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 

Abstract— The integration of full converter-based wind power 

generation (FCWG, e.g. permanent magnet synchronous genera-

tor (PMSG)) not only introduces the PMSG oscillation modes 

(POMs) but also might excite severe resonances with electrome-

chanical oscillation modes (EOMs) of the power system. In this pa-

per, a two-open-loop-subsystem dynamic model is firstly estab-

lished to investigate the interactions between the PMSG and the 

rest of the power system. On this basis, a modal shift evaluation 

(MSE) method by using bilateral damping torque analysis is pro-

posed to accurately quantify the interaction effect of POMs and 

EOMs on each other and effectively explain their complex interac-

tion process. Then two important concepts, i.e., modal shift sensi-

tivity (MSS) with respect to various PMSG controller parameters 

and resonance excitation index (REI) according to a per unit open-

loop modal distance indicating the intensity of modal interactions, 

are derived to dig the essential modal resonance mechanisms. Fur-

thermore, by using MSS and REI as two tools, the modal interac-

tion optimization (MIO) is conducted through POM tuning in or-

der to prevent potential system modal resonance and enhance res-

onance mode damping for the first time. The optimized modal in-

teraction is validated to be beneficial and effective for the improve-

ment of power system resonance stability. 

 
Index Terms-- PMSG, modal interaction, modal shift sensitivity 

(MSS), resonance excitation index (REI), POM tuning, resonance 

stability.  

I.  INTRODUCTION 

ULL converter-based wind power generation (FCWG) be-
comes increasingly favorable in wind generation market 
during recent years. The integration of wind power genera-

tion into power systems deteriorates the system dynamics and 
poses a critical threat to the system operation [1]-[6]. Although 
various control schemes have been applied in the wind power 
generation to improve the dynamic performance of the wind 
power generators [7]-[11], the dynamic interactions with power 
systems are much more complex to deal with. The reso-
nance/oscillation events induced by wind power generation oc-
cur frequently and could result in a severe economic loss. On 
July 1, 2015, SSR took place in Xinjiang Province of China and 
led to the malfunction of protection and a huge power loss of 
1280MW. 

To address the dynamic impact of wind power generation and 
enhance the power system oscillatory stability, quite a few stud-
ies are conducted. The impact of the FCWG integration on 
power system stability can be assessed from two aspects, i.e., 
the power flow changes and the dynamic interactions. Refer-
ence [1] performs modal analysis to evaluate the overall impact, 

                                                           

 
 

whilst reference [12] investigates the impact of variable speed 
wind generators on small-signal stability by using damping 
torque analysis (DTA), which can be a considerable improve-
ment in understanding the overall impact. Reference [13] stud-
ies the small-signal stability of the FCWG in a sample system 
with lightly damped inter-area modes. It is concluded that the 
local and the park-level voltage controllers have the largest im-
pact on the dominant inter-area mode. A stationary αβ-frame 
impedance model is developed in [14] to predict the stability 
impact of the PLL and coupling effect. An inclusive investiga-
tion of PI controller tuning is carried out in [15] so as to enhance 
the small-signal stability. As declared in [16], during the grid 
faults with type-4 wind turbines, the poorly damped mode may 
become unstable due to the interaction between PLL and alter-
nating current control. The mechanism of the system instability 
conducted in [17] uses the ‘positive feedback effect’ between 
the electrical subsystem and the control subsystem to explain 
the dynamic process of instability brought by power converters.  

The focus of the literature above is to examine the negative 
impact of FCWG integration on the power system dynamics 
mainly, whereas the more severe resonance caused by the 
modal interaction between the FCWG and main grid has not 
been fully investigated. An arresting phenomenon of strong 
modal resonance is introduced in [18] when two oscillatory 
modes are close in the frequency spectrum, and conclusions 
have been drawn that strong interaction may degrade the small-
signal stability. Reference [19] demonstrates the strong reso-
nance may lead to the oscillatory instability and the related ei-
genvalues change their size and direction when strong reso-
nance happens. A general theory of interaction of eigenvalues 
is proposed in [20], where the strong and weak interactions are 
identified with their geometric interpretation on the complex 
plane. Reference [21] investigates the dynamic interactions 
brought by grid-connected PMSG and indicates that a modal 
resonance between EOM and POM may introduce a negative 
impact on small-signal stability. The PLL-induced modal reso-
nance is further investigated in [22], finding that the dynamic 
impact of PLL may influence the dynamic performance of 
PMSG itself as well as the power system oscillation modes. 
However, the general modal interaction process between the 
FCWG and the power system electromechanical oscillation 
modes (EOMs) towards the strong resonance stage has not been 
thoroughly investigated in a quantitative manner, and hence 
their resonance mechanisms have not been fully revealed. 

