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Abstract ― To tackle the challenges introduced by the fast-
growing charging demand of electric vehicles (EVs), the power 
distribution systems (PDSs) and fast charging stations (FCSs) of 
EVs should be planned and operated in a more coordinated fash-
ion. However, existing planning approaches generally aim to min-
imize investment costs in PDSs while ignoring the risk of worsen-
ing traffic conditions. To overcome this research gap, this paper 
integrates the interests of traffic networks into PDS and FCS joint 
planning model to mitigate negative impacts on traffic conditions 
caused by installing FCSs. First, a novel microscopic method that 
is different from traditional assignment methods is proposed to 
simulate the influences of FCSs on traffic flows and EV charging 
loads. Then, a multi-objective joint planning model is developed to 
minimize both the planning costs and unbalanced traffic flows. A 
new bilayer Benders decomposition algorithm is designed to solve 
the proposed joint planning model. Numerical results on two prac-
tical systems in China validate the feasibility of our microscopic 
method by comparing the simulated results with real data. Com-
pared with existing approaches, it is also demonstrated that the 
proposed joint planning approach helps to balance traffic flow 
assignments and relieve traffic congestion. 

Index Terms ― electric vehicle (EV), bilayer expanded Benders 
decomposition, multi-agent-based microscopic traffic assignment 
model (MMTAM), joint planning, traffic flow assignment. 

NOMENCLATURE 

Abbreviation 
BPR US Bureau of Public Roads 
EV Electric vehicle 
FCS Fast charging station 

MMTAM Multi-agent-based microscopic traffic assign-
ment model 

MINLP Mixed-integer nonlinear programming 
NSGA-II Non-dominated sorting genetic algorithm II 
PDS Power distribution system 
SOC State of charge 
Sets and Indexes 
T/t Set and index of operation time slot 
ΩTN/i, j Set and indexes of traffic node 

ΩTR/ij Set and index of traffic road 
ΩAG/k Set and index of agent 
ΩFCS/q Set and index of FCS 
ΩB/u, v Set and indexes of buses in a PDS 
Γ/τ Set and index of planning stage 
ΩFCS,τ  Sets of candidate and existing FCSs  
ΩPB,τ, ΩEB,τ Sets of candidate and existing buses  
ΩF,τ, ΩS,τ Sets of feeder schemes and capacities schemes 
h(m), m Indexes of the inner and outer-layer iterations 
Parameters and Variables 
cuv

τ , luv
 τ , Ruv

τ  Feeder installation cost, length, and resistance 
Ck

AG  Battery capacity of agent k 
d A  Duration days in a single planning stage 
Ek

AG  Electricity consumption per km of agent k 
fk,t
  RID Extra driving distance caused by charging 

f  FCS, f  UB Installation cost and the unbalance of traffic 
flow assignment 

f  F,τ, f  ∆,τ, f  B,τ Costs of installing feeders, electricity loss, and 
installing/reinforcing transformers 

f  PDS  Total cost of planning PDS 
F τ  Matrix of traffic flows 
Lij, vij

0, cij,  Length, maximum speed, and capacity of road 
Fij,t Traffic flow of road ij 
nq,t

FAG, nu,t
SAG, Number of agents need fast and slow charging 

nFCS,τ  Minimum number of FCS installations 
nq

FC (nu
SC) Number of fast (slow) charging devices 

Ok,t, Dq Locations of agent k and FCS q 
pij,t Index generated by the BPR function 
PFC (PSC) Rated power of fast (slow) charging devices 
Pu,t

τ  (Q u,t
τ ) Net nodal active (reactive) power injection 

Pu,t
L,τ (Q u,t

L,τ) Nodal active (reactive) power load 
Pu,t

S,τ (Q u,t
S,τ) Nodal active (reactive) power generation 

Pu,t
VS,τ(m), Pu,t

VL,τ(m) Nonnegative virtual power source and load 
during Benders iterations 

P FCS,τ, P CP,τ Matrixes of fast and slow charging load 

Ru
τ , Xu

 τ Resistance and reactance of the feeder whose 
power receiving node is bus u 

Su
 0,τ  Initial capacity of bus u at stage τ 

Su,b
 τ   Capacity of installation scheme b  

Sth-1, Sth-2 Two thresholds of SOC regarding battery safety 
tq,t
 aver  Waiting time of FCS q at time slot t 

tk  Maximum desired waiting time of agent k 
∆t Length of time scale/slot 
VB  Rated voltage of a PDS 

Vu,t
 τ  (V, V) 

Voltage magnitude of bus u at time t and its 
limits 

yua
τ   Feeder investment decision variable of scheme 

a 

zu,b
P,τ (zu,b

E,τ) Installation/reinforcement decision variables of 
scheme b 

α The constant ratio of traffic flow to capacity 
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γ Fund discount rate 
δq

F,τ, δB,τ The land-use fee of FCS and substation 
ηAG  Permeability of EVs/agents 
λk,t, Sk,t Charging status and SOC of agent k 
μF,τ (κF,τ) Installation (operating) cost of FCS 
μB,τ (κB,τ) Installation (operation) cost of substation 
σ Retail price of electricity 
φ q,u

τ  Decision variable of selecting which bus to 
connecting FCS q 

ℜ(•) Unbalance function of traffic flow 

I.  INTRODUCTION 
ITH ever-rising environmental concerns, such as the 
depletion of fossil energy, increasing carbon emissions, 
and rapidly growing energy demands [1], the replace-

ment of fossil fuel vehicles has become a priority in the global 
energy transition. As an alternative transportation option, elec-
tric vehicles (EVs) are believed to reduce carbon emissions and 
support the vast integration of renewable energy. Many coun-
tries have already announced roadmap and policy support to 
replace traditional fossil fuel vehicles with EVs. For example, 
China’s annual production capacity of EVs is expected to reach 
2 million by 2020 [2], the German government has set a goal of 
having 1 million EVs by 2020, and the UK has announced its 
intention to completely phase out fossil fuel vehicles by 2040 
[3]. 

At present, two technologies have been developed for EV 
charging, i.e., fast charging and slow charging [4]. Fast charg-
ing can significantly reduce charging time and extend the driv-
ing mileage of EVs. Hence, the planning and installation of 
fast-charging stations (FCSs) are vital to popularizing EVs. 
Several existing works, e.g., [5]-[7], have addressed the optimal 
siting and sizing of FCSs. However, they assumed the given 
power distribution system (PDS) has sufficient capacity to ac-
commodate the increasing EV charging loads, which simplifies 
the investment of FCSs and should be considered impractical. 
Besides, due to the random charging behaviors of EVs, the 
charging demand at FCSs may be intermittent and thus chal-
lenges the operation of PDSs. Many issues have arisen, such as 
lager peak-to-valley differences as well as power quality con-
cerns related to frequency and voltage [8]. To face these chal-
lenges, utility planners intend to consider the worst random 
charging scenario and reserve excess capacities to maintain the 
functionality of PDSs. As a result, inefficient resource duplica-
tion becomes inevitable when the reserved capacities become 
more than what EVs actually need. Therefore, it is of great im-
portance for PDSs to accurately estimate the charging demand 
of EVs/FCSs to accommodate EV integration and reduce costs 
in the planning phase. 

In this context, some researchers have already worked on the 
holistic planning of integrated FCSs and PDSs [9]-[10] Ref. [9] 
attempts to balance the competing objectives of minimizing the 
cost and maximizing the serving ranges of FCSs. Considering 
the EVs as components of the traffic network, a classical ap-
proach in transportation, i.e., the user-equilibrium model [11], 
is employed to simulate traffic flows in [9]. Similarly, ref. [10] 
utilizes the stochastic traffic assignment model to simulate real-
istic traffic flows as the basis of multi-objective collaborative 
planning. However, in terms of integrating simulated traffic 
flows and EV charging loads, existing assignment models still 
have two major drawbacks that remain to be addressed: 
• Existing traffic models cannot effectively model the impacts 

of FCSs on traffic flows and EV charging loads. Judging 

from the formulas of existing models, the impacts of 
fast/slow charging devices are not properly modeled nor in-
tegrated. In other words, existing models are not designed 
for the EV-integrated traffic flow simulation. To overcome 
this shortcoming, some studies such as [9]-[11] estimated 
charging loads statistically based on the simulated traffic 
flow, which is not reasonable. In fact, the EV charging re-
quirement is associated with its driving behavior, thus they 
should not be separately considered. Unfortunately, as far as 
the authors are concerned, the inherent connection between 
traffic flows and EV charging loads has not been compre-
hensively modeled. 

