
 1 

 

Abstract—This paper proposes a methodology for predicting 

online rotor angle stability in power system operation under signifi-

cant contribution from wind generation. First, a novel algorithm is 

developed to extract a stability index (SI) that quantifies the margin 

of rotor angle stability of power systems reflecting the dynamics of 

wind power. An approach is proposed that takes advantage of the 

machine learning technique and the newly defined SI. In case of a 

contingency, the developed algorithm is employed in parallel to find 

SIs for all possible instability modes. The SIs are formed as a vector 

and then applied to a classifier algorithm for rotor angle stability pre-

diction. Compared to other features used in state-of-the-art methods, 

SI vectors are highly recognizable and thus can lead to a more accu-

rate and reliable prediction. The proposed approach is validated on 

two IEEE test systems with various wind power penetration levels 

and compared to existing methods, followed by a discussion of results. 

 

Index Terms—Decision tree, extended equal-area criterion, ma-

chine learning, phasor measurement units, rotor angle stability, sta-

bility index, wind power plants. 
 

I. INTRODUCTION 

OTOR angle stability is the ability of a synchronized power 

system to maintain synchronism when subjected to a contin-

gency. Historically, large-disturbance rotor angle instability has 

been the most severe stability challenge for most systems [1]. Fast 

prediction of potential instabilities allows more time for remedial 

actions and prevents unintended islanding and widespread black-

outs.  

Many techniques have been proposed for rotor angle stability 

prediction. Among them, time-domain simulation is one of the 

most reliable approaches [2], in which power system dynamic 

models are represented by differential equations and solved nu-

merically at each time instant. The simulation needs to be con-

ducted immediately after the fault and demands complete infor-

mation of the grid and the fault. However, this method may require 

long post-fault observation windows, which subsequently in-

creases the prediction time for online applications [3]. Another ro-

tor angle stability prediction approach is related to the Lyapunov 

stability-based transient energy function [4]–[8], in which kinetic 

and potential energies are evaluated for a post-fault system. Tran-

sient energy function methods perform well in terms of computa-

tion speeds, but still face challenges with respect to applications to 

renewable-energy-connected systems [9] and accuracy improve-

ment. The third popular approach is machine learning (ML)-based 

techniques, which make online rotor angle stability prediction us-

ing real-time synchronized data obtained by phasor measurement 

units (PMUs) [3], [10]–[12]. Generally, ML-based techniques re-

quire a large set of labeled data obtained by offline simulations for 

model training, during which the diverse scenarios that can take 

place in power systems are enumerated. Notably, these prediction 

methods have advantages in terms of calculation speed and are 

more adaptable to bulk power systems in this respect. However, in 

the presence of the high penetration of wind powers, the transient 

stability characteristic of the system also evolves, so ML-based 

prediction accuracy may be affected.  

First, the output of wind power plants (WPPs) can vary both tem-

porally and spatially [13], which exponentially increases the pos-

sible system pre-fault operation scenarios and imposes multi-

source uncertainties to the overall system dynamics [9]. Conse-

quently, extensive training data may be required to cope with the 

combination of all possible uncertainties in power systems, and as 

such the computation time explodes [9]. Handling a high volume 

of data entails more sophisticated prediction models and a larger 

number of features. In addition, it may boost the dimensionality of 

the input space and further increases the chance of overfitting and 

affects the overall performance [14]. However, an algorithm that 

demands massive offline data restricts the updating process of the 

prediction models. Consequently, the generalization ability of 

such prediction models is restricted, and the deficiencies noted 

may impede the application of ML-based methods to real-life pro-

jects. 

In addition, exploring informative and discriminative features is 

crucial for ML-based methods to reach reliable prediction models. 
As uncertainties of the system increase, existing features such as 

bus voltages [3], [10]–[12], which are obtained via PMU measure-

ments, may no longer be so useful. A few post-fault samples of 

these raw data may be unable to intuitively reflect the effects of 

dispersed WPPs and their uncertainties on system dynamics, as 

several possible combinations of uncertainties may lead to similar 

values. Interpreting these raw data into derived features that better 

represent the underlying problem can help improve model accu-

racy on test data. 

Moreover, most of the ML-based studies mentioned above uti-

lize post-fault data obtained after fault clearance for stability pre-

diction, which postpones the forecasting phase. Considering new 

advancements in PMU development, measurement data are now 

reliable and consistent during transients [15]. Therefore, the re-

duction of these data might be of interest when considering the 

importance of quick action against instability. 

Aimed at unraveling the above-mentioned restrictions, a novel 

rotor angle stability prediction method is proposed. In this method, 

a rotor angle stability index (SI) is developed, in which WPPs are 

represented as variable dynamic admittances to be integrated into 
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an equivalent network model during the transients. To calculate 

the energy without integral operation, a short-term terminal volt-

age recovery trajectory is derived for each WPP. In this way, the 

effects of WPPs on kinetic and potential energies of a system are 

calculated after disturbances. Given the developed 𝑆𝐼, an 𝑺𝑰 vec-

tor is proposed, which consists of the 𝑆𝐼 values of an overall set of 

instability modes (IMs) of a certain system. Thereafter, the 𝑺𝑰 vec-

tor can be rapidly computed following a contingency and used as 

a feature applied to an ensemble classifier algorithm, which 

demonstrates a superior prediction performance. The performance 

of the proposed method is evaluated in IEEE 68-bus and 300-bus 

test system models and compared with other existing methods. 
 

II. EXTENDED EQUAL AREA CRITERION (EEAC) 

Multiple transient energy function-based rotor angle stability as-

sessment methods were widely discussed in the 1980s [4]–[8] for 

transient security analysis. In this study, a novel SI algorithm in-

spired by the EEAC is further explored for power systems with 

WPPs.  

The EEAC is developed for a system with 𝑛 synchronous gener-

ators (SGs) [8]. In EEAC, the SGs are grouped into two comple-

mentary clusters by IM identification: the critical SGs that cause 

loss of synchronism and the remaining SGs, denoted as 𝑆 and 𝐴, 

respectively. These clusters are then modeled by two equivalent 

machines so that each represents the dynamics of the correspond-

ing machines within a partial center of angles frame. The system 

is further reduced to a one-machine-infinite-bus (OMIB) system. 

The mapping of the equivalent OMIB under such clustering is 

given by (1)–(5) [8], [16]: 

𝛿 = 𝛿𝑆 − 𝛿𝐴 ,    
𝑀

 𝜔0

�̇� = 𝑃𝑚 − 𝑃𝑒 (1) 

𝛿𝑆 =
1

𝑀𝑆

∑𝛿𝑖

𝑖∈𝑆

𝑀𝑖 ,    𝛿𝐴 =
1

𝑀𝐴

∑𝛿𝑗
𝑗∈𝐴

𝑀𝑗  (2) 

𝑀 =
𝑀𝑆𝑀𝐴

𝑀𝑇

, 𝑀𝑇 = 𝑀𝑆+𝑀𝐴,  𝑀𝑆 = ∑𝑀𝑖

𝑖∈𝑆

,  𝑀𝐴 = ∑𝑀𝑗

𝑗∈𝐴

 (3) 

𝑃𝑚 =
1

𝑀𝑇

( 𝑀𝐴 ∑𝑃𝑚𝑖

𝑖∈𝑆

− 𝑀𝑆 ∑𝑃𝑚𝑗

𝑗∈𝐴

) (4) 

𝑃𝑒 =
1

𝑀𝑇

( 𝑀𝐴 ∑𝑃𝑒𝑖

𝑖∈𝑆

− 𝑀𝑆 ∑𝑃𝑒𝑗

𝑗∈𝐴

) (5) 

where 𝛿𝑖 and 𝑀𝑖 represent the rotor angle and inertia of the 𝑖th SG, 

respectively. In a similar manner, 𝛿 and 𝑀 stand for the same val-

ues related to the equivalent OMIB system, and  𝜔0 is synchro-

nous speed. Subscripts 𝑆 and 𝐴 indicate the corresponding electri-

cal quantities of the equivalent SG in the partial center of angles 

frame. 𝑃𝑚 and 𝑃𝑒 are the mechanical and electrical power of the 

equivalent OMIB, respectively. Then the system is reduced at the 

generator internal nodes to a network equivalent, and with an ad-

ditional simplification for machines within clusters 𝑆 and 𝐴 [8]: 