Considering all the points above, a novel modal shift evalu-
ation methodology is proposed to quantify the impact of FCWG 
integration on power system resonance stability, which refers 
to the ability of the power system to prevent itself from the 
modal resonance during the modal interaction as the paper ac-
tually targets on more general modal interaction cases rather 
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than the previously-reported resonance studies on strong modal 
resonance only. The main contributions of this paper are: 1) A 
two-open-loop-subsystem dynamic model is developed, which 
divides the entire closed-loop power system into two open-loop 
subsystems, so that the dynamic impact of one subsystem on 
the other can be examined from either side; 2) A modal shift 
evaluation (MSE) method based on bilateral damping torque 
analysis (BDTA) is proposed to investigate the interaction ef-
fect of POMs and EOMs on each other and explain their com-
plex interaction process, in which the linearization model for 
studying the modal impact on POMs from the external power 
system is proposed for the first time; 3) The modal shift sensi-
tivity (MSS) is defined to examine the relationship between the 
PMSG controller parameters and the closed-loop modal shifts, 
and the accurate MSS can be used for modal interaction optimi-
zation (MIO). The resonance excitation index (REI) is also pro-
posed to imply the intensity of modal interactions and plays as 
a valuable tool in the MIO; 4) Modal interaction, though as an 
unwanted phenomenon due to PMSG integration, is utilized to 
improve the resonance stability of the closed-loop power sys-
tem for the first time. The model interaction optimization is 
achieved by properly tuning the PMSG controller parameters 
and hence the open-loop POM location. 

The rest of the paper is organized as follows. Section II pre-
sents a two-open-loop-subsystem dynamic model, where a de-
tailed 15th-order of PMSG is modeled as a subsystem and the 
rest of the power system is regarded as the other subsystem. In 
Section III, the MSE method is proposed based on BDTA. The 
concepts of modal shift sensitivity and resonance excitation in-
dex are also proposed. In Section IV, modal interaction analysis 
between POMs and EOMs is carried out, and the POM tuning 
method is implemented to optimize the modal interactions and 
thus improve system resonance stability, which is validated by 
time-domain simulations. Section V concludes this paper. 

II.  TWO-OPEN-LOOP-SUBSYSTEM MODEL 

The physical structure of a PMSG connected to a multi-ma-
chine power system is shown in Fig. 1. 
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Fig.1.  Configuration of a PMSG connected to a multi-machine power system. 

To study the interactions between the PMSG and grid, a two-
open-loop-subsystem dynamic model is proposed. With power 
flow profiles at the point of common coupling (PCC), two open-
loop subsystems can be divided at PCC and derived with state 
space equations. Therefore, the open-loop modes of each sub-
system can be examined separately. 

A.  Open-Loop Subsystem Model of PMSG 

There are four main components in the subsystem with re-
spect to the PMSG: 1) The PMSG; 2) The machine side con-
verter (MSC) and the associated control system; 3) The DC-link, 
the grid side converter (GSC) and the associated control system; 
4) The synchronous reference frame phase locked loop (SRF-
PLL) which maintains the synchronization with the power sys-
tem. Details of typical controller parameters and linearization 
of each component are given in [21]. 

The linearization equations of the open-loop PMSG subsys-
tem can be expressed as 

 

=

d

dt


    


   

pp gp pp gp

gp pp gp

X A X B V

I C X D V

  (1) 

where Δ𝑿𝒑𝒑 is the vector of state variables of the PMSG includ-

ing PLL. ΔV=[ΔVx ΔVy]𝑇 is the voltage variation of PCC and 
ΔI=[ΔIx ΔIy]𝑇  is current injection variation from PMSG at 
PCC under the common x-y coordinate system. Agp , Bgp ,Cgp , 

Dgp denote the state space matrix of PMSG subsystem.  

It is worth noting that Dgp = 0 since d-axis and q-axis com-

ponents of ΔI are chosen as state variables, hence ΔI can be ex-
pressed by ΔX𝒑𝒑 without ΔV, which simplifies the formation of 

the closed-loop system state matrix. 
Based on (1), the transfer function of the PMSG subsystem 

is obtained as 
 1( )= ( )

gp gp gp
H I / V C I A B

   s s  (2) 

B.  Open-Loop Subsystem Model of the Rest of the Power Sys-
tem 

The state space model for N synchronous generators (SGs) 
in the rest of the power system can be written as 

 
=

d

dt


   


    

g g g g g

g g g g g

X A X B V

I C X D V

  (3) 

where ΔXg denotes the vector of all the state variables of the N 

SGs. Δ𝑰g and ΔVg are the SG terminal current injection varia-

tion and bus voltage variation at the connecting point. Ag  , 

Bg ,Cg , Dg denote the state space matrix of the N SGs. 

The linearization of the network equation is 

 = =
        

      
        

ggN gwNg g g

wgN wwN

Y YI V V
Y

Y YI V V
 (4) 

where Y is the admittance matrix of the multi-machine power 
system with only the generator nodes. 

Combining (3) and (4), the open-loop state space equations 
of the rest of the power system can be expressed as 

 
Δ

Δ

d

dt


  


   

Δ
g gT g gT

gT g I

X A X B I

V C X d I

  (5) 

where AgT=Ag+Bg(YggN-YgwNYwwN
 -1 YwgN-Dg)

-1
Cg, 

BgT = -Bg(YggN-YgwNYwwN
 -1 YwgN-Dg)-1YgwNYwwN

 -1 , 

CgT = -YwwN
 -1 YwgN(YggN-YgwNYwwN

 -1 YwgN-Dg)-1Cg,  

dI = YwwN
 -1 +YwwN

 -1 YwgN(YggN-YgwNYwwN
 -1 YwgN-Dg)-1YgwNYwwN

 -1 . 

The transfer function of the rest of power system is based on 
the state space matrix derived above, and hence it is very 
straightforward to obtain based on system linearization regard-
less of the system scale. Hence, based on (5), the open-loop 
transfer function of the rest of the power system is obtained as 

1( )= / =[ ( ) ]
gT gT gT I

G s V I C sI A B d
         (6) 

C.   Closed-Loop Model of the Entire Power System 

The closed-loop model of the entire power system can be 
derived by integrating two open-loop subsystems and shown 
in Fig. 2. 