• Existing joint approaches [9]-[11] failed to reveal the im-
pacts of FCS planning on traffic flows. Thus, installing 
FCSs on crowded roads is always preferred in existing stud-
ies to capture the maximum traffic flow and feed the highest 
charging demands. However, this will result in more EVs to 
gather on crowded roads to look for charging services, 
which in turn worsens the traffic conditions. In addition, ex-
isting methods further eliminate the possibility of exploring 
the potential value of FCS investment in improving traffic 
conditions. 
In summary, a new traffic assignment model is needed to re-

veal the impacts of FCS planning on traffic flows and integrate 
the simulations of traffic flows and EV charging loads. 

To address the aforementioned issues, studies on microscop-
ic traffic flow assignment can offer a new feasible way. The 
microscopic means that traffic flows are obtained as the output 
of individual driving analyses, rather than a global variable. At 
present, there are three popular microscopic models, namely 
car-following [12], cellular-automata [13], and multi-agent [14]. 
Among them, the multi-agent model received extensive atten-
tion thanks to its mechanism that each agent should dynamical-
ly learn from and respond to its surroundings. This mechanism 
makes it easier to inflect EV/agent driving path with its state of 
charge (SOC), traffic conditions, siting and sizing of FCSs, and 
other surrounding information. Different driving paths contrib-
ute to the changes in traffic flows, from which the relationship 
between FCSs and traffic flows can be built. Thus, multi-agent 
models are commonly reported to handle the charging behav-
iors of EV/agent [15]. However, such multi-agent methods are 
generally non-convex and complicated to solve, making them 
applicable to operation and scheduling problems only. For the 
studied joint planning problems where integer variables are 
inevitable, it is of great importance to propose an efficient mul-
ti-agent method. 

To respond to the mentioned necessities in integrating plan-
ning of PDSs and FCSs as well as developing traffic assign-
ment models, a novel joint planning approach is proposed in 
this paper. First of all, a multi-agent-based microscopic traffic 
assignment model (MMTAM) is proposed to reveal the inher-
ent connections between traffic flows and EV charging loads. 
On top of it, a multi-objective joint planning model is devel-
oped, in which the non-monetary index (unbalanced traffic 
flows) and monetary index (i.e., installation costs, operation 
costs, and power loss costs) are minimized as two separate ob-
jectives. Different from traditional approaches such as [9]-[10], 
two extra obstacles are identified: i) how to obtain a trade-off 
between different objectives, and ii) how to deal with the non-
convexity caused by MMTAM. 

For the first obstacle, there are several algorithms available, 
e.g., the weighted-sum [16], Tchebycheff [17], and non-
dominated sorting genetic algorithm II (NSGA-II) [18]. How-
ever, all these algorithms have their defects in solving the joint 
planning model that is generally presented as a mixed-integer 
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nonlinear programming (MINLP) problem [9]. For instance, 
weighted-sum and Tchebycheff are to be blamed for their poor 
performances in finding the optimal solution while NSGA-II 
tends to have a heavy computational burden. According to [19]-
[20], the general Benders decomposition is effective in solving 
MINLP problems, but it can not handle multiple objectives. 
Thus, a bilayer expanded Benders algorithm is developed in 
this paper to solve the multi-objective optimization. Meanwhile, 
the proposed algorithm decouples the non-convex MMTAM 
into different sub-problems to improve computational efficien-
cy, which also tackles the second obstacle.  

In summary, the main contributions of this paper are:  
• The MMTAM is proposed to make traffic flows and EV 

charging loads sensitive to FCS planning schemes, which 
differ from traditionally isolated simulations and lays a 
foundation for improving traffic conditions by installing 
new FCSs. 

• A multi-objective planning model is developed to balance 
the interests of PDSs and traffic networks, which addresses 
the traffic concerns caused by traditional planning ap-
proaches. 

• A bilayer algorithm is developed to apply Benders decom-
positions in multi-objective problems, which performs well 
in improving solving efficiency and robustness. 
The rest of this paper is organized as follows. MMTAM ap-

proach is presented in Section II. The multi-objective joint 
planning model is established in Section III. The bilayer ex-
panded Benders algorithm and case studies are respectively 
proposed in Sections IV and V. Finally, conclusions are given 
in Section VI. 

II.  MODELS FOR THE MMTAM 

A.  MMTAM Framework and Agent Model 
The proposed MMTAM contains three basic layers in its 

simulation framework, i.e., the geographic layer, agent decision 
layer, and simulation control layer. The functions of these three 
layers and mutual data interactions are described in Fig. 1. 

 

 
Fig. 1.  MMTAM framework and the involved agent model. 

 

In Fig. 1, the simulation control layer acts as a commander, 
which responsible for collecting data and calculat-
ing/broadcasting traffic conditions. Note that traffic conditions 
consist of traffic flows (Fij,t-1) and the average waiting time of 
FCSs. The geographic layer provides basic geographic 
information, which includes the locations of agents/FCSs and 
traffic network topologies. The agent decision layer is the core 
part of the MMTAM, where all agents optimize their driving 
paths and schedule charging time via geographic information 
and traffic conditions. 

In the agent decision layer, each agent consists of two sub-
models, i.e., the real-time sensing model and the decision-
making model. The real-time sensing model gathers essential 
real-time data such as geographical location and current SOC 
status and processes the data for decision-making. The deci-
sion-making model combines real-time data and other relevant 
information such as driving schedules and EV features to simu-
late driver behaviors. 

In this process, the decision set Ξ={A-1, A-2, A-3, A-4} 
plays a significant role. Detailed modeling of Ξ will be present-
ed later. Further point-to-point explanations about how to re-
flect agent features [14]-[15] in the MMTAM are presented in 
Table I. 

TABLE I 
EXPLANATIONS ABOUT HOW TO REFLECT TYPICAL AGENT FEATURES 

Feature Description Way to reflect 

Autonomy make decisions 
independently 

No commander exist in the MMTAM and 
each EV/agent can decide its behaviors 

Reactive respond to different 
surroundings 

Dynamically update surrounding information 
and optimize path at each time slot t 

Proactive proactive learning 
and responding 

EV/agent is modeled to minimize its driving 
cost in the proposed decision set Ξ 

Social associate with 
other agents 

State sensing layer acts as the medium of 
communication, where agents learn from 

others and work together to reach equilibrium 
assignment [11]  

 

B.  Module A-1: Dynamic Optimal Path Searching 
Before a trip, an agent should decide where to go, i.e., select 

their origin-destination pair [5]-[10]. As soon as the pair is se-
lected, the agent should optimize its path to obtain the lowest 
driving-cost. To this end, an effective path searching method, 
i.e., the Bellman-Ford algorithm [21] is implemented. Firstly, 
each road should be weighted by the function of the Bureau of 
Public Roads (BPR) [9]-[10], as shown in (2). Then, the short-
est path will be obtained via the weight matrix (Wt) and BPR 
function. Since considerations of road length and crowded de-
gree, the obtained shortest path refers to a multi-meaning dis-
tance called the link performance distance: 

 Wij,t= �
p

ij,t-1
ij∈ΩTR

∞ ij∉ΩTR
 (1) 

 p
ij,t-1

= Lij �1+χ�Fij,t-1 cij⁄ �4� vij
0�  (2) 

 Fij,t-1=∑ ∑ ξk,ij,t-1ij∈ΩTRk∈ΩAG ηAG⁄  (3) 
where Wij,t is the element of Wt, and Wij,t=p

ij,t-1
 when ijΩTR, else 

Wij,t=∞; ξk,ij,t-1 is the binary constant that marks whether road ij is 
selected in the shortest path of agent k (ξk,ij,t-1=1) or not (ξk,ij,t-1=0); 
χ is the parameter of the BPR function and is set to 0.15 in [9]. 

In module A-1, it is assumed that agents should dynamically 
correct their driving paths via updated traffic conditions at each 
new time slot t. Thus, agents can avoid crowded roads, save 
waiting time, and decrease driving costs. Learning and reflect-
ing surrounding information (or traffic conditions) belong to 
typical agent features, i.e., social and reactive, as described in 
Table I. 

