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Abstract—Successful detection of false data injection attacks 

(FDIAs) and removal of state bias due to FDIAs are essential for 

ensuring secure power grids operation and control. This paper 

first extends the approximate dc model of FDIA to a more general 

ac model that can handle both traditional and synchronized 

measurements. To automatically filter out the established FDIAs, 

we propose a state reconstruction scheme consisting of a con-

taminated state separation method, an enhanced bad data identi-

fication approach and a state recovery algorithm. In this scheme, 

a classifier is developed by aggregating a series of extreme learn-

ing machines (ELMs) to detect anomaly states caused by FDIAs. 

Gaussian random distribution and Latin hypercube sampling are 

adopted to initialize the input weights of base ELMs, which can 

provide more diversities to enhance the ensemble performance. 

Then, to identify the exact locations of the compromised meas-

urements, a state forecasting-based bad data identification ap-

proach is proposed by exploiting the consistency between the 

forecasted and the received measurements. Finally, an effective 

state recovery algorithm applies quasi-Newton method and 

Armijo line search to address the possible system unobservable 

problem due to the removal of attacked measurements. Numerical 

tests on serval IEEE standard test systems verify the efficiency of 

the proposed FDIA model and state reconstruction scheme. 

 
Index Terms—Cyber physical power system, false data injec-

tion attack, state estimation, extreme learning machine, qua-

si-Newton method. 

I. INTRODUCTION 

ITH the incorporation of the remarkable advancements 

in sensing, monitoring, control technologies, and also the 

tight integration with cyber infrastructure and advance compu-

ting and communication technologies, the traditional electric 

grid is gradually evolving towards a deeply intertwined cyber 

physical power system (CPPS) which tends to be much more 
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reliable, efficient, and intelligent [1, 2]. The CPPS relies greatly 

on the associated cyber network that has indeed revolutionized 

power grid efficiency and operational performance due to the 

two-way communication between utilities and consumers [3]. 

However, the integration of physical and cyber components 

also gives rise to cyber-attack threats in a power system, which 

can result into huge economical loss, power outage and even 

system blackouts [4] . 

As an essential tool for providing accurate system snapshots 

to several crucial applications in energy management systems 

(EMS) [5], state estimation (SE) is also susceptible to 

cyber-attacks. False data injection attack (FDIA) [6] is an im-

portant type of typical malicious cyber-attacks, which can 

cause the state estimator to output erroneous state values to the 

system operator, and thus make either physical or economic 

impacts on the power system. The existing studies with regard 

to FDIAs on CPPS can be categorized into two groups. The first 

group concentrates on how to optimally construct a valid FDIA. 

Network topology attacks [7], load redistribution attacks [8], 

denial of service attacks [9], and state attacks [10] have been 

constructed to fulfill various malicious objectives.  

However, most existing FDIA strategies have been formu-

lated on a dc model, which has a greater chance of introducing 

errors in the measurements and thus trigger bad data detection 

(BDD), e.g., the largest normalized residual test and the hy-

pothesis testing identification (HTI) method [11], in a real ac 

power grid. A graph theory-based algorithm proposed in [12] 

determined how many and which measurements need to be 

modified in order to minimize the efforts in keeping the attack 

hidden from BDD in ac SE. Operation scenario-based 

two-stage sparse cyber-attack models of ac smart grid with 

complete and incomplete network information were proposed 

in [13]. A dynamic cyber-attack model based on ac SE was 

proposed in [3] to account for dynamic characteristics of attack 

behaviors. These presented FDIA strategies are designed for 

supervisory control and data acquisition (SCADA) system.  

With increasing use of synchronized phasor measurement 

units (PMUs) for wide area situational awareness in recent 

years, the measurement redundancy and SE accuracy have been 

significantly improved because PMUs can provide synchro-

nized voltage and current phasors. Due to financial constraints, 

the number of PMUs developed in real systems worldwide is 

still insufficient to make the system fully observable [14]. Thus, 

the PMU measurements should be used along with SCADA 

measurements and provide a unified view of system operation 
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state through a hybrid state estimator. Some existing works on 

detecting cyber-attacks [15] assumed that PMU measurements 

are secure and focused on obtaining the minimum number of 

PMUs and their placement that are required to detect an attack. 

However, this assumption is not realistic, because an attacker 

can access and modify the PMU data in three ways: attacking 

the PMUs, tampering with the communication network, and 

breaking into the synchrophasor system through the control 

center office [16]. Consequently, the design of FDIAs for the 

hybrid SE would help us to understand the in-depth of 

cyber-security and implement valid prevention measurements, 

which deserves further investigations and endeavors. 

Since disturbing the normal operation of CPPS by launching 

FDIAs has tremendous financial and security effects, the sec-

ond group of the researches related to FDIAs focuses on dis-

secting countermeasures against cyber-attack by applying 

various techniques, such as statistical method [17], physical 

method [15], sparse optimization [4], interval SE [3, 13], 

time-series simulation [18], and machine learning method [19]. 

These strategies all demonstrate satisfactory detection perfor-

mance and false-alarm rates against FDIAs. However, these 

methods can only discriminate whether there is an attack in the 

CPPS or not, and it is impossible for them to identify which 

buses or states in CPPS are contaminated and further to re-

covery these states. As one of the important purposes of de-

tecting the FDIA, state reconstruction (SR) that aims at iden-

tifying and eliminating the compromised measurements as well 

as providing the most likely system operation states for oper-

ators to make decisions has not been involved yet. Developing a 

SR scheme can broaden and perfect the capabilities of SE, 

because it ensures the security assessment functions and cor-

responding corrective actions reliably implemented even the 

power system suffers the biased state values caused by FDIAs. 

A sparse state recovery method based on the mixed convex 

programming was developed in [20] to filter out additive 

measurement noise. A state forecasting-based method was 

proposed in [21] to detect FDIAs by considering nodal state 

temporal correlations. These methods address only the detec-

tion of anomaly states, without eliminating the adverse impacts 

of false positive and false negative. Moreover, in some rare 

cases, the removal of attacked measurements may cause the 

system to be unobservable, resulting in the failure of the tradi-

tional state estimator [21]. This problem has not been com-

pletely considered and addressed in the existing literature.  