By dividing the entire system into two subsystems, the 
damping impact and mechanism of one subsystem on the other 
can be derived and analyzed, which is the essential cause of bi-
lateral modal interactions/shifts between two subsystems and 
cannot be revealed by a complete closed-loop system. 
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Fig. 2.  The connection of two open-loop subsystems. 

III.  MODAL SHIFT EVALUATION AND OPTIMIZATION 

METHODOLOGY 

Based on Section II, the closed-loop power system is formed 
by two open-loop subsystems. Each subsystem has a group of 
open-loop modes, i.e. the open-loop oscillation modes of 
PMSG (POMs), and the open-loop electromechanical oscilla-
tion modes (EOMs) of the rest of the power system. The inter-
actions between POMs and EOMs cause the closed-loop modal 
shifts, which is carefully investigated in this section. 

A.  Bilateral Damping Torque Analysis 

To investigate the bilateral modal interactions between 
EOMs and POMs, a bilateral damping torque analysis (BDTA) 
is proposed. 

On one hand, when the subsystem of PMSG is investigated, 
the rest of the power system can be regarded as a voltage source 
which responses to the current variation of PMSG. On the other 
hand, when the rest of the power system is the main analysis 
focus, the subsystem of PMSG is regarded as a current source 
[23], which provides the grid supporting function for the power 
system and responses to the variation of PCC voltage. In other 
words, the entire system can be divided into two interactive sub-
systems. When one subsystem is studied, the other subsystem 
can be regarded as a controller with all the modes integrated 
into a two-by-two transfer function matrix (as shown in Fig. 2), 
and vice versa. The detailed procedures are presented as follows: 
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Fig. 3.  Linearized model for contribution from the rest of the power system to 
PMSG mode. 

First, we investigate the modal interaction from the rest of 
the power system to the subsystem of PMSG. By replacing the 
representation of the upper subsystem in Fig. 2 with its detailed 
transfer function G(s), a linearized model to quantify the con-
tribution from the rest of the power system to POM shifts is 
derived and shown in Fig. 3. The PMSG mode mentioned in the 
diagram can refer to any PMSG mode like DC voltage control 

mode, PLL mode etc., which will be analyzed in the case study. 
To perform BDTA, (1) is rearranged as 

 

11 12 1

21 22 2

1 2=

        
                 

 
      

pk p p pk V

p p p p V

pk

p p

p

x A A x bd
V

z A A z bdt

x
I c c

z

  (7) 

where Δxpk is the kth state variable vector of ΔXpp, and Δzp is 

the rest of state variables in ΔXpp. 

As illustrated in Fig. 3, the rest of the power system is re-
garded as a two-input two-output controller, and thus its impact 
on the closed-loop PMSG mode can be assessed by damping 
torque analysis. The forward path from the rest of the power 
system to PMSG is 

 
1

1 12 22 2( ) ( )s s 


 


+ -
p

p V p p V

T
F b A I A b

V
  (8) 

where ΔTp is a quasi-damping torque which contributes the 

oscillation mode with respect to Δxpk. 

Assume λpi=-σpi+jωpi as the ith oscillation mode of PMSG, 

then ΔI should be equal to 
ppik kx   [12].  

Hence, the relationship between ΔTp  and Δxpk  can be ob-

tained 

 = ( ) ( ) ( )s s s 
p p pik pk

T F G x   (9) 

Let s=λpi  in the above equation, the damping torque pro-

vided by the rest of the power system to the kth mode of PMSG 
can be  

 = ( ) ( ) ( )    
pi pi pip p p pkik

T F G x   (10) 

The sensitivity of λpi with respect to the damping torque co-

efficient of the kth mode of PMSG, which refers to the relativity 
of Δxpk to λpi, can be computed to be  

 =pik pik pikS w v





pi

p
T

  (11) 

where wpik and vpik are the elements in λpi associated left ei-

genvector wpi  and right eigenvector vpi corresponding to Δxpk. 

Thus, the variation of the ith eigenvalue λpi in PMSG caused 

by the dynamics of the rest of the power system can be assessed 
by employing Spik [24, 25], 

 
pik( ) ( )γ ( )pipi pik pi piS    

p
F G   (12) 

Second, we also apply BDTA on the rest of the power sys-
tem. The rearrangement of state equations (5) is expressed as 

 

Δ Δ

Δ Δ

Δ Δ
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              
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z A A A z b

δ

V C C C ω d I

z

  (13) 

Similar to Fig. 3, by replacing the representation of PMSG 
subsystem in Fig. 2 with its detailed transfer function H(s), a 
linearized model to quantify the contribution from the subsys-
tem of PMSG to EOM shifts is derived and shown in Fig. 4. 
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Fig. 4.  Linearized model for contribution from PMSG to power system EOM 

 The forward path from PMSG to the rest of the power sys-
tem is 

 
-1= ( ) = + ( )s s

I2 23 33 I3

ΔT
F b A I - A b

ΔI
  (14) 

Assume λi=-σi+jωi as the ith EOM of the rest of the power 

system, then ΔV should be equal to kik
   [12]. 