C.  Module A-2: Charging Behavior and Navigation 
Charging behavior is regarded as an important feature that 

makes EVs different from traditional fossil fuel vehicles. To 
analyze the impacts of charging behavior (or FCSs) on traffic 
flow assignments, the SOC and charging status of agents must 
be marked during a given driving process. Therefore, an SOC 
working area is proposed to determine whether or not an 
EV/agent can finish its driving plan without charging, as illus-
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trated in Fig. 2. 
 

 
Fig. 2.  SOC working area of the agents. 
 

In Fig. 2, the initial mileage of agent k is d0 and its minimum 
required SOC is assumed to be a linearly decreasing function 
∆Sk (d), which coincides with the measured “SOC-mileage” 
relationship [22]. Note that d[d0, d0+∆d] denotes the available 
mileage. As the EV approaches its destination, a lower mini-
mum SOC ∆Sk(d) is required to finish the trip without charging. 

When an EV cannot finish the trip while maintaining its 
lowest SOC threshold Sth-2, the EV/agent in Fig. 2 has to find an 
FCS to do the emergency charging. It is assumed that the 
EV/agent prefers the fast charging service so that the vehicle 
can route to its destination as soon as possible. Otherwise, 
EVs/agents tend to do slow charging after finishing their trips. 
Thus, during the driving process, traffic flows will only be in-
fluenced by the fast charging behaviors of EVs in this paper. 

Equation (4) can be derived to describe Fig. 2: 

 λk,t = �
1 if  Sth-2≤Sk,t<min{Sth-1,ΔSk(d)} 
0 if  min{Sth-1,ΔSk(d)}≤Sk,t<max{Sth-1,ΔSk(d)}
−1 if  Sk,t≥max{Sth-1,ΔSk(d)}

 (4) 

where λk,t={1, 0, −1} respectively denote that fast, slow, or no 
charging is needed for the corresponding agent. 

When λk,t=1, agent k needs to charge its EV to finish its trip, 
but its optimal path may not necessarily include any FCS. In 
that case, the path of agent k should change. To this end, a 
charging model has been proposed to select the optimal FCS 
and offer a navigation service [23] for the agents, as formulated 
below: 
 min      f

k,t
  RID=ψ

BFA
�Ok,t,∑ εk,q,tDqq∈ΩFCS � (5) 

 s.t.    ∑ εk,q,tq∈ΩFCS =1; ∑ εk,q,ttq,t-1
 aver

q∈ΩFCS ≤tk̅ (6) 
 f

k,t
  RID≤ 100�Sk,t-Sth-2�Ck

 AG Ek
 AG⁄  (7) 

where εk,q,t is the binary variable that denotes whether the FCS q 
is selected by agent k (εk,q,t=1) or not (εk,q,t=0). ψ

BFA
(•) denotes 

the Bellman-Ford algorithm that used to search the shortest link 
performance distance between Ok,t  and εk,q,tDq  (only when 
εk,q,t=1). 

Equation (6) ensures that only one FCS that meets the 
agent’s waiting time requirement will be selected. In Equation 
(7), the selected FCS must be within the mileage range of the 
agent according to its current SOC and the traffic network in-
formation. 

The fast charging behavior further leads to an update of ξk,ij,t-1 
(obtained by ψ

BFA
(•) and varied with different driving paths) and 

the traffic flow Fij,t-1 according to (3). In this way, module A-2 
can mathematically calculate the impacts of FCSs (or agents’ 
charging behaviors) on the traffic flow assignment. 

D.  Module A-3: Circular Departing Mechanisms 
In the MMTAM, each EV/agent is marked with three kinds 

of trip-chains [25], i.e., the timing chain, SOC chain, and loca-
tion chain. Different from traditional trip-chain based methods 
[25], MMTAM respects the multi-trip behavior of EVs/agents 

by processing circular departing mechanisms. There are two 
types of EVs, i.e., the private car and taxi, are studied via their 
unique driving behaviors, as analyzed in [15], [24]-[25]. De-
tailed mechanism descriptions are omitted here due to the lim-
ited space. 

E.  Module A-4: Fast and Slow Charging Loads 
The fast-charging load of FCS q is calculated based on the 

number of agents whose “λk,t=1”, as shown below: 
 Pq,t

FCS= min�nq
FCPFC,nq,t

FAGPFC� ∀q∈ΩFCS,∀t∈T (8) 
Meanwhile, considering the benefits of ordered slow charg-

ing in [8] and [26], e.g., reducing peak-to-valley differences, 
consuming more renewable energies, etc., a variable β 

u,k,t
 is 

used to simulate the agents’ expectation of taking part in slow 
charging management, as follows: 
 Pu,t

CP=min �nu
SCPSC,nu,t

SAGβ 
u,k,t

PSC� ∀u∈ΩB,∀k∈ΩAG,∀t∈T (9) 
In (9), the slow charging load Pu,t

CP  depends on both the 
charging status (λk,t=0) and variable β 

u,k,t
 that involves driving 

schedule, payment, and available locations, as described in [27]. 
It is assumed that β 

u,k,t
=1 when the expectation of slow charg-

ing higher than 50%; otherwise, β 
u,k,t

=0. 

F.  MMTAM Nonlinear Function 
With the decision-making set Ξ={A-1, A-2, A-3, A-4} mod-

eled, the proposed MMTAM can be corded in the MATLAB-
2014b platform [28] to simulate daily traffic flows and EV 
charging loads from 0:00 to 24:00, as shown in Fig. 3. 

To conveniently apply the MMTAM in the joint planning 
problem, the MMTAM is modulated as a nonlinear function 
ψ

MMTAM
(•). Note that ψ

MMTAM
(•) cannot be explicitly formulated 

and shows high non-convexity. Thus, only a brief input & out-
put form is presented, as given below: 
 [F τ,P FCS,τ,P CP,τ]=ψ

MMTAM
(x τ,N τ,ΩFCS,τ) ∀τ∈Γ (10) 

where x τ is the binary variable matrix that denotes whether a 
candidate position of FCSs is selected at stage τ (x τ=I) or not 
(x τ =0); and N  τ  means the optimal installed number of fast-
charging devices at stage τ. 
 

 
Fig. 3.  Flowchart of the MMTAM. 

 

As mentioned in module A-2, agents should change the cur-
rent driving paths to charge EVs via the siting and sizing of 
FCSs when λk,t =1. Different driving paths contribute to the 
changes in traffic flows, from which the relationship between 
FCSs and traffic flows/charging loads can be built. That is, the 
output matrix {F τ,P FCS,τ,P CP,τ} in (10) is supposed to be influ-
enced with different planning scheme or input data 
{x τ,N τ,ΩFCS,τ}. This feature makes the traffic simulation sensi-
tive to different schemes and can be applied in joint planning  

Sth-2

0
Distance

Sth-1

No Charging Demand

Slow Charging
Slow 

Charging

SOC

ΔSk(d)

d0+Δdd0

ΔSk(d0)

Fast Charging

Module A-3       

Module A-4
Networks

Agents

{xτ, Nτ, ΩFCS,τ}
FCSs scheme

Platform

Mark the location and SOC of agents

λk,t =1 ?

In
pu

t

Yes

Module A-1

No

λk,t =0 ?

Module A-2

Yes No

When t = 0:00 t = t+∆t

When t = 24:00
Output 

Loads

Traffic flows

Fτ 

PFCS,Τ

PCP,τ

Authorized licensed use limited to: Zhejiang University. Downloaded on October 20,2020 at 08:11:56 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2995742, IEEE
Transactions on Industrial Informatics

 5 

TABLE II 
DIFFERENCES BETWEEN THE MMTAM AND EXISTING RELATIVE METHODS 

Methods 
References  

Functions list 

Category Theory Consider  
traffic network 

Fast charging 
simulation 

Slow charging 
simulation 

Traffic flow 
assignment 

Impacts of 
FCSs 

Charging 
navigation 

Adapt to joint 
planning 

EV charging loads simu-
lation 

Monte Carlo [22] × × √ × × × × 
Trip-chain [25] √ × √ × × × × 

Traffic flow  
Assignment 

Macroscopic User-equilibrium [9] √ × × √ × × √ 

Microscopic Multi-agent [14] √ × × √ × × × 
Cellular-automata [13] √ √ × √ √ √ × 

Proposed MMTAM Multi-agent -- √ √ √ √ √ √ √ 
* Symbol “√” means the method has this function; otherwise, it is marked with “×”. 
 

problems. In any iteration of a planning process, all candidate 
schemes should be processed by (10) to obtain the correspond-
ing outputs, which will then be used as the basis for further 
optimization. 

