time period set of daily night  

ξ Total time of vessels allowed to travel to the sea on daily night [h] 

P
r 

i  Rated power of WT i [kW] 

v
in 

i , v
r 

i , v
out 

i  Cut-in, rated and cut-out wind speed of WT i [m/s] 

M Sufficiently large positive number 

Variables 

f1, f2 Maintenance costs [$] and power generation [kWh] of the offshore wind farm 

εγ The constraint value of f1 and f2 

vi,t Input wind speed of WT i in period t [m/s]  
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vi,t,ω Input wind speed of WT i in period t under scenario ω [m/s]  

vj,i,t Wake velocity of WT i wake effect on WT j in period t [m/s] 

vj,i,t,ω Wake velocity of WT i wake effect on WT j in period t under scenario ω [m/s] 

C
T 

i,t Thrust coefficient of WT i in period t 

C
T 

i,t,ω Thrust coefficient of WT i in period t under scenario ω 

Pi,t,ω Power output of WT i in period t under scenario ω [kW] 

W
u 

i,t,ω Power loss due to shutdown of WT i in period t under scenario ω [kWh] 

c
u 

i,t,ω Shutdown loss cost for WT i in period t under scenario ω [$] 

bi,t 0–1 decision variable denoting the starting state of WT i in period t 

Ii,t 0–1 decision variable denoting the maintenance state of WT i in period t 

, , , , , ,

, , , , , ,

, ,

, ,

1 , 2 ,

3

k k

j i t j i t

j i t j i t

j t

v v

v

 

 



 

 Auxiliary variables 

ζ Slack variable 

1. Introduction 

Compared to onshore wind, offshore wind power has significant advantages including high average 

wind speed and utilization hours of power generation. However, harsh marine geography and poor 

accessibility introduce serious challenges to the maintenance of offshore wind turbines (WTs) [1]. Thus, 

the maintenance cost of offshore WTs is high and accounts for about 40% of the total lifetime cost of 

WTs [2]. Effective scheduling of wind generator maintenance can result in significant potential energy 

savings and economic benefits for offshore wind farms. Many researchers have focused on this issue in 

the past decade. 

The approaches of maintenance for WTs can be mainly classified into two types: maintenance 

scheduling [3-6] and fault detection and diagnosis [7-11]. Studies on the short-term maintenance 

scheduling of offshore wind generators mainly aim to optimize the maintenance starting times in the 

marine operating environment. A maintenance management system is described and a maintenance path 

with minimum cost for onshore and offshore wind farms is presented in [3]. Maintenance scheduling of 
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an offshore wind farm is improved by condition monitoring systems in [4]. Technicians with different 

skills are coordinated to increase the efficiency of short-term maintenance scheduling in [5, 6]. Notably, 

in the abovementioned research the objective of maintenance scheduling is simply to minimize 

maintenance costs. Power generation benefits are not taken into account in the studied time horizon, 

which will lead to a decline in the utilization of offshore wind resources. Maintenance scheduling of 

onshore wind power considering both power generation and maintenance costs was proposed in [12, 13]. 

However, due to differences between offshore and onshore WTs in terms of operating environment, 

maintenance modes, and accessibility, existing optimization models are not applicable to offshore wind 

power. 

Because the wind direction continuously changes, the position of downstream WTs varies in a 

corresponding fashion and the wake effect among the WTs will also change. Thus, the wake effect 

reflects the coupling between the upper and lower WTs and the varied wind direction means the 

coupling changes. Due to the complex relationship, the wake effect is omitted when analyzing the 

output power of wind farms to simplify the calculation [14]. Some studies calculate the wind farm 

output with the wake in a single wind direction [15, 16]. To consider the influence of wind direction, 

wake coefficient is used to evaluate the impact of the wake effect on the output power of the wind farm 

in [17], which indicates the dependence of the wake coefficient upon wind direction. However, in 

scheduling problems, the characteristic of wake effect changing with wind directions [18-20] is often 

ignored. Therefore, a general wake model for any wind direction still needs to be considered in the 

maintenance scheduling. 