Hence, the relationship between damping torque ΔT  and 
Δωk can be obtained 

 = ( ) ( ) ( )ik ks s s  T F H   (15) 

Let s = λi in the above equation, the damping torque pro-
vided by PMSG to the Δωk (angular speed variation of kth SG) 
in the rest of the power system can be  

 = ( ) ( ) ( )i i ik i k    T F H   (16) 

The sensitivity of λi with respect to the damping torque co-
efficient of the kth SG in the rest of the power system can be 
computed to be 

 = i

ik ik ikS w v



T

  (17) 

where wik  and vik  are the elements in λi  associated left eigen-
vector wi  and right eigenvector vi corresponding to Δωk. 

Therefore, the variation of the ith eigenvalue λi in the rest of 
the power system caused by the dynamics of PMSG can be as-
sessed by employing  Sik,  

 ( ) ( ) ( )F H  


 
1

i i i i

k

ik

n

k iS   (18) 

From (12) and (18), the closed-loop modal shifts are closely 
related to the transfer function G(s) and H(s). Since λpi is one 

of the poles in H(s), and λi is one of the poles in G(s), if λpi ≈ 
λi, i.e. one of POMs is close to one of the EOMs, then both G(λi) 
and H(λpi) would be very large, hence Δλpi and Δλi may also be 

large, which indicates large modal shifts may happen in the 
closed-loop system. The dynamic interaction process between 
two subsystems is thus evaluated by (12) and (18), which pro-
vides a quantitative understanding on the modal interaction pro-
cess and set up a foundation for the modal shift evaluation 
(MSE) method. 

Also, the analytical relationship in (12) and (18) can facili-
tate the optimization process, narrow the optimization search 
range and improve the optimization efficiency, which cannot be 
achieved by other parameter tuning methods such as root locus 

and Nyquist criteria. 

B.  Modal Shift Sensitivity 

The modal shift sensitivity (MSS) is an index to measure the 
impact of modal interaction on closed-loop modal shifts with 
respect to the parameters of the controllers in PMSG, it can be 
defined as: 

 MSS = ( ) ( ) ( ) /F Tf  





 


i ii i iS p
p

  (19) 

where Δλ is closed-loop modal shift, Δp is the controller pa-
rameter variation in PMSG. Tf denotes the transfer function of 
the subsystem, i.e, G(s) or H(s). 

MSS is an indicator to show how the control parameters con-
tribute to the closed-loop modal shifts. It provides physical in-
sights into how POMs interact with EOMs. MSS gives the ac-
curate information of which parameter or controller is the key 
that can be used for optimization. From (19), MSS reveals 

which part of damping contribution (e.g. ( ) ( ) ( )i ii i iS   F Tf

) changes with the parameter and how it changes. Meanwhile, 
MSS is also influenced by the forward path function F (s) which 
may vary under various operation conditions (e.g. power injec-
tion levels, different control strategies). Therefore, MSS plays 
an important role in deepening the understanding on resonance 
mechanism, which will be further examined in the case study. 

C.  Resonance Excitation Index 

From the analysis above, the PMSG integration introduces 
modal interactions with EOMs of the power system. To quan-
tify the intensity of the modal interactions, the resonance exci-
tation index (REI) is proposed. It is defined as: 

 REI
 

 


 

 

CEOM CPOMClosed

open EOM POM

d

d
 (20) 

where ΔdClosed=|λCEOM - λCPOM|  is the Euclidian distance be-
tween closed-loop EOM and POM in the complex plane, and 
Δdopen=|λEOM - λPOM| is the Euclidian distance between open-

loop EOM and POM in the complex plane. 
If REI > 1, the modal interaction is repulsive, which indi-

cates a weak resonance stability. The larger the REI is, the 
stronger the repulsion effect is. As a matter of convenience, 
when REI > 2, the repulsive interaction is identified to be 
‘strong’ for modal resonance, which leads to large modal shifts 
of EOM and POM in mutually repulsive directions. When 
modal resonance happens, the damping of one mode becomes 
better and that of the other becomes worse as shown in Fig. 5(a), 
and thus the overall dynamic performance becomes worse [22]. 
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Fig. 5.  Potential movements of modal interactions. 

If REI ≈ 1, the oscillation modal shifts are very small, which 
implies the modal interactions are quite weak as shown in Fig. 
5(b), i.e. weak interaction.  

If REI < 1, the closed-loop modes tend to move towards each 
other in an attractive manner, which indicates a strong reso-
nance stability. The smaller the REI is, the stronger the attrac-
tion effect is. In this attraction effect, one mode becomes better 
and the other becomes worse as shown in Fig. 5(c), whereas the 
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overall dynamic performance is improved. 
Therefore, REI can assess the intensity of modal interactions 

and acts as an inequality constraint in MIO so as to mitigate the 
potential negative effect on power system resonance stability. 

D.  Modal Interaction Optimization by POM Tuning 

From the discussion above, the bilateral interactions between 
POMs and EOMs can be examined by BDTA, and the relation-
ship with respect to PMSG controller parameters can be quan-
tified by MSS. 