To this end, this paper proposed a novel SR scheme based on 

the extreme learning machine (ELM) that is a promising 

learning algorithm developed for training single-hidden layer 

feedforward neural networks (SLFNs). Unlike the conventional 

neural networks that are based on iterative learning algorithm, 

ELM randomly initializes the input weights and bias of hidden 

layer neurons and analytically determines the output weights 

via direct matrix computations [22]. Due to its extremely fast 

learning speed and excellent generalization capability, ELM 

has been successfully applied in many different application 

domains [22-24]. However, the randomness of input weights 

and bias may result in unstable and diverse results [25]. En-

semble learning has been used in many studies to address this 

issue through aggregating multiple base learners to boost the 

performance [25-27]. In this paper, the performance of the 

ensemble ELM is further promoted, and a novel approach is 

applied in SR scheme to filter out the impacts of FDIAs on 

hybrid SE, and hence enforce the cyber security of CPPS. 

The main contributions of this paper are threefold: 1) Most of 

the existing FDIAs assume an approximate dc model associated 

to the SCADA measurements, which is not comprehensive and 

accurate when the PMU measurements are incorporated in the 

ac SE. This paper extends this model to a more general FDIA 

model which can effectively handle both the SCADA and PMU 

measurements in a hybrid ac state estimator. 2) An enhanced 

ensemble ELM (E3LM) approach is developed for contami-

nated state separation that is the first step of the proposed SR 

scheme. In this approach, Gaussian random distribution (GRD) 

and Latin hypercube sampling (LHS) techniques are used for 

the initialization of input weights of base ELMs, which can 

increase the solution diversity of the base learners, and hence 

improve the generalization performance of ensemble learning. 

3) To identify the exact locations of the compromised meas-

urements and remove them all at once, an enhanced bad data 

identification method is proposed by exploiting the consistency 

between the forecasted and the received measurements. Then, a 

state recovery approach, combining quasi-Newton (QN) 

method and Armijo line search (ALS), reconstructs the system 

states and addresses the possible system unobservable problem 

due to the removal of attacked critical measurements. 

The remainder of this paper is organized as follows. In Sec-

tion II, the generic FDIA model of ac grids is presented. Section 

III elaborates the proposed SR scheme with detailed explana-

tion on the architecture and implementation issues. Section IV 

demonstrates the numerical results on the tested power systems. 

Finally, we conclude this work in Section V. 

II. GENERIC FALSE DATA INJECTION ATTACK MODEL 

In this section, we review the existing models of FDIA and 

propose a generic FDIA model against the hybrid ac SE from 

the adversary’s perspective. 

A. Review of the FDIA Models  

Liu et al. [28] demonstrated for the first time that in the case 

of a full power grid topology and parameter information, the 

adversaries can inject pre-designed false data into the SE 

without being detected by the traditional BDD procedure. In-

spired by Liu’s work, plenty of researches have been done to 

reveal the mechanisms of undetectable FDIAs and design ef-

fective attack strategies. Particularly, Liu et al. in [29] proved 

that the attacker does not have to get access to the information 

of the entire power network, but only needs to have the network 

information of the local area to launch such an undetectable 

FDIA in [28]. A heuristic algorithm was proposed in [30] to 

find an optimal attacking region which requires the reduced 

network information. A practical attack strategy against ac SE 

was developed in [31] based on a few measurements in the 

attacking region associated with boundary buses. Deng et al. in 

[32] proved that adversaries can launch FDIAs to modify the 

state variable on a bus only if they know the susceptance of 
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every transmission line that is incident to the target bus. The 

above FDIA strategies with incomplete network information 

further highlight the vulnerability of the CPPS.  

FDIAs may have a catastrophic effect on the normal opera-

tion of power systems. For instance, Yuan et al. [33] considered 

a special FDIA, called load redistribution attack, which caused 

the power system to enter an uneconomic operating state with a 

wide load shedding. A cyber-attack strategy was proposed in 

[34] to overload transmission lines by considering the multiple 

solutions to security constrained economic dispatch (SCED). In 

order to carry out financial misconduct, an FDIA strategy was 

constructed in [35] to manipulate power flow estimates and to 

shift real-time locational marginal prices in a desired direction. 

An attack strategy was proposed in [36] to withhold generation 

capacity for profit by manipulating the ramp constraints of the 

generators during look-ahead dispatch. Mengis et al. in [37] 

proved that even if the network dynamics have limited uncer-

tainty, the attack can still manipulate the nodal prices of the 

real-time markets without being detected. For multiphase and 

unbalanced smart distribution systems, the constructions of 

three-phase coupled, perfect three-phase decoupled, and im-

perfect three-phase decoupled FDIAs were proposed and dis-

cussed in [38]. Tan et al. in [39] proposed an attack strategy for 

automatic generation control (AGC) to cause frequency ex-

cursion that can trigger remedial actions, such as disconnection 

customer loads or generators, leading to blackouts, and poten-

tially costly equipment damage. 

B. Proposed Generic FDIA Model  

To the best of our knowledge, none of the existing work can 

simultaneously overcome the following drawbacks of existing 

FDIA models: 1) To evade the BDD in control center, attack 

strategy should be designed to completely satisfy the underly-

ing system model. However, in the literature, the approximately 

simplified and linearized dc model derived from the complex 

nonlinear power flow equations is widely used for FDIA con-

struction, which is neither accurate nor general, thus making it 

likely for this kind of FDIAs to be detected by control center. 2) 

Existing related studies commonly assume that the attacker is 

kind of omnipotent and has all-encompassing knowledge of the 

network information, such as grid topology and system pa-

rameters. However, in practice, getting access to the complete 

network information for FDIA construction is expensive and 

unrealistic, because this information is generally kept confi-

dential and highly protected in a control center. It is more re-

alistic to consider attacks with incomplete network information. 

3) Due to the increasing installation of PMU devices, the state 

estimator based on the pure SCADA measurements is gradually 

evolving towards a hybrid state estimator. From the adversaries’ 

point of view, the FDIA model should be modified accordantly, 

otherwise control center will take advantage of PMUs to detect 

cyber-attacks. However, most existing FDIA models only as-

sociate with the SCADA measurements, which are not accurate 

and comprehensive when PMU measurements are included. 