Furthermore, when the WT is in maintenance, it does not absorb wind energy and the wake 

distribution of the wind farm is affected. Considering the arbitrariness and randomness of the wind 

direction, the coupling among WTs changes in both spatial and temporal dimensions. This makes short-

term maintenance scheduling very complicated, and generally formulated as a dynamic coupling, multi-

objective, multi-constraint nonlinear stochastic programming problem. Many intelligent algorithms 

have been utilized to solve this problem, such as ant colony system (ACO) [21], genetic algorithm (GA) 

[22], particle swarm optimization (PSO) [23], and non-dominated sorting genetic algorithm II (NSGA-
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II) [24]. Additionally, dynamic programming (DP) [25], mixed integer linear programming (MILP) [26], 

mixed integer second-order cone programming (MISOCP) [27], mixed integer nonlinear programming 

(MINLP) [28], scenario analysis [29], the ε-constraint method [30], and other traditional methods have 

been successfully developed to deal with the complicated models. As pointed out in [31], intelligent 

algorithms are apt to converge to a local optimal solution when solving large scale multi-constraint 

problems. MILP solvers facilitate an easier formulation and a flexible approach for discrete decision 

making, and also have a higher commercial maturity. MILP has been widely applied to solve such 

problems [26, 31-34]. However, the wake effect is nonlinear and dynamically changing, and how to 

transform the wake effect into MILP models in short-term maintenance scheduling is still very 

challenging. 

The comparison between the existing works and the proposed approach about offshore wind farm 

maintenance scheduling is reported in Table 1. 

Table 1 

Comparison of between the existing and proposed methods 

No. Ref. Objective 
Wind speed 

and direction 
Factors considered Modeling 

1 [5] 
Maintenance cost, 

power generation 
Deterministic 

Equipment, personnel, 

weather 

Multivariate auto-

regressive 

2 [6] Maintenance cost Deterministic 
Equipment, personnel, 

weather 

Two-stage adaptive large 

neighborhood search 

3 [24] 
Maintenance cost, 

reliability 
Deterministic 

Equipment, personnel, 

weather, environmental 

protection 

Multi-constrained non-

linear programming 

4 [35] Net profit Deterministic 
Personnel, weather, WTs 

remaining life  

Adaptive opportunistic 

maintenance 

and operations scheduling 

5 [36] Maintenance cost Deterministic 
Equipment, personnel, 

weather 
MILP 

6 [37] Maintenance cost Deterministic 
Equipment, personnel, 

weather 

Multi-constrained non-

linear programming 

7 [38] Maintenance cost Deterministic 

Equipment, personnel, 

weather, unexpected failure 

of WTs 

Simulation-based 

optimisation 

8 [39] Maintenance cost Deterministic 
Equipment, personnel, 

weather 

Non-deterministic 

polynomial 

9 [40] Maintenance cost Deterministic 

Equipment, personnel, 

weather, maintenance 

accommodation 

Maintenance support 

organization 

10 
Proposed 

approach 

Maintenance cost, 

power generation 
Uncertainty 

Equipment, personnel, 

weather, environmental 

protection, wake effect in 

arbitrary wind direction 

MILP 
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Similar to the most research works, this paper considers equipment, personnel, and weather 

constraints during maintenance scheduling. However, differing from the existing works, this paper 

considers a new important factor, the uncertainty of wind speed and direction, to make the obtained 

maintenance scheduling more feasible. Other advantages of current paper include that the influence of 

wind direction and maintenance status on the wake effect is considered in the maintenance scheduling 

model, and the proposed model is transformed into an easily-solved MILP model, which are not 

mentioned in existing works in Table 1. Simultaneously, for making full use of offshore wind resources 

and ensuring good economics, the bi-objective of power generation maximization of the offshore wind 

farm and maintenance costs minimization is presented, which is not included in [6, 35-40]. 

The main contributions of this paper are as follows: 

1) Considering the dynamic influence of maintenance on wake distribution, a general wake model of 

arbitrary wind direction combined with maintenance state is proposed. In this model, the spatial and 

temporal coupling between downstream WTs and multi-upstream WTs is depicted. Thus, the changes of 

wake caused by wind direction and maintenance condition are considered, and the input wind speed of 

WTs is accurately calculated. 

2) In the proposed maintenance scheduling optimization model, uncertainty of wind speed and 

direction are introduced to evaluate the maintenance cost and the power generation, to construct the 

objectives. The model considers output power, weather, and other maintenance-related constraints to 

address the prominent characteristic that the maintenance scheduling of offshore WTs is affected by 

wind condition, and achieves a more reasonable economic evaluation. 

3) The quadratic terms in the model are transformed to second-order cones by the relaxation method. 