To utilize the modal interactions between POMs and EOMs, 
a POM tuning method is proposed to improve the overall dy-
namic performance of the closed-loop system. There are five 
major steps in POM tuning: 

(1) Identify the EOM; 
(2) Identify the POMs and their related controllers; 
(3) Calculate MSS, determine which POM and related con-

troller parameters need to be tuned; 
(4) Based on Step (2) & (3), tune the parameters of control-

lers according to the related controller and associated POM; 
(5) Use time-domain simulations to verify the effectiveness 

of POM tuning. 
To obtain the feasible parameters of PMSG controllers, the 

optimization problem can be defined as 

 

Maximize ( ) =min{ ( ), ( )}

, , 1,...,

REI( ) 1

 

  



i CPOM i CEOM i

l i h

i

F p p p

subject to p p p l i h m

p

  (21) 

where p
i
 are the parameters of PMSG controllers to be tuned, p

l
 

and p
h

 are the low boundaries and high boundaries of p
i
, 

ξCPOM(p
i
) and ξCEOM(p

i
) are the damping ratios of the closed-

loop oscillation modes, and REI (p
i
) is the resonance excitation 

index, which ensures the attraction effect in modal interactions.  
Since the objective function (21) is not explicit, and the 

range of the controller parameters can be defined, it is a con-
strained optimization problem. A traditional particle swarm op-
timization (PSO) algorithm is implemented to optimize the 
PMSG controller parameters. 

Based on analysis of A~D in section III, the procedure of the 
proposed methodology is illustrated in Fig. 6. 

Two-open-loop subsystem Model

Resonance Excitation Index

POM tuning

Modal Interaction Optimization

BDTA

Modal Shift Sensitivity

Modal Shift Evaluation

 
Fig. 6.  Flowchart of modal shift evaluation and optimization methodology. 

IV.  CASE STUDY 

A.  The Example Power System 

Fig. 7 presents the configuration of example New England 

power system integrated with an FCWG wind farm connected 

at Bus 22 with PFCWG=1.5p.u. The detailed 15th order PMSG 

with SRF-PLL dynamics is used and adopts the reactive power 

control with constant power factor (0.95). The simplified third-

order model of the synchronous generators (SGs) and a first-

order of the automatic voltage regulator (AVR) are adopted. 

The parameters of example system and typical controller pa-

rameters of a PMSG in [19] are used. 
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Fig. 7  Configuration of New England power system integrated with an 
FCWG wind farm. 

The open-loop EOMs are calculated when the PMSG dy-
namics are excluded and PMSG is modeled as a constant cur-
rent source. With the power flow profile at Bus 22, the open-
loop modes of PMSG can also be calculated as shown in Table 
I. 

TABLE I  THE OPEN-LOOP MODES OF PMSG 

Mode 𝜆𝑝𝑖 
Fre-

quency 

Damp-
ing ra-

tio 

Associ-
ated var-

iables 

Related control-
ler 

POM1 
-2.5000 

+22.2205i 
3.54 0.1118 

𝛥𝜓𝑝𝑠𝑑 

𝛥𝑥𝑝3 
MSC d-axis current 

controller 

POM2 
-2.1846 

+22.2055i 
3.53 0.0979 

𝛥𝜓𝑝𝑠𝑞 

𝛥𝑥𝑝2 
MSC q-axis current 

controller 

POM3 
-0.3154 

+1.5528i 
0.25 0.1990 

𝛥𝜔𝑝𝑟  

𝛥𝑥𝑝1 
MSC rotor speed 

controller 

POM4 
-12.4712 

+69.6210i 
11.10 0.1764 

𝛥𝐼𝑝𝑐𝑑  

𝛥𝑥𝑝5 
GSC d-axis current 

controller 

POM5 
-22.6548 

+97.8699i 
15.59 0.2255 

𝛥𝐼𝑝𝑐𝑞  

𝛥𝑥𝑝7 
GSC q-axis current 

controller 

POM6 
-0.0370 

+0.8208i 
0.13 0.0451 

𝛥𝑉𝑝𝑑𝑐  

𝛥𝑥𝑝4 
GSC DC voltage 

controller 

POM7 -5.0198 0.00 1.0000 𝛥𝑥𝑝6 GSC reactive power 
controller 

POM8 
-2.2290 

+5.9008i 
0.94 0.3534 

𝛥𝑥𝑝𝑙𝑙 

𝛥𝜃𝑝𝑙𝑙 
PLL 

controller 

 

B.  Validation of Modal Shift Evaluation Method 

As stated in section III, the PMSG is denoted as a subsystem 
and the rest of the New England power system is regarded as 
the other subsystem. BDTA is employed on PMSG, and POM 
shifts are assessed as shown in Table II. 

TABLE II  CLOSED-LOOP MODAL SHIFT EVALUATION ON POMS 

Mode 𝜆𝑝𝑖 Δ𝜆𝑝𝑖 
Predicted 

�̂�𝑝𝑖 
Real �̂�𝑝𝑖 

POM1 
-2.5000 

+22.2205i 
0.0000 

+0.0000i 
-2.5000 

+22.2205i 
-2.5000 

+22.2205i 

POM2 
-2.1846 

+22.2055i 
0.0000 

+0.0000i 
-2.1846 

+22.2055i 
-2.1846 

+22.2055i 

POM3 
-0.3154 

+1.5528i 
0.0000 

+0.0000i 
-0.3154 

+1.5528i 
-0.3154 

+1.5528i 

POM4 
-12.4712 

+69.6210i 
0.0001 

+0.0001i 
-12.4711 

+69.6211i 
-12.4713 

+69.6210i  

POM5 
-22.6548 

+97.8699i 
0.0152 

-0.0192i 
-22.6396 

+97.8507i 
-22.6235 

+97.8222i 

POM6 
-0.0370 

+0.8208i 
0.0009 

-0.0003i 
-0.0362 

+0.8205i 
-0.0365 

+0.8205i 
POM7 -5.0198 0.0500 -4.9799 -4.9709 

POM8 
-2.2290 

+5.9008i 
0.0091 

+0.0199i 
-2.2199 

+5.9207i 
-2.2132+ 
5.9111i  

Then BDTA is also performed on the rest of the power sys-
tem. EOM shifts therefore can be predicted as shown in Table 
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III. There are 9 EOMs, only 3 typical EOMs are listed to save 
space. 