Consequently, in this subsection, we take all above practical 

issues into consideration and originally propose a more general 

nonlinear cyber-attack model with incomplete network infor-

mation that can handle both SCADA and PMU measurements, 

according to the following equations: 
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where z℧A is a measurement vector in the attacking region ℧A 

that includes SCADA measurements (active/reactive power 

injection Pi and Qi, active/reactive power flow Pij and Qij) and 

PMU measurements (voltage phase angle θi, voltage magnitude 

Vi, real and imaginary parts of current phasor I
re 

ij  and I
im 

ij ). The 

superscripts “re” and “im” represent real and imaginary parts 

respectively; the subscripts “i” and “j” are the bus indexes in the 

attacking region. h℧A(·) denotes the vector functions (2)-(8) that 

specify the relationships between the compromised measure-

ments and state variables after attack xa = [θa; Va]. θ
a 

i  and V
a 

i  are 

the ith element of θa and Va respectively. ΔP
a 

i , ΔQ
a 

i , ΔP
a 

ij, ΔQ
a 

ij, 

ΔV
a 

i , Δθ
a 

i , ΔI
re,a 

ij  and ΔI
im,a 

ij  are the incremental changes in cor-

responding measurements for FDIA construction. Moreover, 

Gij+jBij is the ijth element of the complex bus admittance ma-

trix; gij+jbij is the admittance of the series branch connecting 

buses i and j; gsh,i+jbsh,i is the admittance of the shunt branch 

connected at bus i; אi is the set of bus numbers that are directly 

connected to bus i. V
min 

i  and V
max 

i  are the lower and upper limits 

for Vi. P
min 

Gk , P
max 

Gk , Q
min 

Gk  and Q
max 

Gk  are the kth generator’s active and 

reactive power capacity limits, k∈℧G, ℧G is the set of gener-

ators. S
max 

l  is the apparent power limits for the lth branch, l∈℧L, 

℧L is the set of transmission lines.
 
℧B is the set of boundary 

buses on the edge of the attack region. xe is the state variable of 

the eth boundary bus, and x
0 

e  denotes its initialized state value.  

Objective function (1) aims at minimizing the total number 

of nonzero elements in the attack vector and so the attack vector 

exhibits high sparsity. SCADA measurement equations (2)-(5) 

and PMU measurement equations (6)-(8) describe the ac grid 

model subject to bus voltage operational limits (9) and gener-

ator capacity limits (10). To make the FDIA more realistic, we 
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assume that the attacker alters the incremental changes in 

SCADA and PMU measurements to launch an FDIA by over-

loading transmission lines as shown in (11) [40]. Moreover, 

(12) is used to guarantee that the values of boundary bus states 

consisting of voltage magnitudes and phase angles remain 

unchanged before and after the attack implementation [30].  

According to the generic FDIA model (1)-(12), the attacker 

first performs local OPF to estimate the state information of the 

attack region, and then constructs optimal attack vector by 

solving the L0-norm minimization problem. In this model, the 

information required for FDIA construction is within the attack 

region. Furthermore, there is no special requirement for the 

attack region, so the attacker is free to choose any subnetwork 

with accessible network topology and parameters as the attack 

region. In addition, this generic model effectively integrates the 

SCADA and PMU measurements, and thus the control center 

cannot use the PMU measurements to directly verify the SE 

results. It is clear that the proposed generic FDIA model with 

limited network information exhibits higher practicability than 

the existing attack models, and further reduces the chance of 

being detected. After the attack vector has been implemented, 

the system operators will find the target lines are overloaded, 

which may result in a cascading failure of the target CPPS if 

there are no countermeasures against this kind of cyber-attack. 

III. PROPOSED STATE RECONSTRUCTION SCHEME 

Traditional weighted least square (TWLS) method-based 

hybrid SE provides updated snapshots of system operating 

states to several crucial applications in EMS. However, it fails 

to diagnose the well-coordinated bad measurements from 

stealthy cyber-attack, which causes biased states and thus se-

verely threatens the security of the power system. Therefore, a 

SR scheme, consisting of three steps, i.e., anomaly states sep-

aration, enhanced BDD and state recovery, is for the first time 

proposed in this paper to overcome the deficiencies of TWLS. 

A. E3LM-Based Contaminated State Separation  

In this section, ELM is applied for classification task to 

identify the relationship between input and output variables. 

For a training dataset with N total distinct instances {(vi, oi)}
N 

i=1, 

where vi∈ℝd with vi = [vi1, vi2, ···, vid]T and oi∈ℝc with oi = [oi1, 

oi2, ···, oic]T, ELM with K hidden layer nodes and an active 

function ϑ can be mathematically represented as 

 
1

, 1, ,
K

i i j i j

i

j N 


    w v o         (13) 

where wi = [wi1, wi2, ···, wid]T is the weight vector connecting 

the ith hidden node and the input nodes, βi = [βi1, βi2, ···, βic]T is 

the weight vector connecting the ith hidden node and the output 

nodes, and ηi is the bias of the ith hidden node. The above N 

equations can be rewritten as 
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where A is the hidden-layer output matrix of the ELM, β = [β1, 

β2, ···, βK]T is the output weight matrix, and O = [o1, o2, ···, oN]T 

is the matrix of targets. Moreover, the ELM learning process is 

summarized as follows: 1) the input weights wi and the biases ηi 

are randomly generated and not necessarily tuned; 2) the hid-

den-layer output matrix A is calculated according (15); 3) the 

output weights matrix is derived as β = A†O, where A† is the 

Moor-Penrose generalized inverse of A and can be obtained by 

using the singular value decomposition method [41]. 

The randomness in ELM parameters make individual ELMs 

suffering from degradation of consistency and robustness, but 

on the other hand provides a good opportunity for designing 

ensemble models since the randomness can inherently increase 

the diversity of an ensemble, and hence significantly improve 

the classification accuracy [42]. Fig. 1 schematically illustrates 

the proposed framework of a tailored ELM ensemble classifier 

for contaminated state separation. This classifier consists of E 

individual ELMs that tend to compensate for each other and 

thus increase accuracy over the individual.  