Based on this, the nonlinear part of the wake model as well as the relationship between the thrust 

coefficient and the input wind speed of the WT are handled by MISOCP. In addition, the above 

MISOCP model and the coupling functions of integer variables and continuous variables are converted 

into a MILP model by an algebraic modeling method to improve the computational efficiency. 
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The reminder of this paper is organized as follows. Section 2 states the establishment of the wake 

model. The optimization model of maintenance scheduling is formulated in Section 3 and its solution 

method is presented in Section 4. Section 5 provides numerical results from case studies. Conclusions 

are drawn in Section 6. 

2. Wake effect 

Subject to the area of the offshore wind farm, the spacing between WTs is relatively small, but the 

wake effect still significantly affects the input wind speed of the downstream WTs [41]. Assumed the 

arrangement of offshore WTs is as shown in Fig. 1, where the WTs in the wind farm are numbered from 

1 to m and the coordinates (xi, yi) indicate the position of WT i relative to the original point. i1max 

represents the last WT in the first column.  

To accurately obtain the input wind speed of the WT for any wind direction during the maintenance 

period, and depending on the law of conservation of kinetic energy of the airflow per unit time, the 

input wind speed of WT j in period t can be formulated as: 

2 2 2

, , , , , , , ,

1

0 (1 ) ( 0 )
m

j t j t i t j i t j i t j t

i

v v I v v


                              (1) 

As described in (1), the input wind speed of WT j is related to the maintenance state Ii,t, wake 

velocity vj,i,t of upstream WTs, and wake obstruction area ratio ηj,i,t. The wind speed that arrives at the 

blade of downstream WTs is affected by several upstream WTs. And, when the ambient wind direction 

changes between 0° and 360°, the wake obscuration area between upstream and downstream WTs 

varies. In addition, it can be found that, if WT i is maintained Ii,t=1, the wake effect from WT i to WT j 

is ignored, and otherwise, the wake effect from WT i to WT j should be considered. Therefore, the 

presented model represents the combination of the wake model and the maintenance status. Besides, vj,i,t 

can be obtained referring to [42], which can be expressed by (2). 

T

, , , , ,(1 )j i t i t j i i tv v k C                                  (2) 

And wake obstruction area ratio ηj,i,t is formulated by (3).  
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o

,

,

,

,

j

j i

t

t

i

j

A

A
                                      (3) 

... ...

... ...

... ...

... ...

... ...

...

...

...
... ...

...

1

2

...

m

0°

90°

180°

270°

i1max+1

...

i1max

(xi,yi)
y

x

0° wind 
direction

30° wind 
direction

180° wind direction

turbine in 
operation

turbine in 
maintenance

315° wind 
direction

i1

 

Fig. 1. The arrangement of offshore WTs 

To calculate the wake obstruction area ratio , ,j i t  in an arbitrary wind direction, the wake effect 

between WTs is illustrated in Fig. 2. Assuming that the wind direction is   in period t and WT j is 

overlapped with the right half of the wake plane, some distance parameters can then be expressed as: 

2 2

, ( ) ( )j i i j i jL x x y y                                  (4) 

, , sin( )j i j i 1d L e                                    (5) 

o

, , cos( )j i i j i 1R R k L e                                  (6) 

where (4) is the distance between upstream WT i and downstream WT j, (5) formulates the distance 

from Oj to O
w 

i , and (6) represents the radius of the wake generated by WT i to WT j. ok is the wake 

decay constant and the recommended value for an offshore environment is 0.04 [20]. 

0 x

y

α
e1

Rj

Rj,i

dj,iLj,i

Aj,i
o

Aj

Oi(xi,yi)

Oj(xj,yj)

wind 
direction

Oi
w

wake area

 

Fig. 2. Wake model with varying wind direction 

When , ,0 j i j i jd R R   , it corresponds to the full wake effect and ,j i  is equal to 1, while 

, ,j i j i jd R R   corresponds to the non-wake effect and ,j i  is equal to 0. , , ,j i j j i j i jR R d R R     
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corresponds to the partial wake effect. In this case, ,j i  can be formulated by (7) based on the method 

described in [23].  

 
2 2 2 2 2 2 2 2 2

, , , , , ,1 1 2

,

,, , ,

2 2

, .cos cos sin(arccos )
22 2

j i j i j j j i j i j j i j i

j i j j

j j ij i j i

j i j j

i

i

j j

R d R R d R R d
R R d

R
R R

R dR d R d
  

      
  
 

    (7) 

And similarly, when the left half of the wake plane overlaps with WT j, ,j i  can also be obtained. 