𝛿𝑖 ≈ 𝛿𝑆 | ∀𝑖 ∈ 𝑆 ,   𝛿𝑗 ≈ 𝛿𝐴 | ∀𝑗 ∈ 𝐴 (6) 

the active power output of the 𝑖th SG can be expressed by [16]: 

𝑃𝑒𝑖 = Re(�⃗� 𝑖𝐼 𝑖
∗) =  𝐸𝑖𝜺𝑖

TRe( 𝒀𝑆𝑆)𝑬𝑆 + 

𝐸𝑖𝜺𝑖
T[sin 𝛿 Im( 𝒀𝑆𝐴) + cos 𝛿 Re( 𝒀𝑆𝐴)]𝑬𝐴 

(7) 

where �⃗� 𝑖 and 𝐼 𝑖  represent the complex voltage and current injec-

tions of the internal node of the 𝑖th SG, 𝜺𝑖 is a standard basis in 

ℝ|𝑆|
, and �⃗⃗� 𝑆 and �⃗⃗� 𝐴 indicate complex voltage column vectors of 

SG internal nodes in sets 𝑆 and 𝐴, respectively.  𝒀𝑆𝑆 and  𝒀𝐴𝐴 de-

note self-admittance of SG internal nodes in sets 𝑆 and 𝐴, respec-

tively. 𝐸𝑖 is the magnitude of �⃗� 𝑖, and 𝑬𝑆 and 𝑬𝐴  are column vec-

tors that include the magnitudes of each element in �⃗⃗� 𝑆 and �⃗⃗� 𝐴, re-

spectively. 𝑃𝑒𝑗  is expressed similarly. For simplicity, 𝑬𝑆, 𝑬𝐴, and 

𝑃𝑚 are assumed to maintain their steady-state values during tran-

sients [8]. Thus, 𝑃𝑒 in (5) can be obtained by (8)–(9) [16]: 

𝑃𝑒 = 𝑃𝐶 + 𝑃𝑚𝑎𝑥sin (𝛿 − 𝛾)  (8) 

𝑃𝐶 =
𝑀𝐴

𝑀𝑇
𝑬𝑆

TRe( 𝒀𝑺𝑺)𝑬𝑆 +
𝑀𝑆

𝑀𝑇
𝑬𝐴

TRe( 𝒀𝑨𝑨)𝑬𝐴  (9) 

where both 𝑃𝑚𝑎𝑥 and 𝛾 are constants [16]. Then, the “accelerating 

area” and “decelerating area” of the equivalent OMIB system, 

which respectively correspond to the kinetic and potential energies 

of the system, are calculated using: 

𝐴𝑎𝑐𝑐 = ∫ (𝑃𝑚
𝛿(𝑡c)

𝛿(𝑡f)
− 𝑃𝑒𝐷(𝛿))𝑑𝛿  (10) 

𝐴𝑑𝑒𝑐 = ∫ (𝑃𝑒𝑃
𝛿(𝑡u)

𝛿(𝑡c)
(𝛿) − 𝑃𝑚)𝑑𝛿  (11) 

 

where subscripts 𝐷 and 𝑃 respectively represent the system elec-

tric quantities during and after the clearance of faults; 𝑡f and 𝑡c re-

spectively stand for fault time and fault clearance time; and 𝑡uis 

the time instant when the system reaches the unstable equilibrium 

point. The calculation of 𝛿(𝑡u)  is introduced in [16]. In this 

method, the stability of the system is judged by comparing the dif-

ference between kinetic and potential energy against a predefined 

threshold value. 

III. DERIVATION OF A NOVEL STABILITY INDEX 

To address the challenges faced by SI calculation caused by 

WPP dynamics, a novel algorithm inspired by the EEAC for cal-

culating SI is introduced in this section. First, the calculation of a 

set of virtual dynamic admittances to reshape the systems and 

model the dynamic behavior of WPPs is introduced in Section 

III.A. Impacts of WPPs on the electromagnetic power of SGs are 

then analyzed in Section III.B. Finally, the short-term terminal 

voltage recovery of WPPs is derived in Section III.C and, conse-

quently, a novel SI considering the dynamics of WPPs is put for-

ward. 

A. Dynamic Equivalence of WPPs 

The principle of dynamic admittances is used to eliminate WPP 

nodes while retaining their transient effects on SGs. Consider a 

network with two SGs and one WPP, as shown in Fig. 1, which is 

reduced at the SG internal nodes and point of intersection (POI) of 

the WPP in the equivalent network model. Because 𝐼 1  and   𝐼 2 

should be consistent with the corresponding values after WPP 

elimination, the dynamic equivalent admittances 𝑌1
′ and 𝑌2

′ are ob-

tained in (12): 
 

𝑌1
′ = (1 −

�⃗⃗� 𝑤

�⃗� 1
) 𝑌1, 𝑌2

′ =  (1 −
�⃗⃗� 𝑤

�⃗� 2
) 𝑌2  (12) 

Similarly, consider a system with 𝑛 SGs and 𝑛′ WPPs; an elec-

trical equivalent of the system is constructed, as shown in Fig. 2 

(a). Generally, the wind generators (WGs) in WPPs are not syn-

chronously connected to the grid, and thus do not face rotor angle 

instability. However, the power output from these WPPs during 

transient conditions is affected by network voltage, which in turn 
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affects the rotor angle stability of the system [9]. In dynamic co-

herency determination studies [17], each non-SG bus, including 

POIs [17], is appended to an associated SG coherent group to form 

a coherent area following a disturbance. This is determined by the 

rate of change of voltage angle or frequency-deviation signals of 

each bus [17]. Accordingly, the POIs with connected WPPs are 

divided into two complementary clusters—critical subset 𝐺  and 

the remaining subset 𝐻 , which are appended to the 𝑆  and 𝐴 

groups, respectively—as shown in Fig. 2(a). 
 

𝐸1
~

𝐸2

𝑌1

𝑌2

𝐼 1

𝐼 2 𝐼 2

𝐼 1
𝑌1
′

~
𝑌2
′

𝐸1
~

~
𝐸2

  

 

Fig. 1. The principle of dynamic admittances. 
 

The equivalent network is given in (13), where 𝑰 𝑆 and 𝑰 𝐴 repre-

sent complex current column vectors of SG internal nodes in sets 

𝑆 and 𝐴, respectively. �⃗⃗� 𝐺, 𝑰 𝐺 and �⃗⃗� 𝐻, 𝑰 𝐻 are the complex voltage 

and current column vectors of POIs in sets 𝐺 and 𝐻, respectively. 

What remains is the admittance matrix, in which the diagonal and 

non-diagonal elements are the self and mutual admittances of the 

network, respectively. 
 

(a) 

Equivalent

Network
... ...

1WPP WPPm 1WPPm+
WPPn

 𝑽1  𝑽𝑚  𝑽𝑚  1  𝑽  

...
𝐸𝑚 1

𝐸 

...

𝐸1

𝐸𝑚
~

~
𝑺

 

𝑨

 

~

~

 

(b) 
New

Equivalent

Network

𝑌1
′

𝑌𝑚
′

𝑌𝑚 1
′

𝑌 
′

...

𝐸𝑚 1

𝐸 
...

𝐸1

𝐸𝑚
~

~
𝑺 𝑨

~

~
 

Fig. 2. Dynamic equivalence of WPPs. 
 