To highlight the contributions of MMTAM, Table II com-
pares the proposed MMTAM with other existing relative meth-
ods in detail. It is concluded that MMTAM is a more functional 
and comprehensive approach, which unit the existing methods 
of the EV load simulation [22], [25] and traffic flow assignment 
[9], [13], [14]. Its effectiveness will be validated in case studies. 

III.  MULTI-OBJECTIVE JOINT PLANNING MODEL 

A.  Unbalance of Traffic Flow Assignment 
Apart from the commonly used economic objective, i.e., in-

stallation & operation costs (f FCS), the positive role of FCSs in 
balancing the traffic flow assignment also deserves more  atten-
tion. In general, the traditional planning approach prefers to 
install FCSs on the crowded roads to feed more charging de-
mands. As a consequence, more EVs will be attracted to charge 
at roads with heavy traffic, which further worsens the traffic 
condition. 

To handle this problem, a variance indicator ρ(•) is proposed 
to evaluate the unbalance of the traffic flow assignment. As 
shown in (11), ρ(•) is calculated by comparing the ratio of traf-
fic flow to capacity with the equilibrium value α. Note that 
α[0,1] is set to a constant based on the assumption that all 
roads remain at the same ratio of traffic flow to capacity when 
the assignment reaches an equilibrium [11]. The traffic flow 
unbalances of road ij at time t, i.e., ℜ(•), is calculated in (12). 
  ρ(ω)=�ω cij⁄ − α�2

 (11) 
 ℜ�Fij,t

 τ �=∫ ρ(ω) 𝑑𝑑ωFij,t
 τ

0
= Fij,t

 τ 3 �3cij
2�� − αFij,t

 τ 2 cij� + α2Fij,t
 τ  (12) 

where ω denotes the differential variable of traffic flows, which 
takes value from [0, Fij,t

 τ ]. 
Considering the indicator ρ(•) varies with ω, the unbalance 

ℜ(•) is calculated as the integration of ρ(•) to reflect a changing 
ω, as shown in (12). 

B.  Planning of FCSs 
As discussed in Section III.A, the planning of FCSs should 

consider both traffic flow unbalances and FCS installation & 
operation costs. Because the unbalance ℜ(•) cannot be directly 
evaluated in monetary terms, two sub-objectives are preferably 
formulated as follows: 
 min    f  UB=∑ (1 N TR⁄ )∑ ℜ�Fij,t

 τ �ij∈ΩTRt∈T  (13) 
 min     f  FCS=∑ (1+γ)-τ ∑ xq

τ Nq
 τ�μF,τ+κ F,τ+δq

 F,τ�q∈ΩFCS,ττ∈Γ  (14) 
where xq

 τ is the element of matrix xτ; N TR denotes the number of 
traffic roads; and Nq

 τ means the number of fast-charging devices 
installed in FCS q at stage τ, which is limited to [N, N]. 

In (13), sub-objective f  UB is set as the average unbalance of 
all traffic roads in a day around. Cost f  FCS in (14) depends on 
the installed number of fast-charging devices, which has been 
discounted to the current planning year. 

The constraints of the FCS planning model include: 
 ∑ xq

τ
q∈ΩFCS,τ ≥nFCS,τ; ∑ xq

τ
τ∈Γ ≤1 ∀q∈ΩFCS,τ (15) 

 xq
τ N ≤ xq

τ Nq
 τ ≤ xq

τ N ∀q∈ΩFCS,τ (16) 
 F τ=ψ

MMTAM
(x τ,N τ,ΩFCS,τ) ∀τ∈Γ (17) 

In (15), the first formula shows that the installed number of 
FCSs should not be less than a certain amount (i.e., nFCS,τ ), 
which reflects the influence of governmental efforts to popular-
ize EVs; and, the second constraint ensures that each candidate 
FCS will be installed at most once. The relaxed numerical con-
straints of Nq

 τ  is presented in (16). Equation (17) shows that 
Fij,t-1

 τ /F τ is obtained by the aforementioned function ψ
MMTAM

(•), 
as introduced in Section II.F. 

C.  Planning of PDSs 
The planning of PDSs is a mature research topic and many 

referable models are available [9]-[10], [29]. Based on these 
studies, this paper respectively minimizes the feeder installation 
costs (f  F,τ) and transformer installation/reinforcement & opera-
tion costs (f  B,τ). In addition, as an important indicator of the 
economic operation, power loss costs (f  ∆,τ) should also be con-
sidered during the planning stage. With the well-established 
Distflow equations as constraints [30], the planning model of 
PDSs can be mathematically described as: 
 min    f  PDS=∑ (1+γ)-τ(f  F,τ+f  ∆,τ+f  B,τ)τ∈Γ  (18) 
 s.t.    f  F,τ=∑ ∑ cu,a

 τ  y
u,a
 τ lu,a

 τ
a∈ΩF,τu∈ΩPB,τ  (19) 

 f  ∆,τ≥�σd A∆t VB
2⁄ �∑ ∑ �Pu,t

 τ 2+Q u,t
τ 2�Ru

 τ
u∈ΩEB,τt∈T   

+(σd A∆t VB
2⁄ )∑ ∑ �Pu,t

 τ 2+Q 
u,t
τ 2�∑ y

u,a
 τ Ru,a

 τ
a∈ΩF,τu∈ΩPB,τt∈T  (20) 

  f  B,τ=(μB,τ+κ B,τ+δ B,τ)∑ �∑ Su,b
 τ zu,b

 P,τ
u∈ΩPB,τ +∑ Su,b

 τ zu,b
 E,τ

u∈ΩEB,τ �b∈ΩS,τ  (21) 
  ∑ Au,v

τ Pu,t
 τ

v∈ΩPB,τ∪ΩEB,τ =Pu,t
L,τ-Pu,t

S,τ+ �xq
τ  φ 

q,u
τ Pu,t

FCS,τ+Pu,t
CP,τ� (22) 

  ∑ Au,v
τ Q 

u,t
τ

v∈ΩPB,τ∪ΩEB,τ =Q 
u,t
L,τ − Q 

u,t
S,τ (23) 

  ∑ Au,v
τ Vu,t

 τ
v∈ΩPB,τ∪ΩEB,τ = �Ru

 τPu,t
 τ +Xu

  τQ 
u,t
τ � VB�  (24) 

 V ≤ Vu,t
 τ  ≤ V ∀u∈ΩPB,τ∪ΩEB,τ (25) 

 �Pu,t
 τ 2+Q 

u,t
 τ 2≤∑ Su,b

 τ zu,b
 P,τ

b∈ΩS,τ ∀u∈ΩPB,τ (26) 

 �Pu,t
 τ 2+Q 

u,t
 τ 2≤Su

 0,τ+∑ Su,b
 τ zu,b

 E,τ
b∈ΩS,τ ∀u∈ΩEB,τ (27) 

 ∑ ∑ y
u,a
 τ

a∈ΩF,ττ∈Γ =1; ∑ ∑ zu,b
 P,τ

b∈ΩS,ττ∈Γ =1 ∀u∈ΩPB,τ (28) 
 ∑ zu,b

 E,τ
b∈ΩS,τ ≤1 ∀u∈ΩEB,τ, ∀τ∈Γ (29) 

 xq
τ =∑  φ 

q,u
τ

u∈ΩPB,τ∪ΩEB,τ q∈ΩFCS,τ, ∀τ∈Γ (30) 
 [P FCS,τ,P CP,τ]=ψ

MMTAM
(x τ,N τ,ΩFCS,τ) ∀τ∈Γ (31) 

where Au,v is the element of the directed adjacent matrix, i.e., 
Au,v=±1 when the buses (u, v) are linked, otherwise Au,v=0. 
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The objective function (18) minimizes the total planning 
cost f  PDS, whose components are calculated through (19)-(21), 
respectively. Among them, f  F,τ  in (19) is calculated with the 
length and unit cost of candidate feeders. Power loss f  ∆,τ is ap-
proximated by (20), which is commonly used in existing works 
[30]. Equation (21) calculates the costs of installing/reinforcing 
transformers, i.e., f  B,τ, via its unit costs {μB,τ, κ B,τ, δ B,τ}. 