To improve the performance of ensemble learning, one of the 

most important techniques is to generate data diversity [43]. In 

the base ensemble ELM (BE2LM) approach, the input weights 

are initialized by assigning uniform random values from -1 to 1. 

However, such initialization method restricts the weight values 

into a certain narrow range, leading to a poor data diversity. To 

enhance the performance of contaminated state separation, an 

E3LM approach with the assist of GRD and LSH techniques for 

weight initialization is proposed in this work. Specifically, each 

weight value is sampled from the GRD with zero mean and unit 

variance, which can map the inputs to a random space with 

more diversity than the weight initialization adopted in BE2LM. 

Moreover, LHS is used to further increase the diversity of base 

learners. As a stratified-random procedure, LHS provides an 

efficient way of sampling variables from their distributions [44] 

and its implementation can be summarized as follows: 1) divide 

the cumulative distribution of each weight variable into E 

equiprobable intervals; 2) randomly select a value from each 

interval and represent the sampled cumulative probability for 

the ith interval as Probi = (ru + i - 1)/E, where ru is a random 

number ranging from 0 to 1; 3) transform the probability values 

into the weight value using the inverse of the distribution 

function F-1, i.e., w = F-1(Prob); 4) repeat the above procedures 

for each weight variables and randomly pair the obtained 

weight values to form E input weight matrices. LHS ensures a 

full coverage of the range of each weight variable by maximally 

stratifying each marginal distribution. Therefore, compared to 

BE2LM, E3LM can achieve a better generalization performance 

and provide more diversity for ensemble learning. 

As shown in Fig. 1, an initial database with N total distinct 

instances {(vi, oi)}
N 

i=1 is first derived by generating measure-

ments with/without FDIA. Each ELM takes the measurement 

vector consisted of SCADA and PMU measurements as input vi. 

The corresponding desired target vector oi is composed of 

c=2n-1 elements, where n denotes the bus number. And two 

decision boundaries for the “normal state” (represented by +1) 

and “contaminated state” (represented by -1) are defined. The 

normal or contaminated state is identified and flagged based on 

the result of comparing the estimated states obtained from SE 
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before and after FDIA. Specially, if the input vi is not manipu-

lated by an attacker, the corresponding desired target oi is a zero 

vector with dimension of 2n-1. The whole dataset is randomly 

divided into a training set and a testing set. The training stage 

aims to identify the optimal learning parameter set that matches 

the input and target relationship presented in the training da-

taset. E3LM initializes its weight matrices using GRD and LHS 

and each ELM randomly selects bias vector, a subset of training 

data, and a candidate activation function. The parameters of 

each ELM can be obtained after ELM learning process. For 

online separation of contaminated states, the previously trained 

parameters are utilized to establish the mathematical relation-

ship between measurements and the flag vector indicating the 

normal and contaminated states. The output of each ELM is a 

vector with the same dimension as the target vector. And the 

classification rule of each single ELM is shown as follows: 

( ) 0 ( ) 1

( ) 0 ( ) 1

i i

i i

j j

j j

  


   

y y

y y
                      (16) 

where yi(j) is the jth element of the ith ELM unit sub-output, 

i=1,2,…,E, j=1,2,…,2n-1. Suppose there are ζ “+1” sub-outputs 

and μ “-1” sub-outputs for the jth state (ζ+μ=E), a deci-

sion-making mechanism is strategically designed to evaluate all 

the sub-outputs of the ELM ensemble classification and de-

termine the final classification result, shown as follows: 

( ) 1

( ) 1

j

j

 

 

  


   

Y

Y
                          (17) 

where Y(j) is the final classification result for the jth state. With 

this learning rule, the accuracy of contaminated state identifier 

can be improved due to the generalized randomness of indi-

vidual ELM and the extended diversity derived from ensemble 

learning as well as the proposed weight initialization method. 

 

B. Enhanced Bad Measurements Identification 

To address the misdeclaration and missing alarm issues in 

previous procedure, we first replace these identified anomalies 

by their corresponding forecasted values. There are two ap-

proaches available in the literature to predict the system state 

for the next time step. One is to forecast system state directly by 

extracting the temporal and spatial relationships of system 

dynamics from the previous system states [45]. The other is to 

forecast the bus load and then obtain the system state via power 

flow analysis [46]. The simulation results confirmed the effec-

tiveness and accuracy of both prediction solutions [45, 46]. 

In this paper, some sophisticated load forecasting method 

described in [46] and [47] can be directly applied to generate 

the active power increment . 1
ˆ
i tP   of bus i, between time t and 

t+1 in (18). Reactive power . 1
ˆ

i tQ   is changed accordingly to 

keep original power factor constant at the ith bus. 

, 1 , . 1
ˆ ˆ ˆ
i t i t i tP P P                                (18) 

where ,
ˆ
i tP  is the forecasted active power at bus i and time t. 

The forecasted loads, model parameters, network topologies, 

and generation schedules are collected and used to perform an 

economic dispatch by applying the interior point method. Then, 

the power-flow equations are iteratively solved using the 

Newton-Raphson method to convert forecasted load to fore-

casted state, i.e., voltage magnitudes and phase angles. After-

wards, the contaminated states identified in Section III-A are 

replaced by their corresponding forecasted values obtained 

from the above method to form a new operating state vector x
new 

t . 

To identify the compromised measurements caused by FDIAs 

all at once, x
new 

t  is taken into h(·) to construct a new set of 

measurements z
new 

t , and BDD is implemented again, shown as 

       new , , 1, ,t t ti i i i i i m  z z       (19) 

where zt is the measurement vector at time t, m denotes the 

measurement number, Ω = R – HG-1HT is the residual covari-

ance matrix, R is the measurement error covariance matrix, H 

and G are the Jacobian and gain matrices of TWLS-based SE, 

respectively. Then, a flag vector φ with the same dimension as 

γt is defined. Specifically, the element φ(i) is set to 1 when γt(i) 

is larger than a given threshold, indicating that zt(i) is a bad data 

and cannot be trusted; otherwise, it is set to 0.  