Similar to Fig. 1, a series of dynamic admittances that act as ad-

ditional self-impedance of each internal node can be built to sim-

ulate the transient behavior of WPPs, as shown in Fig. 2(b), during 

which the network in Fig. 2(a) is first reduced at the generator in-

ternal nodes and POIs, and the principle of dynamic admittance 

introduced in Fig. 1 is then applied. Thus, the equivalent network 

of Fig. 2(a) is rebuilt; the WPP nodes are eliminated and the con-

nections between each SG remain the same. The current-injection 

model of the system in Fig. 2(b) is given by (14): 
 

[
 
 
 
 𝑰
 
𝑆

𝑰 𝐺

𝑰 𝐴

𝑰 𝐻]
 
 
 
 

= [

𝒀𝑆𝑆 𝒀𝑆𝐺 𝒀𝑆𝐴 𝒀𝑆𝐻

𝒀𝐺𝑆 𝒀𝐺𝐺 𝒀𝐺𝐴 𝒀𝐺𝐻

𝒀𝐴𝑆 𝒀𝐴𝐺 𝒀𝐴𝐴 𝒀𝐴𝐻

𝒀𝐻𝑆 𝒀𝐻𝐺 𝒀𝐻𝐴 𝒀𝐻𝐻

]

[
 
 
 
 �⃗⃗�
 
𝑆

�⃗⃗� 𝐺

�⃗⃗� 𝐴

�⃗⃗� 𝐻]
 
 
 
 

 (13) 

[
𝑰 𝑆

𝑰 𝐴
] = [

𝒀𝑆𝑆
′

 𝒀𝐴𝑆

 𝒀𝑆𝐴

𝒀𝐴𝐴
′ ] [

�⃗⃗� 𝑆

�⃗⃗� 𝐴
] (14) 

where 

𝒀𝑆𝑆
′ =  𝒀𝑆𝑆 + diag[𝑌1

′, . . . , 𝑌𝑚
′ ]  (15) 

𝒀𝐴𝐴
′ =  𝒀𝐴𝐴 +  diag[𝑌𝑚 1

′ , . . . , 𝑌 
′]  (16) 

and 𝑌1
′, . . . , 𝑌𝑚

′ , 𝑌𝑚 1
′ , . . . , 𝑌 

′  are dynamic admittances. Similar to 

(12), these admittances are calculated by: 
 

𝑌𝑖
′ = ∑ [(1 −

 ⃗ 𝑔

�⃗� 𝑖
)𝑌𝑖𝑔] + ∑ [(1 −

 ⃗ ℎ

�⃗� 𝑖
)𝑌𝑖ℎ]

ℎ∈𝐻𝑔∈𝐺

 (17) 

 

where 𝑖 ∈ 𝑆 ∪ 𝐴 . 
It can be seen from (17) that the dynamic equivalent admittances 

can reflect the effect of uncertainties of wind power; as the volt-

ages of SG internal nodes and POIs fluctuate with wind power 

generation, the admittances change accordingly.  

Therefore, during fault-free conditions, the values of the dy-

namic equivalent admittances vary at all times due to the wind 

speed uncertainties. During transients, the wind speeds of each 

WPP are assumed to remain constant [18] (assuming they start 

when a fault occurs 𝑡f and end at 1–5s after fault clearance 𝑡c); 

thus, the dynamic change of these admittances are determined by 

the pre-fault conditions and the transient process of the system, 

including the fault-related change of system states, variables, and 

topology, the controls on WPPs, etc. 

B. Electromagnetic Power of SGs Considering WPPs 

After the inclusion of the dynamic admittances shown in Fig. 

2(b), 𝑃𝑒𝑖  in (7) and 𝑃𝑒 in (8) are rewritten in which  𝒀𝑆𝑆 and  𝒀𝐴𝐴 

are respectively replaced by 𝒀𝑆𝑆
′  and 𝒀𝐴𝐴

′ . From (15)–(16), 𝒀𝑆𝑆
′  

and 𝒀𝐴𝐴
′  are composed of self and mutual admittances of the SGs 

and the dynamic admittances; hence, for the WPP-integrated 

power system, the electromagnetic power of each SG includes the 

amount exchanged among the SGs as well as among the SGs and 

the WPPs. Similar to (6), because the dynamics of the voltage an-

gles of buses within one coherent group are similar [17], an as-

sumption is made for the unstable cases. During the period after 

𝑡c, it has 
 

𝜃𝑔 ≈ 𝛿𝑆 |  ∀𝑔 ∈ 𝐺 , 𝜃ℎ ≈ 𝛿𝐴 | ∀ℎ ∈ 𝐻  (18) 

where 𝜃𝑔 and 𝜃ℎ represent the voltage angle of POI 𝑔 and ℎ, re-

spectively; thus, (17) is further simplified. Therefore, the variables 

remaining in 𝑃𝑒  are 𝛿  and 𝑽, where 𝑽 = [𝑽𝐺
T   𝑽𝐻

T ]T , and 𝑽𝐺  and 

𝑽𝐻 are column vectors that include the magnitudes of each ele-

ment in �⃗⃗� 𝐺 and �⃗⃗� 𝐻, respectively. Because 𝛿 is the variable of the 

integration of (10) and (11), if the 𝛿–𝑽 relationship of the post-

fault function is obtained, then the antiderivative of (10) and (11) 

can be derived, which leads to the calculation of kinetic and 

potential energies without an integral operation. 

C. Proposed SI Considering WPPs 

1)  Post-Fault Recovery of 𝑽 

During the fault period, 𝑡f to 𝑡c, the dip values of 𝑽 are obtaina-

ble from PMUs and can be used for kinetic energy calculation. 

Thereby, the remaining challenge to calculate potential energy is 

to derive the potential 𝑽 - 𝛿 relationship during 𝑡c to 𝑡u, defined as 

𝑡cu. 

In this study, all WGs are considered to be doubly-fed induction 

generators (DFIGs) due to their popularity among current WPPs. 

All WGs are assumed to have fault ride-through capability and re-

javascript:;
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main connected during faults, and are involved in Volt/VAR con-

trol to regulate the voltage of their respective POIs; this is the most 

prevalent output control in recent North American and European 

WPPs [18]. The methodology introduced below can be modified 

for application to DFIGs under other output control situations. 

Faster-acting local controls implemented in the WG converters 

can provide a dynamic response to voltage dips. The introduction 

of a generator/converter model of DFIG that regulates real and re-

active power output is reported in [19]. Denote    as the voltage 

magnitude of the POI of the 𝑤th WPP. During the    drop period, 

the delivery of reactive power of this WPP, 𝑄 , is given priority 

by the Volt/VAR control. In other words, the active power 𝑃  re-

mains limited while 𝑄  increases to support    recovery. This 

control mode is generally triggered from 𝑡f  and continues after 

fault clearance if   (𝑡c ) fails to recover immediately; 𝑄  then 

increases and remains at its maximum output until    recovers. 

This process is illustrated in Fig. 3, in which the WPP is in full 

rated output (100 MW) before the contingency. Similar simulation 

results are also reported in [20] and [21]. 
 

  𝑄 𝑃 

𝑡f 𝑡c

 

Fig. 3. Real power, reactive power, and terminal voltage of a Volt/VAR con-

trolled WPP. 

The control strategy of WGs affects their regulated voltages 𝑽 

and reactive power outputs 𝑸, which consequently influence the 

dynamics of the system. In light of this structure, a 𝑽 - 𝛿 relation-

ship can be obtained by a derivative operator by having an idea 

about the transient characteristics of 𝑸. To this end, denote: 

    (𝑡cu)  =   (𝑡f−) | ∀ 𝑤 ∈ 𝐺 ∪ 𝐻,   (𝑡c ) ≥ 𝜑  (𝑡f−)  (19) 
 

where   (𝑡cu) represents    during 𝑡cu,   (𝑡f−) is equal to    at 

steady state, and 𝜑  is a threshold ratio of   (𝑡c )  to   (𝑡f−) . 

Equation (19) means that    is almost immediately recovered af-

ter 𝑡c if   (𝑡c ) reaches close to its pre-fault value. Specifically, 

𝜑 is set to 0.9 because this is the typical value to trigger the low 

voltage condition of Volt/VAR control in WPPs. 

On the other hand, for those   (𝑡c ) that fail to reach 𝛼  (𝑡f−), 

according to the Volt/VAR control in DFIGs, the corresponding 

WPP would increase its reactive power output and remain at its 

maximum limitation until the voltage is restored. Hence, during 

𝑡cu, the reactive outputs of those WPPs can be considered as: 
 

    𝑄 = �̅�     |  ∀ 𝑤 ∈ 𝐺 ∪ 𝐻 ,    (𝑡c ) < 𝜑  (𝑡f−) (20) 
 

where �̅�  is the maximum reactive output of the 𝑤th WPP, which 

is considered as a constant and determined by the controllers of 

the WGs in the WPP [18]. 