Constraints (22)-(27) are derived from Distflow equations, 
which are respectively the active/reactive power balance equa-
tion, the voltage drop calculation formula, the voltage ampli-
tude constraint, and the transformer capacity constraint. Equa-
tion (28) ensures that candidate feeders and buses are installed 
only once. The reinforcement time of existing buses during a 
planning stage is limited in (29). Constraint (30) links variables 
xq

τ  and  φ 
q,u
τ , i.e, candidate FCS q can choose a bus to contact by 

 φ 
q,u
τ  only when xq

τ =1. Equation (31) indicates that both fast and 
slow EV charging loads are obtained from the proposed 
MMTAM. 

Note that the power loss is approximated by a relaxed form 
shown in (20) to guarantee the convexity of the power flow 
constraints. This approximation has been validated by studies 
such as [30] and is not discussed further due to space limita-
tions. 

D.  Joint Planning Model for Integrated FCSs and PDSs 
Two sub-objectives (f

1
 and f

2
) are established via the FCS 

planning model in Section III.B and the PDS planning model in 
Section III.C, respectively. Because f  UB is not a monetary index, 
it cannot be directly combined with f  FCS in f

1
. Similarly, f

1
 and 

f
2
 also cannot be directly added. Thus, the joint planning model 

for the integrated FCSs and PDSs, denoted as M-0, should be 
formulated as a multi-objective optimization model, expressed 
as: 

M-0: 
 min   {f

1
=f  UB  ;   f

2
=f  FCS+f  PDS}  

 s.t. (12), (15)-(17), (19)-(31)  
The proposed model M-0 is a multi-objective MINLP prob-

lem with nonlinear sub-objective f  UB  and highly non-convex 
constraints such as ψ

MMTAM
(•). In other words, model M-0 can-

not be directly solved by commercial solvers. In this regard, a 
new algorithm is proposed to solve model M-0 in a decoupled 
fashion, as will be discussed in the next section. 

IV.  A BILAYER EXPANDED BENDERS DECOMPOSITION 
To solve the proposed multi-objective MINLP model M-0, a 

bilayer expanded algorithm is proposed via the idea of classical 
general Benders decompositions. 

A.  Algorithm Description 
Similar to the classical Benders theory, our algorithm re-

quires M-0 to be decomposed into two kinds of sub-problems, 
i.e., master problems and slave problems. However, the differ-
ence is, here we generate two pairs of “master-slave” sub-
problems, i.e., {M-1, M-S1} and {M-2, M-S2}, to handle the 
coupling between two objectives (f

1
 and f

2
) of the proposed M-0. 

Each “master-slave” pair aims at optimizing a single objective. 
The sub-problems M-1, M-2, M-S1, and M-S2 are respectively 
described as follows: 

M-1: 
 min   f

1,M-1
           (h,m)  

 s.t. f
M-1
  FCS(h,m)≤(1-θ)f

M-1
  FCS(h,m-1)+θf

M-S1
  FCS(h,m-1) (32) 

 (12), (16)-(17), (31)  
M-2: 

 min   f
2
  (h,m)=f  C,τ(h,m)+β

1
 (h,m)+β

2
 (h,m)  

 s.t. f  C,τ(h,m)=∑ (1+γ)-τ�f  F,τ(h,m)+f  B,τ(h,m)�τ∈Γ   
 f

S1
    (h,m)+Bcut1

     (h,m) ≤ β
1
 (h,m); f

S2
    (h,m)+Bcut2

     (h,m) ≤ β
2
 (h,m) (33) 

 f
V
   (h,m)+Bcut3

     (h,m) ≤ 0; (15), (28)-(30)  
M-S1: 

 min   f
S1
  (h,m)=f

M-S1
  FCS(h,m)  

 s.t. f
1,M-S1
           (h,m)≤(1-θ)f

1,M-1
         (h,m-1)+θf

1,M-S1
        (h,m-1) (34) 

 (12), (16)-(17), (31)  
M-S2: 

 min   f
S2
  (h,m)=∑ (1+γ)-τf  ∆,τ

τ∈Γ   
 s.t. PM-S2

 FCS,τ(h,m)=PM-S1
 FCS,τ(h,m); PM-S2

 CP,τ(h,m)=PM-S1
 CP,τ(h,m) (35) 

 (19)-(27)  
where f  C,τ(h,m)  denotes the installation cost at stage τ; f

1,M-1
         (h,m) 

(fM-1
  FCS(h,m)) and f

1,M-S1
           (h,m) (fM-S1

  FCS(h,m)) are respectively the optimal ob-
jective f

1
 (f  FCS) of models M-1 and M-S1; θ[0,1] is the learn-

ing factor; PM-S1
 FCS,τ(h,m) (PM-S2

 FCS,τ(h,m)) and PM-S1
 CP,τ(h,m) (PM-S2

 CP,τ(h,m)) respective-
ly denote the optimal P FCS,τ  and P CP,τ  of M-S1 (M-S2); f

S1
   (h,m) 

(f
S2
   (h,m), f

V
   (h,m)) is the optimal objective of slave problem M-S1 

(M-S2, M-V); Bcut1
     (h,m) (Bcut2

     (h,m), Bcut3
     (h,m)) denotes the linear Bend-

ers cut [19]-[20]; and β
1
 (h,m) and β

2
 (h,m) are both nonnegative vari-

ables. 
Compared to classical Benders algorithms, more constraints 

are needed to coordinate two “master-slave” pairs: 1) equations 
(32) and (34) are newly proposed to reshape the feasible spaces 
of f

1
 and f

2
 iteratively; 2) equation (33) uses two variables, i.e., 

β
1
 (h,m)≥0 and β

2
 (h,m)≥0, to constrain the upper limits of Benders 

cuts, while only one variable is required in the traditional algo-
rithm; and 3) equation (35) is presented to decouple ψ

MMTAM
(•) 

from models M-S2 and M-V to keep them convex. 
In any iteration m, {M-1, M-2} are solved first to obtain op-

timal binary variables {x (h,m), y (h,m), z (h,m), φ (h,m)}, based on which 
{M-S1, M-S2} are then optimized. Note that, since it represents 
a simulation method, the function ψ

MMTAM
(•) can obtain outputs 

{F τ, P FCS,τ, P CP,τ} for any input {xτ, Nq
 τ}, so the feasibility of M-

S1 is always guaranteed. In contrast, similar to the general 
Benders decomposition algorithm, optimal binary variables of 
M-2 may lead to an infeasible M-S2. In this case, a virtual fea-
sibility slave problem M-V will be solved instead. The M-V 
model is mathematically described as: 

M-V: 
 min   f

V
  (h,m)=∑ �Pu,t

VS,τ(h,m)+Pu,t
VL,τ(h,m)�u∈ΩPB,τ∪ΩEB,τ   

 s.t. PM-S2
 FCS,τ(h,m)=PM-S1

 FCS,τ(h,m); PM-S2
 CP,τ(h,m)=PM-S1

 CP,τ(h,m)  
 ∑ Au,v

τ Pu,t
 τ

v∈ΩPB,τ∪ΩEB,τ +Pu,t
VS,τ(h,m)=Pu,t

VL,τ(h,m)+Pu,t
L,τ-Pu,t

S,τ+�Pu,t
FCS,τ+Pu,t

CP,τ�(36) 
 (19)-(21), (23)-(27), (35)  

Equation (36) is the relaxed form of (22) after adding a vir-
tual power source (Pu,t

VS,τ(h,m)≥0) and a virtual load (Pu,t
VL,τ(h,m)≥0) to 

enforce the feasibility of model M-V. 
Benders cuts {Bcut1

     (h,m), Bcut2
     (h,m), Bcut3

     (h,m)} are formulated as: 
 Bcut1

     (h,m)=∑ ϖ1 ∑(x-x (h,m))τ∈Γ  (37) 
 Bcut2

     (h,m)=∑ ϖ2•[∑(y-y (h,m)) ,∑(z-z (h,m)),∑(φ-φ (h,m))]T
τ∈Γ  (38) 

 Bcut3
     (h,m)=∑ ϖ3•[∑(y-y (h,m)) ,∑(z-z (h,m)),∑(φ-φ (h,m))]T

τ∈Γ  (39) 
where ϖ1, ϖ2 and ϖ3 respectively denote the vectors of the dual 
multipliers of linear Benders cuts [19]-[20]. 