TABLE III  CLOSED-LOOP MODAL SHIFT EVALUATION ON EOMS 

Mode 𝜆𝑖 Δ𝜆𝑖 Predicted �̂�𝑖 Real �̂�𝑖 

EOM1 
-0.1795+ 
3.1464i 

0.0570 
-0.0645i 

-0.1225 
+3.0818i 

-0.1210 
+3.0773i 

EOM2 
-1.4768 + 
4.8566i 

-0.0321 
+0.0317i 

-1.5088 
+4.8883i 

-1.5165 
+4.8974i 

EOM3 
-0.1888 + 
5.2954i 

-0.0011 
-0.0103i 

-0.1899 
+5.2851i 

-0.1897 
+5.2816i 

From Table II and Table III, the predicted closed-loop modes 
and the real closed-loop modes are almost equal. This proves 
the effectiveness of the proposed evaluation method. In Table 
II, Δλpi=0,i=1,2,3 , it supports the fact that the wind turbine 

modes (POM1~POM3) are decoupled from the power system 
by converters, which has been concluded in lots of literature. In 
Table III, Δ𝜆𝐸𝑂𝑀3 = 0, it proves that PMSG can only interact 
with the local mode of the same area and the inter-area mode, 
cannot impact other local modes. 

It is worth pointing out that the two resonance-related modes 
are the main concern and they are not necessarily the dominant 
or critical modes of either system in the common sense. Other 
POMs (POM4~POM8) also interact with the rest of power sys-
tem. However in normal cases, these interactions are quite weak 
or even can be ignored (i.e., the eigenvalue shifts are quite 
small). But if the controller parameters are not properly tuned, 
POM4~POM8 may induce strong interactions with other EOMs 
of the rest of power system and hence influence resonance sta-
bility. 

C.  Investigation of Modal Interaction Process 

As shown in Table I, the POMs are closely related to its ac-
cording controller parameters. Here we choose the PLL control-
ler as an example to demonstrate the modal interaction between 
POM8 and EOM1. 

By changing the proportional parameter Kppll, POM8 moves 
horizontally as shown in Fig. 8. The open-loop EOM1 stays at 
a constant point, while the POM8 (the dark blue curve) moves 
from the right to the left. Hence, the two closed-loop oscillation 
modes can be calculated and classified to be closed-loop POM8 
(CPOM8, the light blue curve) and the closed-loop EOM1 
(CEOM1, the magenta curve). 

 
Fig. 8.  Horizontal moving POM8 in modal interaction with EOM1. 

 
Fig. 9.  Vertical moving POM8 in modal interaction with EOM1. 

From the eigenvalue locus in Fig. 8, while the POM8 moves 
from the right and approaches towards EOM1, CEOM1 moves 
around EOM1. When POM8 is close to EOM1, the CEOM1 
and CPOM8 exchanges the moving path to avoid moving too 
far from the open-loop modes. As POM8 moves away from 
EOM1, the closed-loop modal shifts decrease indicating that the 
modal interactions become weak. Hence, it can be concluded 
that the position of POM8 influences the position of CEOM1, 
especially when it is close to EOM1. The impact may be detri-
mental or beneficial for the system damping depending on its 
position. 

By changing the integral parameter Kipll, POM8 moves ver-
tically as shown in Fig. 9. There is also a path exchange between 
CEOM1 and CPOM8 to keep CEOM1 moves near EOM1. 
When the distance between POM8 and EOM1 is large, the 
closed-loop modal shifts are very small, which indicates the 
modal interactions become weak. However, when the two 
open-loop modes are close, the strong modal interactions lead 
to a significant resonance, which makes a large modal shift 
from EOM1. 

The horizontal approaching and vertical approaching move-
ments demonstrate the modal interactions between POM8 and 
EOM1. There are also other approaching directions can be ex-
amined, which are not studied here due to the limit of space. 
Again, the strong modal resonance happens when the open-loop 
modes are close, which illustrates the modal interaction process 
between PMSG and the rest of the power system. 

D.  Sensitivity Analysis based on MSS 

Since the inter-area mode λEOM1 is the main concern of the 
power system, the MSS with EOM1 and POMs are calculated 
in Table IV. 