The reactive power outputs of each WPP are constructed by: 
 

𝑸 = [𝑸𝐺
T   𝑸𝐻

T ]T (21) 
 

where 𝑸𝐺  and 𝑸𝐻 represent reactive power injection column vec-

tors of WPPs of sets 𝐺 and 𝐻, respectively. Given (13), (17), and 

(18), 𝑸𝐺  can be derived as (22), where ⨂ is pointwise multiplica-

tion; and 𝑸𝐻 is expressed in a similar way.  
 

𝑸𝐺 = Im(�⃗⃗� 𝐺⨂𝑰 𝐺
∗ ) = 

−𝑽𝐺⨂(
Im(𝒀𝐺𝐺)𝑽𝐺 + cos 𝛿 (Im(𝒀𝐺𝐻)𝑽𝐻 + Im(𝒀𝐺𝐴)𝑬𝐴)

+Im( 𝒀𝐺𝑆)𝑬𝑺 − sin𝛿(Re(𝒀𝐺𝐻)𝑽𝐻 + Re(𝒀𝐺𝐴)𝑬𝑨)
) 

(22) 

 

From (22), 𝑸 is a function of 𝑽 and 𝛿. From (19),    can be con-

sidered a constant value after 𝑡c if   (𝑡c ) ≥ 𝜑  (𝑡f−); so, we only 

need to focus on those {  , 𝑄  | ∀ 𝑤 ∈ 𝐺 ∪ 𝐻,   (𝑡c ) < 𝜑  (𝑡f−)} 

for the derivation of the 𝑽 - 𝛿 relationship during 𝑡cu. These volt-

ages and reactive power are constructed by: 

𝑽′ = [ 1 ⋯  ⋯   ]T,𝑸′(𝑽, 𝛿) = [𝑄1 ⋯𝑄 ⋯𝑄  ]T|  ∀ 𝑤
∈ 𝐺 ∪ 𝐻 ,   (𝑡c ) < 𝜑  (𝑡f−) 

(23) 

During 𝑡cu, (19) shows that: 

∆  = 0   |∀ 𝑤 ∈ 𝐺 ∪ 𝐻   ,     (𝑡c ) ≥ 𝜑  (𝑡f−) (24) 

and thus 𝑸′ in (23) can be rewritten as 𝑸′ (𝑽′, 𝛿). 

Further, (20) shows that 𝑸′ in (23) is a constant column vector 

during 𝑡cu and, thus, ignoring higher order terms during 𝑡cu leads 

to: 

[
𝜕𝑸 (𝑽 ,𝛿)

𝜕(𝑽 ,𝛿)
]|

𝑽 =𝑽 (𝑡c+),   𝛿=𝛿(𝑡c)
[
∆𝑽′

∆𝛿
] = 𝟎  (25) 

 

where [
𝜕𝑸 (𝑽 ,𝛿)

𝜕(𝑽 ,𝛿)
] is a Jacobian matrix. Thus, from (25), a linear re-

lation between 𝑽′ and 𝛿 can be obtained by (26) during 𝑡cu: 

∆𝑽′ = 𝑲′∆𝛿 (26) 

where 𝑲′ are linear coefficients between ∆𝑽′ and ∆𝛿 during 𝑡cu: 

𝑲′ = − [
𝜕(𝑸 )

𝜕(𝑽 )
]
−1

[
𝜕(𝑸 )

𝜕𝛿
]|

𝑽 =𝑽 (𝑡c+),   𝛿=𝛿(𝑡c)
  (27) 

For generalization, 𝑽(𝑡𝑐𝑢)  can be written as: 

𝑽(𝑡𝑐𝑢) = [𝑽𝐺
T(𝑡c )  𝑽𝐻

T (𝑡c )]
T
+ [𝑲𝐺

T   𝑲𝐻
T ]

T
(𝛿 − 𝛿c)  (28) 

 

where [𝑲𝐺
T   𝑲𝐻

T ]
T
 is the linear coefficient between ∆𝑽 and ∆𝛿 dur-

ing 𝑡𝑐𝑢. In particular: 

  (𝑡c )  =   (𝑡f−),  𝐾 = 0 |∀ 𝑤 ∈ 𝐺 ∪ 𝐻,   (𝑡c )
≥ 𝜑  (𝑡f−) 

(29) 

and other  𝐾𝑤 in [𝑲𝐺
T   𝑲𝐻

T ]
T

 are calculated from (28). Relying on 

(28), the 𝑽 - 𝛿 relationship is obtained. A novel SI, derived from 

that, is proposed next. 

2) Proposed SI  

Given (8)–(9), (15)–(18), and (28), the integrals in (30) and (31), 

which respectively correspond to the kinetic and potential energies 

of a system after fault clearance considering WPPs, can be ob-

tained: 

𝐴𝑎𝑐𝑐 = ∫ (𝑃𝑚
𝛿(𝑡c)

𝛿(𝑡f)
− 𝑃𝑒𝐷(𝛿))𝑑𝛿 = 𝐴𝑎𝑐𝑐1 + 𝐴𝑎𝑐𝑐2  (30) 

𝐴𝑑𝑒𝑐 = ∫ (𝑃𝑒𝑃(𝛿)
𝛿(𝑡u)

𝛿(𝑡c)
− 𝑃𝑚)𝑑𝛿 = 𝐴𝑑𝑒𝑐1 + 𝐴𝑑𝑒𝑐2  (31) 

where 

𝐴𝑎𝑐𝑐1 = (𝑃𝑚 − 𝑃𝐶𝐷
)(𝛿(𝑡c) − 𝛿(𝑡f)) + 

𝑃max𝐷
(cos(𝛿(𝑡c) − 𝛾𝐷) − cos(𝛿(𝑡c) − 𝛾𝐷)) 

(32) 

𝐴𝑎𝑐𝑐2 = 𝜉1(𝛿(𝑡c) − 𝛿(𝑡f)) + 𝜉2(sin 𝛿(𝑡c) − sin 𝛿(𝑡f))
− 𝜉3(cos 𝛿(𝑡c) − cos 𝛿(𝑡f)) 

(33) 

𝐴𝑑𝑒𝑐1 = (𝑃𝐶𝑃
− 𝑃𝑚)(𝛿(𝑡𝑢) − 𝛿(𝑡c)) + 

𝑃max𝑃 cos(𝛿(𝑡c) − 𝛾𝑃) − 𝑃max𝑃
cos(𝛿(𝑡u) − 𝛾𝑃) 

(34) 
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𝐴𝑑𝑒𝑐2 = 𝜂1(𝛿(𝑡u) − 𝛿(𝑡c)) + 𝜂2(𝛿
2(𝑡u) − 𝛿2(𝑡c))

+ (𝜂3 + 𝜂6)(sin 𝛿(𝑡u) − sin 𝛿(𝑡c))
+ (𝜂4 + 𝜂5)(cos 𝛿(𝑡u) − cos 𝛿(𝑡c))
+ 𝜂5(𝛿(𝑡u)sin 𝛿(𝑡u) − 𝛿(𝑡c) sin 𝛿(𝑡c))
− 𝜂6(𝛿(𝑡u)cos 𝛿(𝑡u) − 𝛿(𝑡c)cos 𝛿(𝑡c)) 

(35) 

 

where the subscripts 𝐷  and 𝑃  are defined in Section II; 𝜉1—𝜉3 

and 𝜂1—𝜂6 in (33) and (35) are constants, with detailed equations 

given in the Appendix. The SI, which considers the dynamics of 

WPPs on the rotor angle stability, is then given as: 
 

𝑆𝐼 =
𝐴𝑑𝑒𝑐−𝐴𝑎𝑐𝑐

𝐴𝑎𝑐𝑐
  (36) 

 

The following data are required to evaluate the expressions in 

(32)-(36): (a) system admittance matrix at 𝑡f  and 𝑡c , (b) rotor 

angles of each SG at 𝑡f and 𝑡c, (c) pre-fault internal voltage mag-

nitudes of each SG, and (d) voltages of each POI at 𝑡f  and 𝑡c . 