As shown in (37)-(39), Benders cuts are updated by sum-
ming the differences between historical values { x, y, z, φ} and 
current values {x (h,m), y (h,m), z (h,m), φ (h,m)}. 
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To solve multi-objective problems, the proposed expanded 
Benders algorithm consists of outer and inner optimization lay-
ers. The outer-layer aims at reducing the error between two 
objectives f

1
 and f

2
, whose round number is marked with a su-

perscript (m). In the m-th round of outer-layer optimization, the 
inner-layer iteratively generates Benders cuts to obtain feasible 
solutions and minimize costs. The iteration number of the in-
ner-layer within the m-th outer-layer optimization is denoted as 
h(m). Assuming the outer-layer converges at the mmax-th round, 
the total number of Benders iterations is calculated as ∑ h(m)mmax

m=1 . 
The convergence criteria of inner and outer-layers are respec-
tively presented as: 
 Bcut1

     (h,m)+Bcut2
     (h,m)+Bcut3

     (h,m)=0 (40) 

 
� f1,M-1

          (h,m)
-f1,M-S1

           (h,m)
�

f1,M-S1
           (0)

-f1,M-1
         (0) +

� f2,M-1
         (h,m)

-f2,M-S1
            (h,m)

�

f2,M-1
         (0)

-f2,M-S1
            (0)  ≤ ω (41) 

where ω denotes the acceptable convergence tolerance. 
The initial {f

1,M-1
        (0), f

2,M-1
        (0)} and {f

1,M-S1
          (0), f

2,M-S1
          (0)} are obtained 

by optimizing M-0 when only one objective, i.e., f1 or f2, is con-
sidered. 

B.  Solution Steps 
In Section IV.A, the “master-slave” pair {M-1, M-S1} both 

contain function ψ
MMTAM

(•), which is too non-convex to be 
solved by commercial solvers. Thus, {M-1, M-S1} will be 
solved through an improved genetic algorithm [29]. The re-
maining models {M-2, M-S2, M-V} are either integer pro-
gramming problems or quadratically constrained programming 
problems, which can be efficiently solved by the 
YALMIP/CPLEX optimizer [31]. 

The proposed bilayer expanded Benders algorithm proceeds 
through an iterative auction process, as described in the follow-
ing Pseudocode. Note that the outer-layer contains steps 3-17, 
while the inner-layer contains steps 6-16. 

 

Pseudocode of the Bilayer Expanded Benders Algorithm 
Input: θ, ω, {f

1,M-S1
        (0), f

2,M-S1
        (0), f

1,M-1
       (0), f

2,M-1
       (0)} 

1. m ← 0; h ← 0; 
2. f

1,M-S1
             (h,m) = f

1,M-S1
        (0); f

2,M-S1
             (h,m) = f

2,M-S1
        (0); f

1,M-1
           (h,m) = f

1,M-1
       (0); f

2,M-1
           (h,m) = 

f
2,M-1
       (0); 

3. while 
� f1,M-1

          (h,m)
−f1,M-S1

           (h,m)
�

f1,M-S1
           (0)

−f1,M-1
         (0) +

� f2,M-1
         (h,m)

−f2,M-S1
            (h,m)

�

f2,M-1
         (0)

−f2,M-S1
            (0) > ω do 

4.      m ←m + 1; 
5.      Bcut1

     (h,m)= Bcut2
     (h,m) = Bcut3

     (h,m) ← 106; 
6.      while Bcut1

     (h,m)+Bcut2
     (h,m)+Bcut3

     (h,m) ≠ 0 do 
7.      h ← h + 1; 
8.            Optimize {M-1, M-2} to obtain {f

1,M-1
           (h,m), f

2,M-1
           (h,m)} and 

{x (h,m), y (h,m), z (h,m), φ (h,m)}; 
9.            Simulate ψ

MMTAM
(•) in M-S1 based on x (h,m), to obtain 

{PM-S1
 FCS,τ(h,m), PM-S1

 CP,τ(h,m), f
1,M-S1
             (h,m), f

2,M-S1
             (h,m)}, and update 

Bcut1
     (h,m) with (37); 

10.          Optimize M-S2 based on {y (h,m), z (h,m), φ (h,m)} and 
{PM-S1

 FCS,τ(h,m), PM-S1
 CP,τ(h,m)}; 

11.          if M-S2 is feasible do 
12.               Obtain f

S2
   (h,m) and update Bcut2

     (h,m) with (38); 
13.          else 
14.               Optimize M-V to obtain f

V
   (h,m) and update Bcut3

     (h,m) 
with (39); 

15.          end if 
16.    end while 
17. end while 

Output: {x (h,m), y (h,m), z (h,m), φ (h,m), PM-S1
 FCS,τ(h,m), PM-S1

 CP,τ(h,m)}  

V.  CASE STUDIES 

A.  Test Case Description 
A test integrated FCSs and PDSs as illustrated in Fig. 4 is 

employed to validate the effectiveness of the proposed models. 
In this test case, the traffic network is simplified from an actual 
district in Guangzhou, China, which covers 94 nodes and 147 
arterial roads. The coupling PDS is a 54-bus system [29] with 
four 110 kV substations (two existing substations with rein-
forcement possibility and two candidate ones) and 61 feeders 
(17 existing feeders and 44 candidate feeders). Note that the 
studied PDS has no renewable energy sources and its power 
sources can only be updated by reinforcing or installing 110 kV 
substations. 
 

 

 
Fig. 4.  Initial test integrated FCSs and PDSs. Candidate buses connecting each 
FCS are listed in the bracket, respectively. 
 

In Fig. 4, the solid (dotted) points and lines denote the exist-
ing (candidate) buses/nodes and feeders/roads, respectively. 
Currently, there is one FCS (FCS-1) connected to the PDS at 
bus S2. There are five candidate FCSs for future installation, 
namely FCS-2 to FCS-6, whose connecting buses must be se-
lected from the sets {S4, 13, 21, 29, 43}, {8, 23, 24, 40}, {S1, 1, 
2, 9, 20}, {S1, 1, 3, 5}, and {S3, 6, 28, 35}, respectively. The 
expansion planning of the test integrated system will be divided 
into three stages with each planning stage lasting three years. 
The maximum traditional power load is initialized to 49.89 
MW and its average growth rate in each stage is 10%. The stud-
ied area is assumed to contain 8500 households with a vehicle 
ownership rate of 1.88 per household, as per the U.S. 2017 na-
tional household travel survey [32]. That is, the studied system 
has 15980 vehicles and 3196 of them are EVs (ηAG=20%). The 
permeability of EVs/agents (ηAG) increases by 35% per stage. 
The reinforcement and installation costs of substations and 
FCSs are available in [9]. Other specified parameters are shown 
in Table III. 
 

TABLE III 
PARAMETERS LIST 

ηAG [%] 20 γ [%] 10 σ [$/(kW·h)] 0.064 
V [p.u.] 0.95 ω [-] 10-6 tk [min] 35 
V [p.u.] 1.05 α [%] 30 μF,τ [$104] 16.5 
nFCS,τ [-] 1 d A [day] 228 μB,τ [$104/MWA] 3.28 

 

The numerical results and computational time are obtained 
on a laptop computer with an AMD 1.90-GHz processor and 8 
GB of RAM. All simulations and optimizations in this study are  
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(a)  Fast charging demands                                       (b)  Higher traffic flows at 18:00                                      (c)  Lower traffic flows at 6:00 

 
Fig. 5.  Fast charging demands and traffic flows. 
 

processed though the MATLAB-2014b platform [28] and its 
built-in YALMIP/CPLEX optimizer [31]. 

B.  Effectiveness of the MMTAM 
The simulation proceeds from 0:00 to 24:00 with a 15-min 

time interval and the average computation time for the 
MMTAM function ψ

MMTAM
(•) is 2.75 s. 

Fig. 5 (a) is the Google heat map that marks the locations 
where EVs send the signal for fast charging demand. Compared 
with the traffic flows assignments in Fig. 5 (b) and (c), it is 
concluded that more EVs driving along a road will incur more 
charging demands. This feature coincides with the statistics that 
have been applied in [7]-[9] as the basis of siting and sizing 
new FCSs, i.e., FCSs are more inclined to be installed at 
crowded roads. Besides, as shown in Fig. 5 (b) and (c), the op-
timal navigation path to FCSs varies with different levels of 
traffic flow, which highlights the features of EVs/agents in the 
proposed MMTAM, i.e., positively respond to real-time sur-
rounding information. 