3. Model formulation 

Wind speed and wind direction prediction have uncertainty. To improve the feasibility of 

maintenance scheduling, a stochastic programming model is proposed. The prediction value of wind 

speed and direction for each time period is assumed to obey the normal distribution [41, 43]. Based on 

this, the Latin hypercube sampling (LHS) method [44] is used to sample for generating scenarios, and 

then the scenario reduction method [45] is conducted to reduce the quantity of acquired samples to 

obtain prediction data for wind speed and direction of each scenario ω, and thus the uncertainty of wind 

speed and direction can be described by these scenarios. 

3.1. Objective Functions 

The maintenance cost of the offshore wind farm is high, and the maintenance scheduling should 

ensure good economics. Meanwhile, making full use of offshore wind resources to generate electricity 

to ensure wind farm revenue is also significant. Therefore, the objective of maintenance scheduling for 

the offshore wind farm is to minimize maintenance costs f1 and maximize power generation f2 over the 

studied time horizon. 

1) Maintenance costs minimization 

e g f

, , r y u

1 , , , , , , ,

1 1 1

min min ( ( ))
m n

i t i t t

i t i t i t i t

i t i

c c c
f c c c I

u
   






  

 
     .                (8) 

r

, ,i tc  ,
y

, ,i tc  , and 
u

, ,i tc   are expressed by 

v h
r s z

, , , ,
i i

i t t i t i

i

c c
c c c

u
  

 
 


                                  (9) 
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y d v q h l l

, , , , ,i t t i t i t ic c c c                                             (10) 

u u

, , , ,i t i tc W w                                                  (11) 

(8) indicates the expectation of maintenance costs for multi-scenarios. 

2) Power generation maximization 

2 , ,

1 1 1

max max
m n

i t t

i t

f P 





  

                              (12) 

As demonstrated in (12), the generation benefit of the wind farm in this paper is expressed as the 

expectation of power generation. 

3.2. Constraints 

The above objective functions are subject to the following constraints: 

b

, , , , ,(1 )i t i t i tP I P                                      (13) 

,

1

1
n

i t

t

b


                                            (14) 

, ,i t i tI b                                                     (15) 

, , 1 ,i t i t i tI I b                                     (16) 

, , 1 , 2i t i t i tI I b                                     (17) 

,

1

n

i t i

t

I u


                                                      (18) 

, ,+ 1,     i t j tI I i j                                            (19) 

1

,

1

1
i iu

i t

t

b
  



                                               (20) 

, 0i t

t U

I


                                            (21) 

v h l a

,

1

( )
m

i i i i t t

i

I   


                                         (22) 

a

,

1

m

i i t t

i

I 


                                     (23) 
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a

,

1

m

i i t t

i

I 


                                     (24) 

v v v h h h

,

1

2 [ ( ) ( )]
m

i i t i i i i

i

D b q z q z GHG 


                          (25) 

p

, , 1

1

( )
i

m

i i t i t u t

i

b b  



                                        (26) 

p

, , 1

1

( )
i

m

i i t i t u t

i

b b  



                                 (27) 

,

1

m

i t

i t Y

I 
 

                                     (28) 

where (13) shows the WT output power limit; (14) reflects the maintenance necessity limit; (15)-(17) 

are maintenance continuity limits; (18) implies the duration limit; (19) signifies the period limit; (20) 

means the deadline limit; (21) expresses the weather limit; (22) is the manpower limit; (23) and (24) 

signify vehicle limits; (25) indicates the greenhouse gas emission limit; (26) represents the marine 

environmental limit; (27) refers to the bird population limit; and (28) denotes the night maintenance 

limit. 

4. Solution approach 

The proposed model is a complex multi-objective nonlinear optimization problem. The nonlinear 

functions need to be reasonably linearized to reduce the difficulty of obtaining a solution and the multi-

objectives can be processed by the ε-constraint method [30]. 