PMU-based fault location detection is introduced in [22], and 

online event and fault type detection are reported in [23]. These 

methods are determining factors to obtain values of (a). On the 

other hand, the pre-fault internal voltage of the SGs, the voltages 

of the POIs, and the rotor angles during and after the clearance of 

faults can be estimated from PMU measurements [24], [25]. 

Therefore, the 𝑆𝐼 can be calculated immediately after 𝑡c . Based 

on (36), the value of the 𝑆𝐼 correlates with the stability margin of 

the post-fault network. 

IV. THE PROPOSED SOLUTION FRAMEWORK 

Given the 𝑆𝐼 developed in Section III.C, a column vector 𝑺𝑰 is 

proposed and used as a feature for an ML technique to train an 

optimal stability prediction model. The 𝑺𝑰, shown in (37), consists 

of the 𝑆𝐼 values of all finite sets of feasible IMs of a certain sys-

tem: 
 

𝑺𝑰 = [𝑆𝐼1  𝑆𝐼2  …  𝑆𝐼|Ω
IM|]

T
  (37) 

where the ΩIM represents the set of all feasible IMs of a certain 

system, i.e., each element in ΩIM is a certain clustering pattern rep-

resenting both the critical and remaining SGs. 

Hence, with a pre-identified ΩIM, an 𝑺𝑰 vector is calculated at 

𝑡c  in case of a contingency. Taking advantage of a set of 𝑺𝑰 vec-

tors, an ML classifier algorithm is then applied for the training of 

a rotor angle stability prediction model. 

The advantages of using the 𝑺𝑰 vectors as features include the 

following: 

(1) Features are more informative and discriminative. Each ele-

ment in the column vector correlates with the stability margin of 

each IM. Therefore, the proposed method has sufficient potential 

to outperform the existing ML-based stability prediction methods 

[3], [10]–[12], in which the features are the unprocessed data di-

rectly obtained from PMUs.  

(2) No online IM identification procedure is needed. The IM 

identification, known as clustering of the critical and remaining 

SGs, provides the “reference coordinate” for calculations of 𝑆𝐼𝑠 

[8], [16], and an inaccurate online IM identification may lead to 

erroneous prediction results. However, existing online IM identi-

fication methods require long post-fault observation windows 

[26], [27], which may be impractical for real-life power systems 

that demand an extremely short time to trigger the emergency con-

trol action. Despite this, the ΩIM of a real-life system can be pre-

identified by analyzing offline simulations of various disturbances 

[9], during which each WPP can also be clustered into an associ-

ated SG coherent group as mentioned in Section III.A. Having ΩIM 

for a specific system, in case of a contingency, the developed al-

gorithm is employed in parallel to find SIs for all possible IMs to 

form an 𝑺𝑰 vector, and thus no online IM identification is needed. 

(3) More reliable prediction results are achieved. In the 

proposed approach, each element in the 𝑺𝑰 vector is projected into 

a high dimensional space to search a hypersurface that separates 

the stable and unstable cases via an ML technique. Therefore, 

compared with identifying the instability either from a conserva-

tive or optimistic 𝑆𝐼 threshold value [8], [16], [28], the classifier 

hypersurface trained from the 𝑺𝑰 vector provides a more reliable 

prediction. 

The process of the proposed framework consists of pre-identify-

ing all possible IMs as the initial stage, followed by the formation 

of an 𝑺𝑰 vector and a model training process as the next stages. 

To train the classifier, the rotor angle stability status of the of-

fline simulations should be calculated and used as target labels. In 

this study, stability status is calculated at the end of each 

simulation as follows [12]: 
 

𝜆𝑘 =
2𝜋 − Δ𝛿

2𝜋 + Δ𝛿
, ∀ 𝑘 ∈ Ωf (38) 

where Δ𝛿 is the maximum rotor angle deviation between any pair 

of SGs at the end of the simulation. Ωf shows sets of all fault sce-

narios considered during the generation of training data, and 𝜆𝑘 in-

dicates the final stability status of the fault scenario 𝑘, in which 

positive values indicate a stable network and negative otherwise.  
 

Retrieve a scenario from Ωf and conduct time-domain simulation

= +1
Save 𝑆𝐼 vector 𝑆𝐼1, 𝑆𝐼2, … , 𝑆𝐼|Ω

IM|
 

as the predictor and 𝜆𝑘 as 

the label of the 𝑘  scenario

𝑘 < Ωf ?

End

𝑘=1

Receive system data, pre-identify ΩIM

Yes

No

Train a prediction model by ensemble decision trees

Start

Calculate 𝑆𝐼 of ΩIM   
I based on Section III.C

Calculate 𝑆𝐼 of 1  I based on Section III.C

 
Fig. 4. The proposed framework. 

In this study, ensemble decision tree (DT) is employed to pro-

cess the 𝑆𝐼 vectors and find the optimal classifiers. DT is amongst 

the most prevalent non-parametric supervised classification tech-

niques [29]. For ensemble DT, ensemble techniques are engaged 

to create a collection of features as multiple weighted DTs. It in-

volves incrementally building an ensemble by training each new 

method instance to emphasize the training instances that previous 

methods misclassified. In this work, the DTs are built with the 

standard classification, and the ensembles are created based on the 

boosting technique [30]. Other classification techniques such as 

deep learning can also be applied without loss of generality. 

The overall process of the proposed framework is shown in Fig. 
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4. As the grey area in this flowchart highlights, a major portion of 

the process can be solved in parallel, which substantially reduces 

the computational complexity. 

V. TEST AND RESULTS 

To solve the stability prediction problem by the proposed 

method, the described framework is realized by a Python-based 

interface that calls PSS/E software [19] to carry out simulations, 

saves the database generated, and creates the prediction model.  

IEEE 68-bus, 16-machine and 300-bus, 69-machine networks 

are employed and modified to perform the simulations. The con-

figurations of the two networks are omitted and can be found in 

[31] and [32], respectively. Nine WPPs are installed at bus-18, -

22, -25, -29, -31, -32, -36, -41, and -42 in the modified 68-bus 

network and 15 WPPs are installed at bus-84, -143, -190, -236, -

241, -7002, -7003, -7012, -7017, -7024, -7039, -7061, -7130, -

7139, and -7166 in the modified 300-bus network. All SGs in the 

networks are detailed 6th-order models and equipped with DC4B 

excitation systems. IEEEST stabilizers and IEESGO governors are 

installed for each SG. Therefore, the internal voltage magnitude 

and mechanical power of SGs vary during the transient simula-

tions. It might be helpful to mention that these values are assumed 

to remain constant for simplicity in Sections II and III. Such a sim-

plification is considered inside the developed method, but not the 

stability simulations. In addition, each WPP is modeled by an ag-

gregated 1.5 MW DFIG model. All of these dynamic models are 

available in [19] and their parameters are noted in [19], [31], and 

[32]. The computer used in simulations featured an Intel 3.4-GHz 

CPU with 16 GB of RAM. 

A. Database Generation 

Database generation is required to validate the proposed frame-

work. The training database is obtained from Monte Carlo time-

domain simulations. To this end, reasonable uncertainty models, 

including outputs of WPPs, load levels, and fault locations and du-

rations, are essential. 
In practice, these uncertainty models can be statistically esti-

mated from the corresponding historical observations. In this pa-

per, the generation of each WPP, represented by 24 probability 

density functions (PDFs) that correspond to 24 hours of a day, are 

estimated using Gaussian kernels in a non-parametric way using 

hourly historical data from [33]. The same method is applied to 

each load where the historical data are retrieved from [34]. Thus, 

before running a dynamic simulation for a specific scenario, the 

hour of the day is sampled randomly and then each load and WPP 

outputs are sampled from its PDF of the sampled hour, and optimal 

power flow is then solved to balance the load and determine the 

output of each SG. Further, because SGs in the test networks are 

considered to be conventional power plants with aggregated units, 

the parameters of each SG are then adjusted based on their updated 

output. In brief, by increasing wind power penetration, some units 

in each conventional power plant are turned off, so the electrical 

parameters of each SG are adjusted accordingly, as discussed in 

[9]. Fault duration is randomly selected to be between 6 and 15 

cycles [12]. The faults are assumed to be permanent and are 

cleared by switching out the faulted line. Moreover, faults are ran-

domly applied to transmission lines for each simulation. Only 

three-phase faults are considered in this paper, though the pro-

posed method is capable of handling other fault types as well. The 

above procedures are realized by a Python-based interface and the 

Monte Carlo simulations are carried out in PSS/E software, which 

provides the Python application programming interface (API). 