Before state replacement, bad measurements due to FDIAs 

cannot be detected by BDD, since they are well coordinated and 

satisfy the Kirchhoff’s circuit laws. Once some contaminated 

states are identified and replaced by their forecasts, the 

well-constructed relationship between states and measurements 

in FDIAs are damaged, rendering high residual values in BDD. 

Moreover, because the attack vector generally exhibits 

high-sparsity [13] and z
new 

t  cannot be viewed as the measure-

ments before attack, the very small amount of untrusted meas-

urements with flag 1 in φ are removed directly instead of re-

placed by the corresponding derivative elements in z
new 

t . 

C. State Recovery with QN Method 

Compared with TWLS-based SE which begins from the flat 

start condition, state recovery method uses forecasted states 

obtained from forecasted system loads with power flow analy-

sis as the initial guess. Once the reduced measurement vector z  

becomes available after removing the bad data in z, state re-

covery is formulated by minimizing the following objective. 

     -1 -11 1
min ( ) ( )

2 2

. .: ( )

T TJ

s t h

   

 

x z h x R z h x r R r

z x 

   (20) 
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Fig. 1.  Proposed E3LM-based classifier for contaminated state separation. 
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where h(x) denotes the functions relating the reduced meas-

urement vector z  to the state vector x, ɛ is the vector of 

measurement errors where εi ~ N(0, σi), r denotes the estimation 

residual. R represents the measurement error covariance and its 

reciprocal is regarded as weights in (20). 

At the minimum, the first-order optimality conditions will 

have to be satisfied, which can be expressed as follows: 

   
 -1

2
( ) 0

iT i

i i

hr
'




     




x
J x H R z h x

x
     (21) 

where H is the Jacobian matrix of h(x). Expanding the above 

non-linear function J′(x) into its Taylor series around the state 

vector x by omitting higher order terms yields: 

            0' ' ''


  
x x x x

J x J x J x x =           (22) 

where J″ (x) is the Hessian matrix and can be expressed as: 

 
     

 

2

2 2 2

2

-1

2 2

1
T

i i ii

i ii i

iT i

i i

h h hr
''

hr

 



   
  

   


 



 



x x x
J x

x x x

x
H R H

x

   (23) 

TWLS method adopts gain matrix G = HTR-1H to replace the 

Hessian matrix J″(x) in (22) for simplicity, which inevitably 

introduces inaccuracy into state recovery when power system 

nonlinearity coincides with sudden load changes [48]. In addi-

tion, measurement design is generally implemented to maintain 

a certain level of reliability against branch outages or loss of 

measurements. However, a possible singular G may occur and 

TWLS method fails to find the solution of (20) in case of some 

critical measurements are identified as the bad data and deleted 

in the previous sub-section.  

This paper adopts an effective state recovery approach based 

on QN method which uses a symmetric positive definite matrix 

D to approximate the inverse the Hessian matrix (J″(x))-1 at 

each iteration. Currently, the broden-Flecher-Goldfarb-Shanno 

(BFGS) formula [49] is the most widely used QN method due 

to its great performance for low accuracy line searches [48]. 

With the help of QN method, matrix inverse calculation for 

large power systems and a possible singular of gain matrix can 

be avoided because matrix D is proved to be always positive 

definite to guarantee a decent search direction. Firstly, a search 

direction sq at the qth iteration is determined as: 

 q q qJ'  s D x                                (24) 

where D1 is a unit matrix. ALS is implemented to find the 

smallest nonnegative integer u such that κq = λu satisfies: 

       1

T

q q q q q q qJ J a '   x s x s J x              (25) 

     2

T T

q q q q q q' a '   J x s s s J x                 (26) 

where λ, a1 and a2 are constants, 0<λ<1, 0<a1< a2<1. The above 

criteria are called strong Wolfe conditions ensuring the step 

length κ decreases J(x) and J′(x) sufficiently to accelerate 

convergence. The state vector and matrix D can be updated as: 

1q q q q  x x s                                (27) 

 

 

 

 

   

 
1 1

T T T T

q q q q q q q q q q q

q q T T T

q q q q q q



  
    
 
 

p D p l l l p D D p l
D D

l p l p l p
(28) 

where lq = xq+1 - xq and pq = J′(xq+1) - J′(xq). 

D. Summary of the Whole State Reconstruction Scheme 

The whole procedure of SR is described in Fig. 2. Note that 

the BDD procedure is contained in the traditional hybrid SE, so 

the bad data caused by sampling and communication errors 

have been detected and deleted. After these conventional SE 

processes, the proposed scheme further analyzes the meas-

urements and the estimated system states. First, the anomaly 

state separation method applies the well-trained ELM ensemble 

classifier to recognize the contaminated states. In step 2, the 

estimated ,i tP  and ,i tQ  are calculated by using the estimated 

states 
SR

tx  (if there is a cyber-attack at time t) or 
SE

tx  (if there is 

no cyber-attack at time t). Then, ,i tP  and ,i tQ  are regarded as 

the forecasted ,
ˆ
i tP  and ,

ˆ
i tQ  when entering the load forecasting 

of the next time slot in (18). The system states obtained via 

power flow analysis are applied to replace the detected anomaly 

states and regarded as the initial state values before state re-

covery in step 3. Finally, the reduced measurement vector is 

constructed and sent to QN method with ALS to reconstruct 

system states, and thus to complete the SR of the whole system. 

 

IV. CASE STUDIES 

In this section, the feasibility and effectiveness of the generic 

FDIA model and SR mechanism have been extensively tested 

and benchmarked on the IEEE 14-, 57-, and 118-bus power 

systems with parameters and network topologies from [50]. 
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Fig. 2.  Structure of the proposed state reconstruction scheme. 
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A. Investigation on Generic FDIA 

1) Experimental settings: The FDIA with complete network 

information is a special case of proposed generic attack model. 

In this section, the proposed attack model with complete net-

work information is tested on the IEEE 14-bus system, and the 

attack model with incomplete information is investigated on the 

IEEE 57- and 118-bus systems. In these test systems, it is as-

sumed that power injections are taken at all buses, and power 

flows are taken across all branches (“from” terminal only). 