TABLE IV 
MODAL SHIFT SENSITIVITY WITH RESPECT TO 

PMSG CONTROLLER PARAMETERS 

PMSG 
control-

lers 

Param-
eter 

MSS on EOM1 MSS on POMs 

MSC rotor 
speed con-

troller 

Kpp1 -2.1572e-15 - 4.2178e-15i -0.0640 - 0.0137i 

Kpi1 -3.3598e-15 - 2.7263e-15i -0.0002 + 0.0378i 

MSC d-axis 
current 

controller 

Kpp2 -5.3710e-16 + 3.3712e-15i -2.3511 - 0.3862i 

Kpi2 4.5201e-16 + 2.0317e-15i -0.0001 + 0.1725i 

MSC q-axis 
current 

controller 

Kpp3 -2.7362e-15 + 2.0168e-15i -2.6314 - 0.4321i 

Kpi3 -7.3128e-15 + 8.1569e-16i 0.0000 + 0.1322i 

GSC DC 
voltage 

controller 

Kpp4 -7.4219e-05 + 5.3209e-05i -0.0172 - 0.0008i 

Kpi4 -1.3274e-05 - 3.1726e-05i -0.0001 + 0.0218i 

GSC d-axis 
current 

controller 

Kpp5 2.1963e-08 - 4.2317e-08i -28.3612 - 8.6347i 

Kpi5 2.1058e-08 + 6.8542e-09i -0.0000 + 0.4211i 

GSC reac-
tive power 
controller 

Kpp6 -3.1027e-04 +5.4217e-05i 1.2387 + 0.2721i 

Kpi6 -2.9657e-05 - 8.1527e-05i -0.4862+0.0002i 

GSC q-axis 
current 

controller 

Kpp7 3.9521e-08 - 4.1275e-08i -53.1274-23.4162i 

Kpi7 2.0174e-08+2.1066e-08i 0.0001 + 0.4821i 

PLL con-
troller 

Kppll -8.6954e-05 + 4.3522e-05i -0.5073 - 0.2122i 

Kipll -2.0185e-05 - 2.6733e-05i 0.0005 + 0.0921i 

From the MSS in the third column, the impact from PMSG 
parameters to EOM1 can be measured, and MSS in the fourth 
column reflects the impact from PMSG parameters to the newly 
introduced POMs. Based on the numerical values shown in Ta-
ble IV, the GSC DC voltage controller, GSC reactive power 
controller, and the PLL controller are identified to have stronger 
interactions than other controllers. 

From the perspective of system operators, the EOMs are the 
main concern. The impact of PMSG controller parameters on 
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EOMs are examined for demonstration purposes here and 
surely the sensitivity analysis can be conducted in the opposite 
direction based on the BDTA. According to (19), the MSS with 
respect to EOMs is proportional to the transfer function H(s) of 
the PMSG subsystem. It is to be noted that the oscillation fre-
quency range of EOMs is usually 0.2Hz ~ 2.0Hz (i.e. 1.26rad/s 
~ 12.57rad/s). Since H(s) is a two-by-two transfer function ma-
trix, two singular values response curves within this range can 
be drawn in Fig. 10. Under weak interaction condition, the sin-
gular values of H(s) are quite flat, whereas if PMSG controller 
parameters change to certain values (as denoted by purple 

curve), there is a peak resonance at ω=3.15rad/s in one re-
sponse curve that indicates strong resonance may also happen 
in modal interactions at such frequency (e.g. EOM1). 

Singular Values Response H(jω)

jω (rad/s)
 

Fig. 10.  Singular values response of H(s) 

Hence, MSS provides a clear insight of how PMSG control-
ler parameters contribute to the closed-loop modal shifts and 
thus a deep understanding of resonance mechanism can be ac-
quired. The analysis results can also effectively guide the MIO 
by POM tuning in the next subsection. 

E.  Modal Interaction Optimization and Effectiveness Analysis 

As discussed above, modal interactions can be utilized to im-
prove the dynamic performance of resonance EOM if proper 
tuning on POM is implemented. 

Based on MSS, the POM8 is chosen to be tuned. Denote 
damping ratios of CPOM8 and CEOM1 as 𝜉𝐶𝑃𝑂𝑀8 and 𝜉𝐶𝐸𝑂𝑀1. 
The overall dynamic performance can be implied by 𝜉𝐶𝑠𝑦𝑠 =
min {𝜉𝐶𝐸𝑂𝑀1, 𝜉𝐶𝑃𝑂𝑀8}.The optimization of the objective func-
tion is set as: Max 𝐹 = 𝜉𝐶𝑠𝑦𝑠. The POM tuning based on PSO is 
carried out on the sample system, where the different modal in-
teractions are compared, as shown in Table V. 

TABLE V 
POM TUNING ON PLL MODE 

Interaction 
Type 

Weak interac-
tion 

Strong Reso-
nance 

Optimized 
POM tuning 

PLL parameters 
Kppll=4.4 

Kipll=39.27 
Kppll=0.24 
Kipll=10.30 

Kppll=0.82 
Kipll=6.65 

POM8 -2.2317+5.9038i -0.1217+3.2301i -0.4174+2.5641i 

CPOM8 
(damping ratio) 

-2.1836+5.9364i 
(34.52%) 

-0.2504+3.3434i 
(7.47%) 

-0.3775+2.5762i 
(14.50%) 

EOM1 -0.1795+3.1464i -0.1795+3.1464i -0.1795+3.1464i 

CEOM1 
(damping ratio) 

-0.1210+3.0773i 
(3.93%) 

-0.0344+2.9740i 
(1.16%) 

-0.2074+3.0759i 
(6.73%) 

REI 1.0257 4.2069 0.8392 

The intensity of 
modal interaction 

Almost neutral 
Strong repulsion ef-

fect 
Considerable at-

traction effect 

If strong modal resonance happens, the damping ratio of the 
resonance EOM decreases from 3.93% to 1.16%, which indi-
cates that the modal resonance deteriorates the stability of the 
power system. However, after POM tuning, the damping ratio 
increases to 6.73%, almost twice of that in weak interactions. 
REI=0.8392 <1 also indicates that the attraction effect helps im-
prove the overall performance, as stated in section III. 