Different wind power penetrations are also set for the two net-

works for testing. Wind power installed capacity ratio (WIC) in 

both test networks is increased from 0 to 50% of the total available 

capacity of SGs in increments of 10%; these scenarios are denoted 

as WIC0 to WIC50%, respectively. Finally, for each WIC sce-

nario, 7000 and 35000 simulations are carried out in the two mod-

ified IEEE 68- and 300-bus networks, respectively.  

The data simulated for offline analysis are shown in Table I, 

where the average pre-fault instantaneous wind power penetra-

tions (AVG-IWP) of each WIC scenario are also given. The data-

base is employed to perform the analyses in Sections V.B–V.D for 

different validation purposes. 

TABLE I 

SIMULATION DATA OF THE TWO NETWORKS FOR DIFFERENT SCENARIOS  

WIC 
Modified 68-bus network Modified 300-bus network 

Instability ratio AVG-IWP Instability ratio AVG-IWP 

0% 16.53% - 12.91% - 

10% 11.84% 4.53% 12.13% 4.95% 

20% 11.71% 9.17% 10.69% 9.77% 

30% 12.80% 14.22% 11.51% 14.78% 

40% 14.16% 18.37% 12.54% 19.40% 

50% 14.81% 23.84% 14.27% 24.30% 

B. Assessment of the Proposed SI  

This subsection aims to assess (i) the validity of the virtual dy-

namic admittances developed in Section III and (ii) the effect of 

online misidentification of the IM on the accuracy of the SI. 

For (i), the accuracy of the 𝑆𝐼 calculated with the dynamic ad-

mittances is compared with the accuracy calculated with static pre-

fault WPP-equivalent admittances. It is worth noting that, in the 

static admittance scenario, the WPPs are equivalent to static ad-

mittances whose values are calculated by (17) using the pre-fault 

conditions. During transients, the dynamics of the WPPs are ig-

nored, i.e., the values of the WPP-equivalent admittances remain 

unchanged. Thus, in case of a contingency, the EEAC as listed in 

(1)–(11) and (36) can be directly applied to calculate the 𝑆𝐼. 
For (ii), two different IM online identification settings are made 

for the two tests in (i): the IM is either assumed correctly identified 

for each case, or randomly selected from a set of patterns that may 

appear due to the fault line.  

Therefore, four settings are designed for the SI calculation, as 

listed in Table II. The accuracy of the SIs obtained under the four 

settings is then assessed and compared with respect to different 

threshold values and WICs. For this purpose, the cases simulated 

on the modified 68-bus network for WIC10, 30, and 50% are em-

ployed for the validation. For each WIC scenario, the 𝑆𝐼 value is 

calculated for the 7000 cases under the four different settings in 

Table II. For the sake of assessment, the threshold value for stabil-

ity prediction is increased from −1 to 1 in increments of 0.1, and 

cases with an SI value smaller (larger) than the threshold value will 

be predicted as unstable (stable). The accuracy is the ratio of the 

number of correctly predicted cases to the total number of cases 

(7000). The results are presented in Fig. 5. 

TABLE II 

DIFFERENT SETTINGS FOR SI CALCULATION  

Settings Modeling of WPPs IM identification 

S1 Static admittances Randomly selected 

S2 Static admittances Correctly identified 

S3 Dynamic admittance Randomly selected 

S4 Dynamic admittance  Correctly identified 
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Fig. 5 shows that increasing the WIC results in a decrease in the 

overall prediction accuracy. With the proposed SI, the average sta-

bility prediction accuracy is 91.38% with WIC=50%, which is 

2.81% lower than the case with WIC=10%. Even so, the prediction 

accuracy of the proposed SI is markedly better than those in which 

the dynamic admittances are replaced by static ones in the SI cal-

culation process; the average accuracy improvement for WIC10, 

30, and 50% is 2.18, 5.17, and 8.71%, respectively. Such outcomes 

demonstrate the efficacy of the dynamic admittances on modeling 

the dynamics of WPPs, and validate the effectiveness of the pro-

posed SI for cases with high penetration of wind power. Moreover, 

this figure shows that the accuracy is susceptible to the settings of 

the threshold value and, last but not least, that the misidentification 

of IM can degrade the overall accuracy. Hence, to further improve 

the accuracy, the proposed framework is applied, and its perfor-

mance is illustrated in the following subsection. 

S1 S3

WIC (%)

A
cc

u
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cy
 (

%
)

S4S2

 
Fig. 5 The stability prediction accuracy of different techniques with respect to 

WICs for different threshold values.  

C. Performance of the Proposed Stability Prediction Framework 

To investigate the performance of the proposed framework with 

respect to different levels of wind power penetration and related 

uncertainties, the database shown in Table I is employed for test-

ing. In each WIC scenario, 70% of the simulation cases are ran-

domly chosen for training while the remainder are used in testing, 

this process is repeated 10 times and the average prediction accu-

racy is recorded. The training process explained in Section IV is 

conducted, and the results obtained are reported in Table III. 

The performance of the proposed framework is also compared 

with state-of-the-art techniques in Table III. The most prevalent 

features, e.g., rotor angles 𝛿 [9], [10], [11], speeds 𝜔 [11], and ter-

minal voltages of each SG,  𝑆𝐺 [3], [11] for before-, during-, and 

post-fault (at 𝑡f−, 𝑡f , 𝑡c− and continuous sampling for five cycles 

after 𝑡c), are respectively employed to train the models for com-

parison purposes. For the sake of better comparison, all of the fea-

tures are solved with an ensemble DT trained by the boosting tech-

nique. 

Comparing the results obtained from the proposed framework 

with those using 𝛿 , 𝜔, or  𝑆𝐺 clearly reveals the superiority of the 

SI vector for stability prediction; for the two test networks, the 

prediction accuracies of the proposed method averaged across the 

six WICs are 98.53 and 97.30%, which are better than those of 

using 𝛿, 𝜔, or  𝑆𝐺. With increasing wind power penetration, the 

proposed method has a distinct advantage in terms of accuracy. 

This is because, compared to other features, each 𝑆𝐼  vector 

correlates with a set of stability margin indices considering the 

influences of WPPs on system dynamics. Notably, 𝛿, 𝜔, and  𝑆𝐺 

require five cycles of post-fault data, which means they respond 

83.3 ms later than the proposed method. 

TABLE III 

COMPARISON OF THE PREDICTION ACCURACY FOR DIFFERENT FEATURES USING 

AN ENSEMBLE DT  
 

WIC  
Modified 68-bus network Modified 300-bus network 

𝛿 𝜔  𝑆𝐺 Proposed 𝛿 𝜔  𝑆𝐺 Proposed 

0% 95.74% 97.96% 98.09% 99.03% 89.86% 93.27% 95.08% 98.04% 

10% 93.61% 97.05% 96.88% 98.98% 88.24% 92.24% 93.84% 97.87% 

20% 92.59% 95.38% 95.79% 98.59% 84.97% 89.52% 90.81% 97.61% 

30% 92.18% 94.82% 94.42% 98.46% 83.49% 86.84% 89.26% 97.26% 

40% 91.14% 92.06% 92.29% 98.17% 81.29% 84.19% 87.79% 96.83% 

50% 89.56% 91.24% 91.35% 97.96% 78.34% 83.14% 85.35% 96.17% 
 

In addition, the prediction accuracy is evaluated for different 

combinations of the existing features and the results obtained are 

reported in Table IV. Comparing Table IV and Table III shows 

that combining the features generally improves the prediction ac-

curacy, while a noticeable gap still exists compared to utilizing the 

𝑆𝐼 vector, especially in high wind power-integrated scenarios. The 

results show that interpreting these raw data into derived features 

effectively improves the accuracy of the ML-based prediction 

model. It should be noted that an increase in the number of features 

could lead to an overfitting issue, which may subsequently lead to 

a degradation in overall performance [12], [14], i.e., Table IV 

shows the accuracy may worsen when using all three features 

compared to only using 𝜔 and  𝑆𝐺 . Considering the number of 

features can be relatively high for large-scale networks by simply 

combining all available features, it is vital to reduce the dimen-

sionality of the input space and consequently improve the gener-

alization performance of the classifier [12]. 