4.1. Linearization of wake model  

The relationship between WT output power and wind speed is shown in Fig. 3. It can be expressed as 

in

, ,

z in r

, , , ,

, , r r out

, ,

out

, ,

0                      ,0

   ,

                    ,

0                       ,

i t i

i i t i i i t i

i t

i i i t i

i t i

v v

IF v P v v v
P

P v v v

v v



 







  


   
 

 




                         (29) 

where IFi , 
z

iP are the slope and constant terms, respectively.  
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Fig. 3. Relationship between WT output power and wind speed 

As shown in (1), the input wind speed of the WT is related to the maintenance state of upper WT and 

wake effect, which is a complicated mixed-integer nonlinear function. To simplify the calculation, for 

scenario ω, (1) can be equivalently transferred to: 

2 2 2 2

, , , , , , , , , , , , , , , , ,

1 1

0 (1 ) 0 + ((1 ) )
n n

j t j t i t j i t j t j i t i t j i t

i i

v v I v I v      
 

                     (30) 

where , , ,j i t  , which is dependent on the wind direction and relative location of WTs, can be calculated 

by (7). The nonlinear part of (30) is then 

 
2

, , , ,(1 )i t j i tI v                                    (31) 

By linearizing (31), it can be seen that 

, , , , , , ,1 (1 )j i t i t j i tv I v                                   (32) 

, , , , , ,. .     0 1j i t j i ts t v v                                   (33) 

, , , , , , , ,(1 ) 1 (1 )i t j i t j i t i tI M v M v I M                             (34) 

For the linearization of 
2

, , ,1 j i tv  , this paper introduces auxiliary variable. 

2

, , , , , ,2 1j i t j i tv v                                    (35) 

Since the equality constraints are difficult to solve, (35) is relaxed into a second-order cone and 

formed the inequality, and this problem is transformed into a MISOCP problem. 

, , , , , , , , ,2 2

, ,

2 1 2 1 2 1
(1 ) 1 ( )

2 2 2

j i t j i t j i t

j i,t

v v v
v

  


  

                      (36) 

where the value of ρ is small and taken as 10-2. 

To further speed up the solution, the second-order cone is approximately described as a polyhedron 

by the relaxation method [33], which transforms the MISOCP problem into a MILP problem. Taking 

the right part of (36) as an example, the processing can be described as: 
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, , , , , ,2 2

, , ,

2 1 2 1
1 ( ) (1 )

2 2

j i t j i t

j i t

v v
v

 

 
 

                          (37) 

0

, , , , , ,1j i t j i tv                                       (38) 

, , , 0

, , ,

2 1

2

j i t

j i t

v 




                                  (39) 

1 1

, , , , , , , , ,1 1
cos sin

2 2

k k k

j i t j i t j i tk k  

 
   

 
                           (40) 

1 1

, , , , , , , , ,1 1
sin cos

2 2

k k k

j i t j i t j i tk k  

 
   

 
                           (41) 

, , ,

, , ,

2 1

2

j i tK

j i t

v 




                                  (42) 

, , , , , ,1
tan

2

K K

j i t j i tk 


 


                                 (43) 

where k=1,2,...,K; 
0

, , ,j i t   and 
0

, , ,j i t  are auxiliary variables. 

(38)-(43) show the polyhedral approximation obtained by the relaxation method. Due to the equality 

constraint of 
0

, , ,j i t  , 
1

, , ,

k

j i t  
, and , , ,

k

j i t   are given by (40) , K equality constraints and K variables , , ,

k

j i t   

can be eliminated by substituting (40) into the rest equations. The second-order cone constraint for 

variables , , ,1j i tv   and , , ,2 j i tv   in the optimization problem is approximately equivalent to the linear 

inequality constraints constructed by a set of variables , , ,1j i tv  , , , ,2 j i tv  ,
0

, , ,j i t  , and (K+1) variables 

, , ,

k

j i t  . Therefore, the second-order cone programming problem is transformed into a linear 

programming problem. Further, the slack variable ζ can be expressed as: 

2

1

1
1

cos( )
2K





 
                                 (44) 

The smaller the value of  , the higher the accuracy of the second-order cone approximate 

description. In this paper, K=11 is chosen for solving and ζ=610-7 is obtained. Thus, the value of ζ is 

small enough to make the main aspects of (36) are kept. The processing is similar for the left part of 

(36).  
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In addition, the auxiliary variable , ,3 j tv   is introduced to calculate 
2

, ,j tv   in (30), 

2 2

, , , , , , , , , , , , , , , ,

1 1

3 0 (1 ) 0 + 2
n n

j t j t i t j i t j t j i t j i t

i i

v v I v v      
 

                      (45) 

It can be found that 

2

, , , ,3 j t j tv v                                     (46) 

The linearization of (46) is the same as described for (35). Moreover, the thrust coefficient 
T

,i tC  in (2) 

can be approximately expressed [15] as: 

T z z

, , , ,i t i tC k v b                                   (47) 

where both kz and bz can be obtained by fitting the curve of thrust coefficient vs. wind speed. 