The daily charging loads of private cars and taxis are respec-
tively presented in Fig. 6 (a) and (b). The simulated fast and 
slow charging loads both obey multivariate normal distributions, 
which are consistent with the typical features of EV loads [22], 
[25]. Besides, the real charging loads in this district are further 
compared in Fig. 6. The comparison clearly shows that the sim-
ulated loads are similar to the real data. Hence, the proposed 
MMTAM is feasible and effective to simulate the driv-
ing/charging behaviors of different types of EVs. 
 

 
(a)  Charging load of private cars 

 

 
(b)  Charging load of taxis 

Fig. 6.  Simulated daily charging loads of different types of EVs. 
 

Furthermore, on top of the same traffic network and parame-
ters, a comparison is made among the real data, well-
established user-equilibrium model [11], and the proposed 
MMTAM. The daily traffic flows and average speeds are com-

pared in Fig. 7 (a) and (b), respectively. The comparison clearly 
confirms that the proposed MMTAM is an effective method in 
terms of traffic flow assignment modeling. 
 

 
(a)  Traffic flow 

 
(b)  Average speed 

Fig. 7.  Comparison among the real data, user-equilibrium model, and the pro-
posed MMTAM.  
 

A numerical comparison based on the gray correlation coef-
ficient [33] is employed to analyze the results shown in Fig. 6 
and Fig. 7. The gray correlation coefficients of different curves 
are respectively listed in Table IV. It is demonstrated in Table 
IV that the proposed MMTAM performs well in simulating 
traffic flows and EV charging loads because of its high similari-
ty with the actual data and well-established benchmark ap-
proaches. 

In summary, benefit from the mechanism that charging loads 
(calculated by λk,t, Equations (8)-(9)) and traffic flows (calculat-
ed by ξk,ij,t-1, Equation (9)) both vary with agents’ driving paths, 
the proposed MMTAM successfully reveals the inherent con-
nection between charging loads/FCS operations and traffic 
flows. This feature highlights the contribution of MMTAM 
when compared to existing methods of the EV load simulation 
[22], [25] and traffic flow assignment [9], [13], [14]. 

TABLE IV 
THE SIMILARITY OF SIMULATED RESULT BETWEEN MMTAM AND EXISTING 

APPROACHES 
Curves Existing approaches Gray correlation coefficient 

EV charging loads 
Real data 0.8718 (Fast); 0.8934 (Slow) 

Monte Carlo [22] 0.8671 (Fast); 0.8855 (Slow) 
Trip-chain [23] 0.8544 (Fast); 0.8702 (Slow) 

Daily Traffic flows Real data 0.8878 
User-equilibrium [9] 0.9114 

Average speed Real data 0.8581 
User-equilibrium [9] 0.8865 

* All existing approaches are compared with the proposed MMTAM. 

C.  Joint Planning Results 
In the joint planning model, the time interval ∆t is set to 1 h. 

A set of Pareto optimal planning solutions can be obtained by 
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altering the learning factor θ. The Pareto frontier is demonstrat-
ed in Fig. 8. In a realistic project, the final installation plan will 
be selected from the Pareto frontier with the planner’s special 
considerations. Without loss of generality, the solution of θ=0.5 
is selected as the final plan of the sample integrated FCSs and 
PDSs and further discussed as follows. 
 

 
Fig. 8.  Pareto frontiers of the joint planning obtained by five different algo-
rithms. The unit “vehicle/day” denotes the average daily deviation between the 
traffic flow and the equilibrium value αcij for each road. 
 

The extended topology of the sample integrated system is 
presented in Fig. 9, and the statistics of the selected planning 
results are given in Table V. In Table V, new substations S3 
and S4 will be respectively installed at stages 2 and 1 to supply 
the increasing power demand. Besides, all substations {S1, S2, 
S3, S4} also require extra reinforcement capacities throughout 
the planning stages. All of these installations are accounted for 
as f  C  of Table V. Meanwhile, growing power demands and 
enlarging network also tend to increase the power loss cost f  Δ 
stage by stage. In terms of FCSs planning, the numbers of in-
stalled fast charging devices, i.e., Nq

 τ, at each stage are 9, 12, 
and 17, respectively. Note that FCS-4 has not been installed due 
to the trade-off between cost and traffic unbalance. 
 

 

 
Fig. 9.  The extended topology of the sample integrated FCSs and PDSs. 
 

Note that the installation of FCSs fails to halt the increase of 
f  UB in Table V. This is due to the installed number of FCSs that 
can not match the increasing speed of EVs (35% per stage). In 
fact, if the unbalance of traffic flow assignment (i.e., ℜ(•) in 
Section III.A) is not considered, the traffic unbalances will be-
come much worse, as will be discussed in Section V.E. 

Finally, Fig. 10 shows the daily voltage profiles of the ex-
tended PDSs at each planning stage. 

In Fig. 10, the selected plan can cover increasing loads and 
keep voltages staying within the operating limits. This is be-
cause the sub-models for PDSs planning, i.e., M-S2 and M-V, 

are solved by the CPLEX solver, whose built-in optimization 
algorithm can ensure voltage magnitude constraints to be strict-
ly followed as long as the optimal solution is found [34]. 

TABLE V 
DETAILED PLANNING RESULTS FOR EACH STAGE 

Results 
Stages 

1 2 3 

Nq
 τ / connected bus of FCSs 9/S1 (FCS-5) 12/S4 (FCS-2) 6/8 (FCS-3); 

11/28 (FCS-6) 
f  UB [vehicle/day] 6.8472 7.3848 8.7048 
f  FCS [$104] 266.34 125.51 379.04 
f  C [$104] 2785.70 2347.35 2113.96 
f  Δ [$104] 394.54 566.02 654.75 
Substation installation 
[MVA] 

S3 -- 12.50 -- 
S4 12.50 -- -- 

Substation reinforce-
ment 
[MVA] 

S1 3.15 4.00 6.30 
S2 3.15 3.15 6.30 
S3 -- -- 4.00 
S4 -- 3.15 0 

* The names of selected candidate FCSs at each stage are noted in brackets.  

 

 
Fig. 10.  Voltage profiles of the extended PDSs at each planning stage. 

D.  Performance of the Bilayer Expanded Benders Algorithm 
For the studied integrated system case in Fig. 4, the pro-

posed bilayer expanded Benders algorithm takes four rounds in 
the outer-layer to obtain the converged results, as displayed in 
Fig. 11. The convergence properties in Fig. 11 verify the effec-
tiveness of introducing new constraints (32) and (34) to handle 
the error between two objectives (f

1
 and f

2
). 

Meanwhile, multiple inner-layer iterations are needed in 
each round of outer-layer optimizations to obtain the optimal 
planning results for all three planning stages. For instance, dur-
ing the final round of outer-layer optimizations, i.e., m=4, the 
detailed convergence process is shown in Fig. 12. In Fig. 12, 
the gap between the upper and lower bounds remains constant 
for the first few iterations, because the slave model M-S2 is 
infeasible and model M-V must be solved to generate feasibil-
ity cuts. As the iterations continue, M-S2 eventually becomes 
feasible and the gap begins to decrease until the convergence 
criterion, i.e., (40), is met. 

 

    
(a)  Gap of  f1/f

  UB                                        (b)  Gap of f2 
Fig. 11.  Evolution of gaps between M-1 and M-S1. 
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Fig. 12.  Convergence process within the final round of Benders decomposition. 
 

To highlight the advantages of our algorithm, four common-
ly used algorithms, i.e., the NSGA-II, “Benders+Weighted-
sum”, “Benders+Tchebycheff”, and “Benders+NSGA-II”, are 
respectively compared. Among them, the traditional Benders 
decomposition must combine with another algorithm to solve 
M-0 because it cannot handle multiple objectives. The evolu-
tion performances are compared in the following two aspects: 
• Optimality. The Pareto front of NSGA-II in Fig. 8 is select-

ed as the benchmark. The relative Euclidean distance be-
tween the optimized Pareto front and the benchmark serves 
as a new index (∆f) to evaluate the optimality. ∆f can be 
calculated as: 

∆f =�� f
1

f
1
  NSGA-II⁄ -1�2

+� f
2

f
2
  NSGA-II⁄ -1�2

 

• Robustness. Each multi-objective optimization algorithm 
will be executed 10 times, thus obtaining 10 Pareto fronts. 
By replacing f

1
  NSGA-II in the formula ∆f with the average Pa-

reto front, the robustness index of each algorithm can be ob-
tained. A larger (smaller) robustness index indicates the al-
gorithm is less (more) robust. 