TABLE IV 

COMPARISON OF THE PREDICTION ACCURACY FOR DIFFERENT SETS OF INPUT  

FEATURES USING AN ENSEMBLE DT 
 

WIC  
Modified 68-bus network Modified 300-bus network 

𝛿+𝜔 𝛿+ 𝑆𝐺 𝜔+ 𝑆𝐺 𝛿+𝜔+ 𝑆𝐺  𝛿+𝜔 𝛿+ 𝑆𝐺 𝜔+ 𝑆𝐺 𝛿+𝜔+ 𝑆𝐺 

0% 98.02% 98.10% 99.11% 99.10% 93.21% 95.01% 97.06% 96.99% 

10% 96.69% 96.51% 97.36% 97.11% 92.27% 93.57% 94.02% 94.22% 

20% 94.96% 95.98% 96.03% 96.01% 89.42% 89.54% 91.45% 91.39% 

30% 94.65% 95.00% 95.13% 95.25% 86.52% 88.33% 90.63% 90.71% 

40% 92.32% 92.25% 93.51% 93.26% 85.85% 87.50% 89.54% 89.30% 

50% 91.15% 91.03% 92.34% 92.36% 85.11% 87.02% 88.99% 88.86% 
 

Besides the boosting technique-trained ensemble DT, different 

prediction engines, including neural network (NN), support vector 

machine (SVM), and random forest (RF) are also applied to test 

the performance of each feature. In this comparison, the two net-

works for WIC50% are employed and all prediction engines are 

trained using the scikit-learn 0.20.4 package [35] in Python. The 

results noted in Table V show the 𝑆𝐼 vector still outperforms the 

others while the accuracies of each features vary somewhat com-

pared to corresponding results in Table III. Specifically, the tree-

based algorithms (boosting technique-trained ensemble DT, RF) 

show advantages in rotor angle stability prediction, which corrob-

orates the simulation results in [10]. 

TABLE V 

COMPARISON OF THE PREDICTION ACCURACY FOR DIFFERENT SETS OF INPUT  

FEATURES USING DIFFERENT ML TECHNIQUES 
 

Algorithm 
Modified 68-bus network (WIC50%) Modified 300-bus network (WIC50%) 

𝛿 𝜔  𝑆𝐺 𝑺𝑰 vector 𝛿 𝜔  𝑆𝐺 𝑺𝑰 vector 

NN 91.03% 91.60% 91.02% 96.13% 77.30% 84.36% 85.66% 95.56% 

SVM 90.04% 91.36% 91.12% 95.93% 78.34% 82.81% 84.05% 94.75% 

RF 90.46% 92.30% 91.33% 97.52% 79.51% 85.15% 87.63% 96.68% 

Furthermore, to better illustrate the advantages of using SI 
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vectors as features, the distribution of simulation samples in 𝑆𝐼 
space and the performance of the proposed method with respect to 

dimensions of each 𝑆𝐼 vector are shown in Fig. 6 and Fig. 7, re-

spectively. The samples are simulated from the aforesaid IEEE 68-

machine network for WIC50%, during which 18 IMs are identified, 

as listed in Table VI in the order of the most to least prominent, 

based on the database. Similarly, the values in each 𝑆𝐼 vector are 

also sorted in the same order, and thus 𝑆𝐼1  ~ 𝑆𝐼3  is calculated 

based on the three most prominent IMs, respectively, in which the 

𝑆/𝐴 cluster of SGs is No. 1 ~ 3 in Table VI, respectively. The two 

figures indicate that samples with lower 𝑆𝐼 values are more prone 

to instability, and the prediction accuracy improves by developing 

the dimension of the 𝑆𝐼 vector. Fig. 7 also shows that as the di-

mension of each 𝑆𝐼 vector develops to a certain level (e.g., 16), an 

increase in dimension of each 𝑆𝐼 vector does not significantly af-

fect the prediction accuracy. This indicates that, in practice, the 

proposed method has enough potential to accurately predict stabil-

ity status in cases where IMs rarely appear in the training phase. 

𝑆
𝐼 3

𝑆𝐼2

𝑆𝐼1

Stable

Unstable

 
Fig. 6. Distribution of simulation samples in the 𝑆𝐼1, 𝑆𝐼2, and 𝑆𝐼3 planes. 

The dimensions of each SI vector

A
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%
)

 
Fig. 7. Performance of the proposed method with respect to dimensions of each 𝑆𝐼 
vector. 

TABLE VI 

IMS IDENTIFIED IN TRAINING DATABASE FOR THE IEEE 68-BUS TEST NETWORK 

FOR WIC50%  
 

No. Clustering of SGs (𝑆/𝐴) No. Clustering of SGs (𝑆/𝐴) 

1 (G9)/(G1–G9, G10–G16) 10 (G1–G12)/(G13–G16) 

2 (G14–16)/(G1–G13) 11 (G8)/(G1–G7, G9–G16) 

3 (G1–G12, G14–G16)/(G13) 12 (G1–G9)/(G10–G16) 

4 (G6–G7)/(G1–G5, G8–G16) 13 (G4–G7)/(G1–G3, G8–G16) 

5 (G16)/(G1–G15) 14 (G1–G11)/(G12–G16) 

6 (G11)/(G1-G10, G12–G16) 15 (G2–G7)/(G1, G8–G16) 

7 (G8–G9)/(G1–G7, G10–G16) 16 (G3)/(G1–G2, G4–G16) 

8 (G14)/(G1-G13, G15-G16) 17 (G2–G9)/(G1, G10–G16) 

9 (G2–G3)/(G1, G4–G16) 18 (G1–10)/(G11–G16) 
 

D. Sensitivity Analysis with Respect to Practical Issues 

The robustness of an algorithm should be assessed by its sensi-

tivity to discrepancies among the assumed scenarios and reality. 

In practice, the behavior of some uncertainties may differ from 

those considered in the training process, e.g., when WPPs are ex-

posed to abnormal weather. In addition, the topology of the net-

works may vary in real scenarios for different operations. These 

uncontrollable factors may interfere with the prediction results 

from a trained model. For this reason, two prediction models that 

are already trained by ensemble DT from the aforesaid two 

networks for WIC50% are employed for the robustness test. 

In the first robustness test (RT-I), the two trained models are 

tested using data simulated from the corresponding network while 

the PDFs for each WPP are trained from another data source from 

[36]. In this paper, the Wasserstein Distance (WD) is used to meas-

ure the difference between the original and modified PDFs of each 

WPP. This distance function can be defined between probability 

distributions 𝜇 and 𝜐, as follows [37]: 
 

                                                                                         

W(𝜇, 𝜐 ) = inf
𝜋∈Φ(𝜇,𝜐 )

∫ |𝑥 − 𝑦|𝑑𝜋(𝑥, 𝑦)
 

ℝ×ℝ

 (39) 

 

where Φ(𝜇, 𝜐 ) is the set of probability distributions on  ℝ × ℝ 

whose marginals are 𝜇 and 𝜐 on the first and second factors, re-

spectively. The WDs between new PDFs of each WPP and corre-

sponding originals of the modified 68-bus network are listed in 

Table VII. The WDs of the 300-bus network are omitted due to 

space limitations; all values are between 0.1 and 0.4. 
 