Because ,j ik  is determined by WTs spacing and the impeller diameter of WT i, it can be formulated 

in advance and is independent of the optimization variables. The only nonlinear part of (2) is 
2

, ,i tv  , 

which was linearized in the preceding calculations. Then, the linearization of the wake model can be 

accomplished by the above methods. 

4.2. Processing of multi-objective function 

To solve the proposed model, the ε-constraint method [30] is used to deal with the multi-objective 

function. The f1 optimization direction is minimized and the f2 optimization direction is maximized as 

follows: 

Step 1: Input the original data of the model and solve each single objective optimization model. This 

will generate the objective function values and optimization decision variables for different 

optimization targets, respectively. Then the range of εγ (γ=1, 2) can be determined by the function 

values obtained. 

Step 2: Substitute εγ into the corresponding objective function to generate a constraint. Based on this, 

the multi-objective function is transformed into a single objective function and MILP method is applied 

to solve. 

Step 3: Repeat Step 2 by selecting different values of εγ and the Pareto optimal solutions of the model 

can be obtained. 
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To sum up, the flowchart of solving the optimization model of maintenance scheduling for offshore 

wind turbines considering the wake effect is shown as Fig. 4. 

Input the WT locations 
according to the layout of the 

offshore wind farm

Generate Ω scenarios of 
wind speed and direction 

Calculate wake 
obstruction area ratio with 

varying wind direction

Scenario ω =1 

Further convert the MISOCP  
model into a MILP model

Y

ω=ω+1 

N

Construct bi-objective maintenance 
scheduling optimization model

If ω>Ω? 

Solve the above bi-
objective model by 
ε-constraint method

Obtain maintenance 
scheduling optimization 

schemes

Calculate output power by 
wind speed-power function

Construct wake model and 
obtain input wind speed of WTs

Input wind speed 
considering 
wake effect

Transform the proposed 
nonlinear optimization problem 

into a MISOCP model

 
Fig. 4. The flowchart of solving the optimization model of maintenance scheduling 

5. Case Studies 

The specific layout of the offshore wind farm considered in this paper is shown in Fig. 5. There are 

30 WTs that are numbered 1 to 30. The rated power of each WT is 3 MW, the impeller radius is 63 m, 

and the row and column spacings are both 560 m. The WT cut-in speed is 3 m/s, the rated wind speed is 

13 m/s, and the cut-out wind speed is 25 m/s. The time horizon for optimization scheduling is one week, 

with 1 hour for a time period and totally 168 time periods. The expected values of wind speed and wind 

direction for each time period are shown in Fig. 6 and the prediction error does not exceed 10%. A total 

of 10 WTs need to be maintained (numbered 1, 2, 3, 4, 5, 6, 8, 11, 12, and 15) in the offshore wind farm 

and the maintenance period starts at 6 a.m. The maintenance duration of the 1
st
 and 11

th
 WTs is 10 time 

periods, while other WTs require 8 time periods. The relevant parameters in the model such as cost, 

manpower demand, etc. can be found in [5] and [24]. The maintenance deadline of the 3
rd

 WT is the 

50
th

 period. The 5
th

 and 15
th

 WT cannot be maintained at the same time. 

As the number of scenarios increases, model calculation becomes more complicated. This paper 

reduces the 2000 scenarios generated by LHS to 20 for case studies to investigate the effectiveness of 

the proposed model and method. The tests are carried out on a laptop with an Intel Core i5 2.50 GHz 

CPU and 8 GB of RAM using a MATLAB and GAMS platform. Related cases are illustrated as follows. 
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Fig. 5. The layout of the offshore wind farm 
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Fig. 6. Expected values of wind speed and wind direction 

5.1. Influence of wind direction on wake effect 

To show the impact of wind direction change on the wake effect, the 4
th

 day with relatively extensive 

wind direction coverage is selected and the following four cases are considered for comparison as well 

as wind speed dates employ the expected values of the 4
th

 day. 

Case 1: Wind direction is 0°; 

Case 2: Wind direction is 90°; 

Case 3: Wind direction is 30°; 

Case 4: Consistent with the expectations of the wind direction on the 4th day.  