Moreover, the PMU placement configurations and parameters 

adopted in this study are given in [5]. The attacking regions in 

the 57- and 118-bus systems were arbitrarily chosen and shown 

in Fig. 3(a) and (b) respectively. We assumed that all load 

points in the test systems followed a typical daily load curve, 

e.g., curves from a workday (October 20), a weekend (February 

7) and a holiday (January 1), with a 15-min resolution, as de-

picted in Fig. 3(c). The three daily load curves were collected 

from Dongguan dispatch center in China 2016. Moreover, the 

L0-norm minimization is NP-hard and thus very difficult to be 

solved, therefore, the objective (1) is relaxed to L1-norm 

minimization and then solved for sparse attack construction 

with YALMIP [13]. In addition, the attack vector obtained from 

(1)-(12) may contain many small-valued nonzero elements that 

were treated as zeros if their values are within the variation 

tolerances of measurement noise. We implemented the pro-

posed generic FDIA with MATLAB R2014a on a PC with an 

i7-6700 4.0 GHz CPU and 16 GB of RAM. 

 

2) Numerical results and analysis: A series of simulations 

are carried out to demonstrate the feasibility of the proposed 

attack model. For the IEEE 14-bus system, the attack strategy is 

designed to overload lines 6-13 or 10-11 under the workday. 

The overall performance indicator at each time slot, calculated 

as (29), and the largest normalized residuals before and after 

attacks are presented in Fig.4. 

real real

, , , ,

real real
2 1, ,

1 1

1

n n
i t i t i t i t

t

i ii t i t

V V

n n V

 


 

 
 


            (29) 

where real

,i t  and real

,i tV  are the real phase angel and voltage 

magnitude at bus i, time t respectively; ,i t  and ,i tV  denote 

their estimated values before or after attack.  

As shown in Fig. 4(a), the SE errors after attacks are much 

larger than that without attacks if there is no defense mecha-

nism. The biased states may mislead system operator to make 

false decisions, which may cause catastrophic consequences in 

power system. In Fig. 4(b), all the largest normalized residuals, 

no matter it is the residual before or after an attack, are below 

the threshold of the largest normalized residual test that is 

generally chosen as 3 for 99.7% confidence level. This implies 

that the well-constructed FDIAs can effectively bypass BDD in 

ac SE even the PMUs are installed in the target power system, 

because the proposed generic attack model can handle both 

SCADA and PMU measurements and make them satisfying 

Kirchhoff’s circuit laws, rendering all residual-based attack 

detection methods invalid.  

For the IEEE 57-bus system, the FDIAs are launched under 

the holiday to overload lines 37-39 or 25-30. The SE errors and 

corresponding residuals are illustrated in Fig. 5. In order to 

demonstrate the scalability of the proposed attack strategy, we 

also implement the FDIAs on the IEEE 118-bus system on the 

weekend to overload the 71-73 or 70-75 lines. The corre-

sponding results are presented in Fig. 6. As expected, these 

constructed FDIAs could stealthily circumvent traditional re-

sidual test and significantly contaminate system states, even if 

the attacker can only access limited local network information. 
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Fig. 3.  Incomplete network topologies for power systems and load profiles. 
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  (a) Overall performance indicator ψt.   (b) The largest normalized residuals 

Fig. 4.  Daily performance and residuals before and after the attack for the 

IEEE 14-bus system under a workday. 
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   (a) Overall performance indicator ψt.   (b) The largest normalized residuals 

Fig. 5.  Daily performance and residuals before and after the attack for the 

IEEE 57-bus system under a holiday.  
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   (a) Overall performance indicator ψt.   (b) The largest normalized residuals 

Fig. 6.  Daily performance and residuals before and after the attack for the 

IEEE 118-bus system under a weekend.  
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The above FDIAs are designed to overload a single line, 

which may be of very limited threat to power system due to the 

N-1 principle. Table I lists the statistical results of ѱt (averaged 

over 10 FDIAs with different operational scenarios and target 

lines for a given number of overloaded lines) in IEEE 14-, 57-, 

and 118-bus systems to demonstrate the extensive applications 

of the proposed attack model for overloading multiple lines. It 

shows that the estimated error increases greatly with the num-

ber of overloaded lines, which means the more the overloaded 

lines, the larger will be the threaten of FDIA. However, it is 

harder to launch a stealthy attack with more overloaded lines 

due to the reduced sparsity of attack vector. Thus, the attacker 

should carefully choose the number of overloaded lines to make 

sure a stealthy FDIA with effective threaten. Moreover, we 

checked all the residuals for the FDIAs in Table I and found 

that all attacks would bypass the traditional residual test, 

proving the feasibility of the proposed attack strategy. 

 

In addition, to evaluate the computational efficiency and 

complexity of our attack strategy, Table II illustrates the sta-

tistics of the elapsed time required for solving (1)-(12). For 

each test system, ten independent FDIAs are considered. The 

elapsed time is obtained by calling the solvertime function in 

YALMIP. Table II shows that it takes an average time of 1.08s 

with a minimum of 0.79s and a maximum of 1.67s to solve the 

proposed attack strategy implemented in IEEE 14-bus system. 

The time expenses for attack construction in IEEE 57- and 

118-bus systems amount to 5.68s and 16.63s, respectively. It 

can be seen that the required time for launching an attack is 

extended when system gets larger, since there are more meas-

urements and constraints for attack formulation in more com-

plex grids. Moreover, it is obvious that the attack construction 

can be finished in an extremely short period of time. This is 

because the NP-hard L0-norm optimization is relaxed into a 

L1-norm problem, which can be efficiently solved. 

 

B. Investigation on State Reconstruction 

1) Experimental settings: The developed SR scheme is tested 

on IEEE 14-, 57-, and 118-bus systems. For each test system, 

2480 instances are generated and used to train and test the 

ELM-based classifier. First, the system generation/load pat-

terns are randomly varied within 80~120% level of the nominal 

value. As a result, 480 base operating conditions are generated. 