To further validate the effectiveness of POM tuning, the 
time-domain simulations are also carried out. Three groups of 
different parameters in PLL are compared. The typical param-
eters in [19] are identified and denoted as weak interaction con-
dition; if the PLL are not properly tuning, as stated in [20], 
modal resonance may be induced, which is set as the strong res-
onance condition. In addition, the optimal parameters obtained 
by the proposed POM tuning method are also used, which is 
named as the optimized POM tuning condition. The other pa-
rameters of PMSG and the rest of power system as well as the 
operation points are set to be the same in the time domain sim-
ulations. The disturbance is set to be: at t=0.2s, a three-phase to 
earth short circuit occurs at Bus 1 and subsequently clears after 
100ms. The dynamic performance of closed-loop EOM1 and 
POM8 are shown in Fig. 11. Compared with the typical param-
eters in the base case (weak interaction condition), with opti-
mized parameters in PLL, it is noteworthy that CEOM1 is im-
proved while CPOM8 also has acceptable damping ratio, which 
is compliant with eigenvalue data in Table V. At the same time, 
the strong resonance condition encounters the worst dynamic 
performance, which may lead to instability. Once it is identified 
to be strong resonance condition, the POM tuning can also be 
implemented to ameliorate the situation. Therefore, MIO is ca-
pable to enhance the resonance stability of the power system. 

  
Fig. 11.  Dynamic performance comparison of CEOM1 and CPOM8 under dif-
ferent modal interaction intensity. 

The bus voltage and active power output at PCC and SG1 are 
illustrated in Fig. 12. If the PLL parameters are not properly 
tuned, strong resonance may deteriorate the damping of system 
and threaten the resonance stability. With optimized POM tun-
ing, not only the strong resonance can be eliminated, but also 
the damping of system can be greatly enhanced. The time do-
main responses of the important variables related to PMSG and 
SGs are improved, indicating that the overall dynamic perfor-
mance of the closed-loop power system is meliorated. 

 
Fig. 12  Dynamic performance comparison of PMSG and SG1 with different 
PLL parameters. 
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TABLE VI 
DAMPING IMPACT UNDER DIFFERENT WIND POWER PENETRATION LEVELS 

Type P (p.u.) 0.0 0.5 1.5 2.5 3.5 
Weak inter-

action 
CEOM1 

-0.1537 
+3.1235i 

-0.1434 
+3.1084i 

-0.1210 
+3.0773i 

-0.0964 
+3.0446i 

-0.0695 
+3.0101i 

DPI NA -0.6% -0.65% -0.70% -0.74% 

Strong reso-
nance 

CEOM1 
-0.1537 

+3.1235i 
-0.0853 

+3.0614i 
-0.0344 

+2.9740i 
-0.0000 

+2.9060i 
0.0288 

+2.8454i 
DPI NA -4.24% -2.50% -1.96% -1.69% 

Optimized 
POM tuning 

CEOM1 
-0.1537 

+3.1235i 
-0.1620 

+3.1313i 
-0.2074 

+3.0759i 
-0.2528 

+3.0433i 
-0.3086 

+3.0150i 
DPI NA 0.52% 1.21% 1.35% 1.29% 

The penetration level of wind power generation also influ-
ences the intensity of modal interactions. With more wind 
power injected into the power system, the impact of PMSG on 
the rest of power system also grows (negative impact for strong 
resonance and positive for optimized POM tuning). A damping 
power index (DPI) is proposed to measure the damping en-
hancement after MIO with respect to different wind power pen-
etration levels, which is defined as: DPI = (ζCEOM1 − ζEOM1)/
𝑃, where ζCEOM1 and ζEOM1 are the damping ratios of CEOM1 
and EOM1, and P represents the power injection from PMSG. 
From the definition, if DPI>0, the power injection benefits sys-
tem damping, otherwise degrades system damping. Compari-
son of DPI with different power injections and optimized pa-
rameters is shown in Table VI. It can be demonstrated that for 
optimized POM tuning condition, under different penetration 
levels, the DPI is positive, and increases from 0.52% to 1.29%, 
which means the higher power injection, the higher DPI and the 
larger damping of the closed-loop power system. On the con-
trary, for strong resonance condition, the DPI stays at a big neg-
ative value with the increasing power injection, which indicates 
that strong resonance significantly exasperates the power sys-
tem stability. Especially, the entire system becomes unstable 
when P=3.5. For the weak interaction condition, the DPI is a 
smaller negative value that indicates the weak interaction also 
degrades system damping but in a relatively slighter manner. 
Above all, the optimized modal interactions work effectively 
when operational condition varies, which validates the effec-
tiveness of the MIO. 

V.  CONCLUSION 

The impact of the FCWG integration on power system reso-
nance stability has been investigated in this paper. By dividing 
the whole system into two subsystems, the modal interaction 
can be studied separately by regarding one subsystem as a two-
input two-output controller while studying the other one. The 
bilateral damping torque analysis is employed to evaluate the 
closed-loop modal shifts with respect to different EOMs and 
POMs. The modal shift sensitivity and resonance excitation in-
dex provides physical insights into the impact on resonance 
modes with physical controllers and the intensity of modal in-
teractions. Hence, a more specific parameter tuning can be im-
plemented in related controllers to optimize the dynamic per-
formance. 

It is revealed that modal interactions do not necessarily de-
teriorate the system resonance stability. The impact can be eval-
uated with the proposed MSE method to determine whether 
measures should be taken to avoid the detrimental modal reso-
nance. Therefore, the modal interactions can be utilized to im-
prove the resonance EOM with acceptable POM, which indi-
cates extra damping of EOM can be achieved with the proper 
tuning of PMSG controller parameters without auxiliary de-
vices installed. 
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