 

As shown in Table VI, the proposed algorithm offers higher 
better optimality compared to “Benders+Weighted-sum” and 
“Benders+Tchebycheff” methods. Compared to the NSGA-II 
based methods which have the best optimality, the proposed 
algorithm has a significant advantage in terms of improving 
computational efficiency. From the algorithm robustness per-
spective, the proposed bilayer Bender decomposition is the 

most robust algorithm. The poor robustness of NSGA-II based 
algorithms lies in their random evolution process. 

TABLE VI 
DETAILED COMPARISON AMONG FOUR DIFFERENT ALGORITHMS 

Algorithm Benders 
iteration 

Average 
time [h] 

Average ∆f of 
Pareto front 

Robust-
ness 

NSGA-II N/A 8.41 0% 0.195% 
Benders+Weighted-sum 125 0.72 0.8848% 0.076% 
Benders+Tchebycheff 143 1.58 0.8615% 0.085% 
Benders+NSGA-II 192 7.35 0.2313% 0.143% 
Bilayer expanded Benders 413 3.74 0.4401% 0.072% 

 

In summary, the proposed algorithm demonstrates the high-
est robustness and can efficiently provide a Pareto front with 
satisfactory optimality. 

E.  Comparative Study 
A software package has been developed based on JavaScript 

and Python to perform the proposed joint planning task on real-
world systems. The computation is performed in the MATLAB 
platform, while the data input/output is done through a web-
based interface. This software package has been employed by 
utility companies such as the China Southern Power Grid in 
PDS and FCS planning. Due to space limitation, more details 
about the software implementation can be provided upon re-
quest. 

To validate the effectiveness of the proposed model in other 
cases, a practical large-scale integrated FCSs and PDSs in 
Wenzhou, China, is simulated as a comparative study. The heat 
map of charging demands is demonstrated in Fig. 13 as an out-
put of the developed software. 

The following four test cases are studies to demonstrate the 
effectiveness of a joint planning strategy and the introduced 
MMTAM method. 

Case 1: The PDS and FCSs are independently planned based 
on the sub-models proposed in Sections III.B and C. 

Case 2: The joint planning strategy proposed in this paper. 
Case 3: The joint planning strategy based on a user-

equilibrium traffic flow model described in [9]. 
Case 4: The joint planning strategy with random slow charg-

ing, i.e., expectation variables β u,k,t in (9) are all set to “1”. 
 

 
Fig. 13.  A realistic large-scale sample integrated FCSs and PDSs in Wenzhou, China. 
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All four cases are simulated for one planning stage of one 
year, and the results are compared in Table VII. Several obser-
vations can be made from Table VII and are discussed below: 
• f  UB in cases {1, 2, 4} are significantly lower than in case 3, 

which indicates the proposed MMTAM can efficiently bal-
ance the traffic flow assignment. To obtain the lowest f  UB, 
case 1 has higher f  FCS , f  C , and f  Δ  when planning the in-
vestment of PDS and FCSs than cases {2, 4}. 

• Due to the absence of MMTAM, case 3 prefers to install 
FCSs on the crowded roads to capture the most intense traf-
fic flows. As a consequence, case 3 not only has the worst 
traffic condition but also a higher FCS investment cost than 
cases {2, 4} (about {83.12, 68.35}×$104). Because it is gen-
erally expensive to rent a certain square of land in a crowd-
ed place to install FCSs. 

• The total costs of cases 1-4 are {2.92, 2.67, 2.59, 
2.80}×$107, respectively. Therefore, the joint planning of 
cases {2, 3, 4} are considerably more cost-efficient than the 
independent planning case 1. 

• Benefit from the ordered slow charging loads, the PDSs in 
case 2 keep stable operation even with lower safety capacity, 
which helps to save more investment costs than case 4 
(about $128.45×104). 

• Although it is not the most economic, the proposed multi-
objective approach in case 2 achieved a good trade-off be-
tween balancing traffic flows and saving investment costs, 
which brings a considerable extra social benefit to traffic 
networks. 

TABLE VII 
COMPARISON OF OPTIMAL SOLUTIONS FOR FOUR CASES 

Case Selected feeders f  UB [vehi-
cle/day] 

Costs [$104] 
Total f  FCS f  C f  Δ 

1 1-3-4-6-8-10-11-12-17-20 11.2477 2921.12 596.52 1916.25 408.35 
2 1-3-4-6-9-10-11-13-17-21 12.0682 2671.77 483.05 1808.10 380.62 
3 2-4-5-7-8-9-11-13-14-18 16.9315 2587.89 566.17 1653.69 368.03 
4 2-3-4-6-9-10-11-13-15-18 11.8767 2800.22 497.82 1904.57 397.83 

* Installed candidate bus/FCS is omitted here since it can be obtained through 
the connecting feeder, as shown in Fig. 13. 
 

Furthermore, to relieve the concern in the impacts of charg-
ing load levels on our observations, the cost-benefit is analyzed 
with the net present value (ΦNPV) [36]. The lifetime of PDSs is 
set to 10 years. The net present values of cases 1-4 with differ-
ent permeability (ηAG) are compared in Table VIII, respectively. 

TABLE VIII 
NET-PRESENT VALUES OF CASES 1-4 WITH DIFFERENT PERMEABILITY 

Initially 
ηAG [%] 

Final 
ηAG [%] Cases (1-2)/2 Case 2 

[$104] Cases (3-2)/2 Cases (4-2)/2 

10 18.23 -0.1307 1401.08 0.0812 -0.0807 
20 36.45 -0.1943 1283.32 0.0654 -0.1001 
30 54.68 -0.2708 1165.60 0.0464 -0.1234 
40 72.90 -0.3644 1047.91 0.0231 -0.1519 
50 91.13 -0.4818 930.26 -0.0061 -0.1876 

* Cases (1-2)/2 means the relative deviation of cases {1, 2}, which calculat-
ed by comparing their net present values (ΦNPV), then divided by ΦNPV of case 2. 
 

The comparisons in Table VIII support the abovementioned 
observations. Besides, with ever-growing charging loads/ηAG , 
more observations are obtained: 
• The necessity of joint planning is highlighted since the rela-

tive deviations of cases {1, 2} keeps increasing. 
• The advantage of case 3 in cost-saving is gradually overtak-

en by case 2. Case 2, i.e, the proposed joint planning, be-
comes the most economical approach when the initial 
ηAG=50%. 

• It becomes more important to manage slow charging behav-
iors when facing a higher initial ηAG, as indicated by the in-
creasing deviations between case 2 and case 4. 

 

VI.  CONCLUSION 
A joint planning strategy considering unbalanced traffic 

flow is developed in this paper. To properly model the traffic 
flow assignment, a novel microscopic method namely 
MMTAM is first proposed to integrate the simulations of EV 
charging loads and traffic flows. The MMTAM is capable of 
revealing the influences of FCS investments on traffic flows, 
which lays the foundation for our multi-objective planning 
model that balances the interests of PDSs, FCSs, and traffic 
networks simultaneously. A new bilayer expanded Benders 
algorithm is then developed to solve the multi-objective plan-
ning model. The performance of the proposed model is validat-
ed through two real-world test systems in China. The simula-
tion results also conclude that: 
• the proposed MMTAM method is effective in modeling the 

connections between EV charging loads and traffic flows; 
• the developed algorithm overcomes the drawback of tradi-

tional Benders decompositions in handling multiple objec-
tives, which performs better than other optimization algo-
rithms in terms of improving solving efficiency and robust-
ness; 

• the proposed multi-objective joint planning model can 
achieve an efficient trade-off between relieving traffic con-
gestion and reducing planning cost. 
In addition to the charging behaviors, the vehicle-to-grid ca-

pability of EVs is believed to a promising solution in terms of 
smoothing renewable energy fluctuation, providing ancillary 
services, etc. The impacts of vehicle-to-grid on EV charging 
behaviors and FCS planning will be explored in our future work. 
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