For each operating condition, the real system states are ob-

tained from the solution of power flow analysis and the accu-

rate SCADA and PMU measurements can be calculated by 

using h(x). The real measurements, constituted by adding 

Gaussian measurement errors to all the accurate measurements, 

are regarded as the input of ELM ensemble classifier. And the 

corresponding desired output is a zero vector with dimension of 

2n-1 because there is no contaminated state derived from hy-

brid state estimator without FDIA. Besides the above 480 

normal operational cases, another set of 2000 attack-cases are 

constructed by applying the proposed generic FDIA model. For 

each operating condition, an FDIA is constructed by randomly 

choosing the attacking region and the overloaded lines. And the 

desired output vector can be derived based on the result of 

comparing the estimated states obtained from SE before and 

after FDIA. For cross validation, the total instances in the three 

test systems are randomly divided into a training set and a 

testing set by 3:1 ratio. To verify the effectiveness of the pro-

posed E3LM approach, the comparative study is carried out 

against BE2LM and the performance is evaluated in terms of   

classification accuracy, training and detection time. For both 

approaches, 200 ELMs are employed as base learners for the 

ensemble learning. In addition, 90% of the total training in-

stances are randomly chosen to train each ELM. The activation 

function and the hidden node number can be optimally deter-

mined by a pre-tuning procedure [41]. The forecasted load 

increment is assumed to follow normal distribution with both 

mean and magnitude of variance equal to . 1
ˆ
i tP   [48]. Other 

settings were the same as in section IV-A. 

2) Numerical results and analysis: To demonstrate the fea-

sibility of the proposed E3LM-based classifier, three different 

test systems are assessed, and the numerical results are illus-

trated in Table III. It is obvious that E3LM performs much 

better than BE2LM in terms of classification accuracy, indi-

cating that the proposed weight initialization with the assist of 

GRD and LHS techniques can create more diversity for 

boosting the performance of ensemble learning. The instances 

that can be classified by the proposed contaminated state sep-

aration method with 100% accuracy take up 86.45%, 83.71%, 

and 81.94% of the total instances in the testing set for IEEE 14-, 

57-, and 118-bus systems, respectively. For most of the re-

maining instances, i.e., about 80 out of 84 instances in the 

14-bus system, 95 out of 101 instances in the 57-bus system, 

and 105 out of 112 instances in the 118-bus system, the classi-

fication accuracy is more than 80%. These results demonstrate 

the satisfactory generalization capability of the proposed ELM 

ensemble classifier.  

In addition, the training time (TT) and average detection time 

(ADT) of both approaches are also presented in Table III. Due 

to the high computational efficiency of the ELM learning pro-

cess, the training and testing processes of both ensemble clas-

sifiers can be completed very quickly for three test systems. 

Compared to BE2LM, E3LM consumes more time for training 

the ensemble model due to the adopted novel weight initiali-

zation. Since the weight initialization is performed offline in 

the training stage, there is no significant difference in terms of 

ADT for two evaluated methods. The computational complex-

ity of the detection process can be calculated as O(EdKcM), 

where E, d, K, c, and M denote the number of base ELMs for 

ensemble learning, the input dimension of base ELMs (number 

of measurements), the number of hidden nodes for base ELMs, 

TABLE I 

THE AVERAGE VALUES OF t  FOR OVERLOADING MULTIPLE LINES 

Systems 
Number of attacked transmission lines 

1 2 3 4 5 

14-bus 0.052 0.061 0.086 0.222 0.446 

57-bus 0.056 0.143 0.162 0.191 0.235 

118-bus 0.072 0.165 0.192 0.235 0.379 

 

TABLE II 

THE ELAPSED TIME STATISTICS FOR SOLVING FDIA MODEL 

Systems Max Min Average 

14-bus 1.67s 0.79s 1.08s 

57-bus 7.37s 3.87s 5.68s 

118-bus 26.13s 10.45s 16.63s 

 

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 18,2020 at 02:13:40 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2984315, IEEE
Transactions on Industrial Informatics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

the output dimension, and the number of types of each system 

state for classification, respectively. For these three test sys-

tems, the values of E and M are set to be 200 and 2 respectively. 

The values of (d, c) are set to (90, 27), (372, 113) and (726, 235) 

for IEEE 14-, 57- and 118-bus systems, respectively. In addi-

tion, the hidden node number, K, is set as 200, 300 and 400 for 

IEEE 14-, 57- and 118-bus systems, respectively. Therefore, 

the computational complexity of the detection process is con-

sidered very low, which guarantees the scalability of the algo-

rithm for large-scale systems. 

 

For the worst case in the testing set for IEEE 14-bus system, 

i.e., 77.8% classification accuracy (five false positives and one 

false negative), the absolute incremental changes in measure-

ments for FDIA construction and the flag vector φ obtained by 

the proposed bad data identification method are plotted in Fig. 7, 

in which the elements of φ with value 1 are denoted by the gray 

bar. It shows that the undiscovered contaminated state (false 

negative) has no influence on the bad data identification. This is 

because the well-constructed relationships between states and 

measurements in FDIAs are damaged once partial contami-

nated states are detected by E3LM-based classifier, rendering 

high residual values. Moreover, it can be observed that the false 

positives during contaminated state separation process lead to 

the deletion of very few un-attacked measurements, which 

thanks to the acceptable forecasting accuracy of system states. 

 

Considering the IEEE 14-bus system, a stealthy attack with 

complete network information was launched at 5:00 AM to 

overload line 7-8. The absolute SR and SE errors are shown in 

Fig. 8, in which red multiplication and green asterisk symbols 

represent the anomaly and normal states identified by ELM 

ensemble classifier respectively. It is evident that the classifier 

can exactly identify the anomaly states for this attack, and the 

negligible deviations between SR errors and SE errors without 

attack demonstrate the proposed scheme can effectively re-

construct states. We also present the SR performance in Fig. 9 

for an attack strategy designed to overload two independent 

lines, i.e., 7-8 and 6-13, at 11:00 PM. It indicates the proposed 

scheme is capable of recovering states for an attack with mul-

tiple overloaded lines even the false positive and false negative 

issues exist in contaminated state separation procedure.  