Fig. 7 shows the output power of the WTs in each period, and Fig. 8 compares the output power of 

each WT for the different cases. The output power of case 4 varies greatly in Fig. 7, which indicates that 

the change of wind direction has a great influence on the output power of the wind farm. In addition, the 

wind farm output power is lower when the wind direction is near 0° and higher when near 90°. The 

reason, which can be found from Fig. 8, is that the wake effect is more pronounced at 0°, which makes 

the wind farm output power drop further. In case 3, the output power is also large. However, the 

difference in the WT output at 30° is significant in Fig. 8. Although some WTs are not affected by the 
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wake, the 25
th

-30
th

 WTs have low outputs that are influenced by the wake superposition of multiple 

WTs, which limits the overall output power of the offshore wind farm. 

Moreover, comparing the curves in Fig. 8 shows the output power of each WT in case 4 is more 

uniform and more in line with the actual operating conditions of offshore WTs. The above indicates the 

rationality and feasibility of the proposed wake model in this paper, which can adapt to the actual wind 

speed and wind direction change. The output power of the offshore wind farm can be described more 

objectively in the case study by adopting varying wind direction.  
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Fig. 7. Wind farm output power for various time periods 
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Fig. 8. Output power of each WT 

5.2. Optimization of maintenance scheduling 

1) Maintenance scheduling 

For maintenance scheduling, it is necessary to optimize both maintenance costs and power generation 

to achieve the greatest economic benefits. According to the part 3 in Section 4, the Pareto optimal 

solutions of this problem can be obtained. 

Table 2 shows the values of Pareto optimal solutions obtained by MILP method. It can be seen that 

when the maintenance cost reduces, the power generation also decreases. It means that the trend of 

maintenance cost decreasing and power generation increasing is inconsistent in the optimization. 
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Therefore, it is necessary to consider the two objectives of minimizing maintenance costs and 

maximizing power generation to make the decision of the maintenance scheduling. Taking one of the 

Pareto optimal solutions for example, such as the 11th solution, the optimized maintenance cost of 

offshore WTs is $374,600 and the generation is 5.375×106 kWh; the corresponding maintenance 

scheduling is shown in Fig. 9. The magnified windows are to show the hour No. of maintenance 

scheduling in detail. 

Table 2 

Values of Pareto optimal solutions 

No. f1 (10
4
 $) f2 (10

6 
kWh) No. f1 (10

4
 $) f2 (10

6 
kWh) 

1 37.040 5.276 11 37.460 5.375 

2 37.056 5.285 12 37.582 5.381 

3 37.083 5.291 13 37.665 5.392 

4 37.112 5.304 14 37.736 5.399 

5 37.152 5.309 15 37.793 5.410 

6 37.236 5.328 16 37.912 5.417 

7 37.254 5.332 17 37.965 5.421 

8 37.325 5.345 18 38.050 5.428 

9 37.388 5.357 19 38.124 5.435 

10 37.433 5.366 20 38.231 5.438 
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Fig. 9. The maintenance arrangement of WTs 

Fig. 9 illustrates that the maintenance periods of WTs are mostly distributed in the 25
th

-38
th

, 102
nd

-

135
th

, and 146
th

-154
th

 periods, most of which are during the daytime because of the relatively low 

maintenance cost. But, taking into account the continuity, some of the maintenance periods are still at 

night. Taken together, the maintenance period is not always scheduled to coincide with low wind speeds. 
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In some periods, the wind speed is obviously high, but the wind direction is around 0°, which results in 

the WT having a low output power. Maintenance during these periods will achieve better economic 

benefits. In addition, due to restrictions on manpower, maintenance vessels, and helicopters in each 

period, maintenance work on the WTs is not concentrated in several time periods; rather, it fits the 

actual situation of maintenance for offshore WTs. 

2) The impact of maintenance status on wake distribution 

When the WT is in maintenance, it does not absorb wind energy. Thus, the wake effect among the 

WTs will change and will affect the output power of downstream WTs. Taking the 4
th

 WT as an 

example, with the maintenance scheduling shown in Fig. 9, its maintenance periods are 102
nd

-109
th

 

periods. And the output power of its downstream 5
th

 WT is calculated in two scenarios: with or without 

consideration of the impact of the upstream WT maintenance on wake distribution, respectively. The 

result is shown in Fig. 10. 