TABLE VII 
WD BETWEEN NEW PDFS OF EACH WPP AND CORRESPONDING ORIGINALS 

 

WPP Connected 
Bus 

18 22 25 29 31 32 36 41 42 

WD 0.32 0.33 0.31 0.09 0.33 0.40 0.29 0.25 0.39 
 

In the second robustness test (RT-II), the two trained models are 

tested using data simulated from the corresponding network under 

randomly 𝑁 − 1 conditions, i.e., one of the elements of the net-

work is randomly switched out before each dynamic simulation. 

7000 and 35000 cases are respectively simulated from the two 

networks based on the database generation method introduced in 

Section V.A for both RT-I and RT-II. The two trained models 

applied to test these data and their performance is compared with 

accuracies predicted by  𝑆𝐺, which performs relatively better than 

𝛿 or 𝜔 with respect to prediction accuracy according to Table III. 

The results are illustrated in Fig. 8. 

Fig. 8 shows that the prediction accuracies based on   𝑆𝐺 are vul-

nerable to the profile of probability distributions used to represent 

the system uncertainties and susceptible to changes in the system 

typology, while the proposed method demonstrates better robust-

ness. This is because the calculation of 𝑆𝐼 vectors takes system 

operating points such as real-time topology and wind power 

penetration into consideration. This validates the robustness of the 

proposed method with respect to abnormal weather and variations 

in network typology. 

The performance of the proposed method is also assessed in the 

presence of PMU measurement errors. According to the IEEE 

C37.118 standard [38], the PMU measurements should have a to-

tal vector error of less than 1%. To this end, following the ap-

proach in [3], white noise is generated and imposed on all post-

fault offline data listed in Table I, and the training and testing pro-

cess is repeated. The results are reported in Table VIII. Compared 

to the results when PMU measurement errors are ignored, the av-

erage accuracies of the two networks in all WICs decrease by 0.74 

and 0.98%, respectively. To conclude, the proposed method can 
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make high quality predictions considering noisy PMU measure-

ments. 
 

100

95

90

85

80

75

 VSG Proposed

16-Machine (WIC50%) 69-Machine (WIC50%)

Network

98.16

88.93

97.32
96.12 95.47

80.38

82.64

88.45

RT-I RT-II RT-I RT-II

A
cc

u
ra

cy
 (

%
)

 

Fig. 8. Performance of the proposed framework in robustness tests. 
 

 

TABLE VIII 

PREDICTION ACCURACY OF THE PROPOSED METHOD CONSIDERING PMU 

MEASUREMENT ERRORS 
 

WIC 0% 10% 20% 30% 40% 50% 

Modified 68-bus network 98.21% 97.86% 97.73% 97.62% 97.32% 97.13% 

Modified 300-bus network 97.16% 96.91% 96.48% 96.23% 95.86% 95.24% 
 

The performance of the proposed method is also investigated 

with respect to the size of the training database. To do so, a set of 

offline scenarios is randomly selected and an ensemble DT is em-

ployed to train the prediction model. For each specific size of 

training database, this process is repeated 10 times and the average 

prediction accuracies are illustrated in Fig. 9. This figure shows an 

adequate database is essential to train an accurate prediction model, 

and the performance changes slightly when the database reaches a 

certain level. Based on Fig. 9, the size of the databases used for 

the two networks (7000 and 35000, respectively) in this paper 

seems adequate. 
 

(a)

(b)

A
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u
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WIC50%WIC30%WIC0%

Size of database (×10
4
)  

Fig. 9. Performance of the proposed framework with respect to the size of the train-
ing database. Tests are conducted on the (a) modified 68- and (b) 300-bus net-

works. 

VI. CONCLUSION 

This paper proposes a novel approach for rotor angle stability 

prediction of power systems in the presence of high penetration of 

wind power. The framework first develops a new stability index, 

in which the dynamic behavior of WPPs is taken into account. In-

spired by EEAC- and PMU-related studies, an approach is then 

put forward in which the developed algorithm is employed in par-

allel to find SIs for all possible IMs layouts; SI vectors are then 

constructed and selected as features for rotor angle stability pre-

diction. The effectiveness of the proposed approach is validated 

by ensemble decision trees on two IEEE test systems at different 

wind power penetration levels. The results obtained and compari-

sons reported reveal the superiority of the proposed approach in 

terms of accuracy, speed, and robustness. 
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APPENDIX 

For simplicity, assume that during fault period the value of 

𝑽 can be considered as 𝑽(𝑡f ); thus given (8)–(9), (15)–(18), (28), 

and (32)–(35), 𝜉1– 𝜉3 can be derived as (40)–(42). During the fault 

period, the real-time value of 𝑽, which is obtainable from PMUs, 

can also be used for calculating (10) without loss of generality. 

𝜂1– 𝜂6 are derived as (43)-(48).  

𝜉1 =
𝑀𝐴

𝑀𝑇
𝑬𝑺

TRe(𝒀𝑆𝐺(𝑡f ))𝑽𝐺(𝑡f ) −
𝑀𝑆

𝑀𝑇
𝑬𝐴

TRe(𝒀𝐴𝐻(𝑡f ))𝑽𝐻(𝑡f )  (40) 

𝜉2 =
𝑀𝐴

𝑀𝑇
𝑬𝑆

TRe(𝒀𝑆𝐻(𝑡f ))𝑽𝐻(𝑡f ) −
𝑀𝑆

𝑀𝑇
𝐄𝐴

TRe(𝒀𝐴𝐺(𝑡f ))𝑽𝐺(𝑡f )  (41) 

𝜉3 =
𝑀𝐴

𝑀𝑇
𝑬𝑆

TIm(𝒀𝑆𝐻(𝑡f ))𝑽𝐻(𝑡f ) −
𝑀𝑆

𝑀𝑇
𝐄𝐴

TIm(𝒀𝐴𝐺(𝑡f ))𝑽𝐺(𝑡f )  (42) 

𝜂1 =
𝑀𝑆

𝑀𝑇
𝑬𝐴

TRe(𝒀𝐴𝐻(𝑡c ))(𝑽𝐻(𝑡c ) − 𝑲𝐻𝛿(𝑡c)) −

𝑀𝐴

𝑀𝑇
𝑬𝑆

TRe(𝒀𝑆𝐺(𝑡c ))(𝑽𝐺(𝑡c ) − 𝑲𝐺𝛿(𝑡c))  
(43) 

𝜂2 =
𝑀𝑆

2𝑀𝑇
𝑬𝐴

TRe(𝒀𝐴𝐻(𝑡c ))𝑲𝐻 −
𝑀𝐴

2𝑀𝑇
𝑬𝑆

TRe(𝐘𝑆𝐻(𝑡c ))𝑲𝐻  (44) 

𝜂3 =
𝑀𝑆

𝑀𝑇
𝑬𝐴

TRe(𝒀𝐴𝐺(𝑡c ))(𝑽𝐺(𝑡c ) − 𝑲𝐺𝛿(𝑡c)) +

𝑀𝐴

𝑀𝑇
𝑬𝑆

TRe(𝒀𝑆𝐻(𝑡c ))(𝑲𝐻𝛿(𝑡c) − 𝑽𝐻(𝑡c ))  
(45) 

𝜂4 =
𝑀𝑆

𝑀𝑇
𝑬𝐴

TIm(𝒀𝐴𝐺(𝑡c ))(𝑽𝐺(𝑡c ) − 𝑲𝐺𝛿(𝑡c)) +

𝑀𝐴

𝑀𝑇
𝑬𝑆

TIm(𝒀𝑆𝐻(𝑡c ))(𝑽𝐻(𝑡c ) − 𝑲𝐻𝛿(𝑡c))  
(46) 

𝜂5 =
𝑀𝑆

𝑀𝑇
𝑬𝐴

TRe(𝒀𝐴𝐺(𝑡c ))𝑲𝐺 −
𝑀𝐴

𝑀𝑇
𝑬𝑆

TRe(𝒀𝑆𝐻(𝑡c ))𝑲𝐻  (47) 

𝜂6 = −
𝑀𝑆

𝑀𝑇
𝑬𝐴

TIm(𝒀𝐴𝐺(𝑡c ))𝑲𝐺 −
𝑀𝐴

𝑀𝑇
𝑬𝑆

TIm(𝒀𝑆𝐻(𝑡c ))𝑲𝐻  (48) 
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