 

 

Moreover, an FDIA was implemented on the subnetwork of 

the IEEE 57-bus system, shown in Fig. 3(a), at 7:00 AM, with 

reconstruction result presented in Fig. 10. To validate the 

scalability of the proposed SR scheme, we considered an FDIA 

launched on the subnetwork of the IEEE 118-bus system, de-

picted in Fig. 3(b), to overload lines 69-70 and 69-75 at 8:15 

AM, and Fig. 11 illustrates its SR results. It is evident that the 

contaminated system states due to cyber-attack can be recov-

ered with high accuracy by using the proposed SR scheme, 

irrespective of network topology. The great performance 

demonstrates the scalability of our proposed scheme for solving 

a large-scale SR problem. 

 

 

TABLE III 

PERFORMANCE OF CONTAMINATED STATE SEPARATION METHOD 

System 14-bus 57-bus 118-bus 

Approach BE2LM E3LM BE2LM E3LM BE2LM E3LM 

CA* 

100% 85.48% 86.45% 82.26% 83.71% 80.32% 81.94% 

Acc1 10.65% 10.48% 12.26% 12.58% 13.39% 13.87% 

Acc2 2.90% 2.42% 3.87% 2.74% 4.35% 3.06% 

Acc3 0.97% 0.65% 1.61% 0.97% 1.94% 1.13% 

Acc4 0 0 0 0 0 0 

TT (s) 6.74 7.39 15.26 24.35 27.20 42.58 

ADT (ms) 1.47 1.49 5.78 5.96 9.77 9.64 

*Classification Accuracy; Acc1∈[90%, 100%); Acc2∈[80%, 90%); Acc3∈[70%, 80%); 

Acc4∈[0, 70%) 

 Fig. 7.  Performance of enhanced BDD for the worst case in 14-bus system. 
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         (a) Voltage phase angle error                (b) Voltage magnitude error  

Fig. 8.  Absolute estimation/reconstruction errors for IEEE 14-bus system 

with an attack on line 7-8 at 5:00 AM. 
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     (a) Voltage phase angle error                (b) Voltage magnitude error 

Fig. 9.  Absolute estimation/reconstruction errors for IEEE 14-bus system 

with an attack on lines 7-8 and 6-13 at 11:00 PM. 
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     (a) Voltage phase angle error                (b) Voltage magnitude error 

Fig. 10.  Absolute estimation/reconstruction errors for IEEE 57-bus system 

with an attack on lines 36-40 and 37-39 at 7:00 AM. 

 
(a) Voltage phase angle error 

 
(b) Voltage magnitude error 

Fig. 11.  Absolute estimation/reconstruction errors for IEEE 118-bus system 

with an attack on lines 69-70 and 69-75 at 8:15 AM. 
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Generally, the measurement redundancy is large enough for 

SR to converge when bad measurements are excluded. How-

ever, in some rare cases, the FDIAs are imposed on the sys-

tem’s critical measurements and the removal of attacked criti-

cal measurements causes the system to become unobservable. 

To emphasize the performance of state recovery method, an 

FDIA was launched in IEEE 14-bus system to cause three states, 

i.e., voltage magnitude of bus 8 and voltage phase angles of 

buses 8 and 14, to be unobservable. In this case, the matrix G = 

HTR-1H becomes singular and TWLS will fail to reconstruct the 

system states. The SR results obtained from the proposed 

method and QN method with flat start are depicted in Fig. 12.  

It is worth noting that both the two methods can be normally 

implemented because the matrix D in QN method is kept posi-

tive definite to simulate (J″(x))-1 so that singular J″(x) is 

avoided. Moreover, in QN method, the unobservable states use 

the corresponding initial values as their SR results. Therefore, 

the magnitude 1 for bus 8 and phase angle 0 for buses 8 and 14 

are obtained by using the QN method with flat start. Due to the 

acceptable forecasting accuracy of system states and the use of 

forecasted states as the initial guess, the proposed SR scheme is 

able to effectively solve the problem of insufficient observa-

bility caused by the removal of attacked critical measurements. 

 

To further demonstrate the robustness of our scheme, a series 

of SR processes for the three test systems were carried out. For 

each test system, 20 independent attacks, ten designed to 

overload one line, and the other ten to overload two lines, were 

launched on various operating snapshots of the system. The 

statistical results of the overall performance indicator ѱt for SE 

and SR are tabulated in Table IV. It is evident that our scheme 

exhibits robust, stable and appealing performance for state 

construction, irrespective of network topology, operating 

snapshots, attack types and objectives. It is observed that the 

indicator ѱt of SE sharply increase after launching FDIAs, 

indicating the proposed attack strategy can successfully cause 

the state estimator to output erroneous values to system oper-

ator, and thus make either physical or economic impacts on the 

power system. Moreover, the reconstruction error varies from 

0.0026 to 0.0157, from 0.0262 to 0.0777, and from 0.0127 to 

0.0899 for IEEE 14-, 57-, and 118-bus systems, respectively, 

which demonstrates the reconstructed states stay very close to 

their real values. From above results, we can conclude that our 

scheme exhibits robust, stable and appealing performance for 

SR, irrespective of network topology, operating snapshots, 

attack types and objectives. 

 

V. CONCLUSION 

In this paper, a generic FDIA model is proposed to handle 

measurements from both SCADA and PMU. Then, a novel SR 

scheme, consisting of E3LM-based classifier, enhanced bad 

data identifier and state recovery approach, is developed to 

detect the possible data manipulation and recovery the system 

states. The feasibility of the attack model and SR scheme have 

been demonstrated on IEEE 14-, 57- and 118-bus systems. The 

numerical results validate that the proposed FDIAs can bypass 

the traditional BDD procedure and thus severely threaten the 

security of the power system, which reveals the vulnerability of 

CPPS and further emphasizes the urgency of updating the tra-

ditional SE. Meanwhile, the case studies also show that the 

various profiles of the SR errors from our scheme almost 

overlap with that of the SE errors without attacks in most sim-

ulation cases, which means our scheme can recovery system 

states with promising performance, strong robustness, and high 

stability, regardless of the system topologies, operating condi-

tions, attack types and target lines. 
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