Fig. 10 demonstrates that when the WT is in maintenance, the impact of the wake on the downstream 

WT will be enhanced and the output power of the downstream WT will increase. By calculation and 

analysis, the total output of the 5
th

 WT with and without consideration of maintenance state is 6680.04 

and 5710.67 kW, respectively. The former represents about 17% more output power than the latter for 

the 5
th

 WT only. Simultaneously, the wake effect of the 5
th

 WT has an impact on the output power of 

other WTs. Therefore, the impact of the maintenance state cannot be ignored, and should be considered 

to more exactly describe the output power of the downstream WTs during maintenance periods. 
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Fig. 10. Output power of the downstream 5

th 
WT with different scenarios 

5.3. Method validation 
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1) Comparison with NSGA-II algorithm 

In order to verify the advantage of the proposed MILP method, it is compared with the widely used 

NSGA-II algorithm [24] and the results are shown in Fig. 11. It shows that the Pareto optimal solution 

sets obtained by the two methods are relatively close. However, the search space of the MILP method is 

wider and can obtain the range of the objective function f1<37.2×10
4
 $, which further improves the 

quality of the optimal solution set. In addition, NSGA-II has a long calculation time, which is 736.58 s. 

In comparison, the MILP method takes 161.20s, which can save 78.1% of the calculation time. 
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Fig. 11. Results comparison of MILP method and NSGA-II  

2) Comparison with MISOCP method 

To further verify the performance of the proposed MILP method, the optimization results of the 

maintenance scheduling obtained by MISOCP in [27] are utilized as reference and compared. The 

relative deviation of the obtained 20 groups of Pareto optimal solutions and the saved calculation time 

of MILP are shown in Fig. 12. For each Pareto optimal solution listed in Table 2, the relative deviations 

of maintenance costs and power generation are not more than 0.023% and 0.024%, respectively. The 

computing time of the two methods differs greatly. Compared with MISOCP method, calculation time 

of MILP method can save 66%-79% and the average calculation time of the MILP method is 8.06 s. 

Consequently, the solution accuracy is almost the same under the two methods, but the MILP method 

obviously has a great advantage in terms of solving efficiency. 
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Fig. 12. Results comparison between MILP and MISOCP 

5.4. Solutions for offshore wind farms of different scales 

In order to verify the feasibility and adaptability of the proposed model, large-scale case studies are 

conducted. The scale of the original wind farm is doubled, tripled, and quadrupled for example analysis, 

respectively. The layouts of each wind farm are shown in Fig. 13 and WTs distributions are 10 rows and 

3 columns, 10 rows and 6 columns, 10 rows and 9 columns, and 10 rows and 12 columns. The solution 

results are shown in Fig. 14 for these 4 offshore wind farms of different scales. Fig.14 indicates that 

with the expansion of the offshore wind farm scale, the power generation obviously increases, and the 

maintenance cost gradually decreases. When the number of WTs is large in a wind farm, the wake 

effect is more pronounced. In this case, more downstream WTs will be able to utilize the wind energy 

as the wake distribution changes while the upstream WT is in maintenance, which makes the overall 

shutdown loss of the wind farm smaller, and the maintenance cost reduces. Therefore, the maintenance 

scheduling optimization model proposed in this paper is still applicable to a large-scale offshore wind 

farm. 
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a) Wind farm with 30 WTs              b) Wind farm with 60 WTs 
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c) Wind farm with 90 WTs                           d) Wind farm with 120 WTs 

Fig. 13. Layout of 4 offshore wind farms 
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Fig. 14. Solution results for offshore wind farms of different scales 

6. Conclusions 

This paper proposes an optimization scheduling model for the maintenance of offshore wind farms. 

The model considers the wake effect of arbitrary wind direction, influence of maintenance status on 

output power, and economic performance with maximum power generation and minimum maintenance 

costs. The proposed process incorporates MISOCP and MILP methods as well as the ε-constraint 

method. Through theoretical analysis and case studies, this paper shows that: 

a) Both the wind direction and maintenance status of a WT have a significant influence on the wake 

effect, which affects the output power of the offshore wind farm. Through the wake model proposed, 

the output power can be accurately reflected in the time horizon considered. 

b) Maintenance scheduling with optimal comprehensive economic benefits considering the 

uncertainty of wind speed and direction can be obtained by utilizing MILP and the ε-constraint method 

to solve the proposed model, which provides a reference for the schematization of maintenance of the 

offshore WTs.  
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c) The proposed second-order cone of the wake model is approximately described as a polyhedron, 

which allows the MISOCP problem to be represented as multiple linear inequalities. The algebraic 

modelling method is utilized to linearize the remaining nonlinear coupling relationships to form a new 

model solved by MILP method. The simulation results show that compared with NSGA-II and 

MISOCP methods, the proposed method can improve the solution efficiency while ensuring the high 

quality of the solution. 
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