
 
 

Abstract—This paper proposes a novel wide-area control 

strategy for modulating the active power injections to damp the 

critical frequency oscillations in power systems, this includes the 

inter-area oscillations and the transient frequency swing. The 

proposed method pursues an efficient utilization of the limited 

power reserve of existing distributed energy resources (DERs) to 

mitigate these oscillations. This is accomplished by decoupling the 

damping control actions at different sites using the oscillation 

signals of the concerned mode as the power commands. A 

theoretical basis for this decoupled modulating control is 

provided. Technically, the desired sole modal oscillation signals 

are filtered out by linearly combining the system-wide frequencies, 

which is determined by the linear quadratic regulator based 

sparsity-promoting (LQRSP) technique. With the proposed 

strategy, the modulation of each active power injection can be 

effectively engineered considering the response limit and steady-

state output capability of the supporting device. The method is 

validated based on a two-area test system and is further 

demonstrated based on the New England 39-bus test system. 

Index Terms—Wide-area damping control, distributed energy 

resources, active power modulation, eigen-analysis, linear 

quadratic regulator. 

I.  INTRODUCTION 

 Poorly-damped inter-area oscillation modes limit the power 

transfer of a power system and may cause large-scale blackout. 

Traditional approaches for mitigation of these low-frequency 

oscillations include reducing the power flow of key 

transmission paths thru generation re-dispatch [1]; installing 

power system stabilizer (PSS) on synchronous machines [2] or 

supplementary damping controller on FACTS [3]. The common 

low-frequency mode or common mode (normally below 0.1 

Hz) associated with the primary frequency response [2] may be 

lightly damped; consequently, under sudden imbalance in 
generation and load, large transient frequency and power 

swings and even sustained frequency and power oscillations 

may occur, this may trigger load rejection, critical line tripping, 

and subsequent cascading issues. Installing Multi-Band PSSs 

[2], retuning the PID-type speed governors [4] and disabling the 

speed governors [5] are effective measures in practice for 

mitigating such swings.  

 Recently, it has been demonstrated that modulating the active 

power injection of a HVDC to damp the critical inter-area 

oscillation of a large-scale power system is technically feasible 

[6] [20]. As a matter of fact, with the proliferation of distributed 

energy resources (DERs), e.g., energy storage systems, active 
power modulation is becoming a cheap means of controlling the 

oscillatory dynamics of a power system. Intuitively, geo-

graphically dispersed actuators increase the controllability for 

the system-wide frequency oscillations while reducing the 

control burden at each single control site. However, in the 

context of classical feedback control, this may also significantly 

increase the computational burden brought about by the 

coordination of numerous controllers.  

 To date, major efforts toward the so-called multi-point active 

power modulation based damping control are focused on 

coordinating the control actions using output feedback control 
strategies. By using the local frequency as the power command, 

a design method of structurally constrained output feedback 

with bounded power responses is proposed in [7]; a non-linear 

simulation based optimization approach for coordinating the 

power modulations to damp the critical mode of oscillation is 

proposed in [8]; likewise, a gain tuning approach of load 

modulation for primary frequency regulation while considering 

the load’s disutility is presented in [9]. The other method 

employs the system-wide frequencies to drive the active power 

modulations, a structurally constrained output feedback optimal 

control method is proposed in [10] for suppressing the inter-

area oscillation of a two-area system; the approach is then 
further developed in [11] for controlling multiple inter-area 

modes while optionally improving the primary frequency 

response of a large-scale power system.  

 All of the above-mentioned methods have distinct merits. 

Nevertheless, we note that the control performance of the local 

frequency based power modulation may be dependent on the 

system structure and the actuator location. We also note that 

although all the methods pursue an optimal coordination, the 

strategies may not be very cost-effective in terms of utilizing 

the valued active power response to resolve the oscillation 

issue, which is usually dictated by a couple of modes under an 
operating condition; moreover, the approaches are based on a 

centralized implementation (i.e., the modulations act as a single 

control action), which may yield a compromised  control effect, 

and it is not easy to illustrate the role of each single-point 

control action in the oscillation damping.  

 A design concept of DER-based primary frequency control 

is presented in [12], where the authors employ a reduced-order 

model to superimpose the frequency controllers to achieve a 

desired damping ratio of the common mode. Because the 
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controllers are designed in a superposition manner, each power 

modulation can be conveniently engineered based on many 

considerations such as the response limit and steady-state 

output capability of the supporting device. Motivated by the 

result, this paper formulates a new output feedback control 
strategy so as to efficiently utilize the limited power reserve of 

existing active power injection assets to damp the critical inter-

area oscillations and the transient frequency swing. The 

technical developments presented in this paper may be traced 

as follows: 

1) A new control strategy for decoupling the damping 

control actions at different sites. The concept of modal 

decomposition control is revisited in the context of static 

feedback control, it is demonstrated that the distributed 

static feedback controllers that exclusively add damping 

to the same mode can be simply superimposed. This 

means that the control actions can be decoupled by using 
the sole modal oscillation signals as the input signals of 

the controllers. Moreover, by properly choosing control 

sites (areas), the decoupling feature may be retained for 

the control of multiple modes.  

2) Flexible and efficient active power modulating control. 

With the proposed control strategy, the active power 

modulations can be flexibly engineered to efficiently 

utilize the limited power reserve of the supporting 

devices to mitigate the concerned mode of oscillation; 

the power response of each device tends to be smaller as 

more devices are engaged, thereby relieving the concern 
about the availability of the devices.  

3) The linear quadratic regulator based sparsity-promoting 

(LQRSP) technique is formalized as a tool for deter-

mining the least number of system state variables that 

need to be combined for filtering out the desired sole 

modal oscillation signals. Extensive studies show that 

these states are the frequencies scattered in the system. 

II.  REVIEW OF MODAL DECOMPOSITION CONTROL 

 In [13], the modal decomposition control is introduced for 

PSS design. In this section, the concept is reviewed in the 

context of static feedback and therefore provides a basis for the 

control strategy to be proposed in the next section. 

 A power system can be described by a set of differential and 

algebraic equations, from which a single-input single-output 

(SISO) model may be obtained by linearizing the system around 

an operating point as follows: 

𝒙̇  (1a) 

 (1b) 

where  is an  state vector,  is an  state matrix,  

 is the input,  is the output, and  and  are the 

input and  output vectors, respectively. The modal 

properties are given by , , where  

and  represent the right and left modal matrices, respectively, 

 is an  identity matrix, and  denotes transpose. 

, , where  and 

 are the  right and left eigenvectors for mode , 

respectively, and  is a diagonal matrix comprised of the 

system eigenvalues, denoted by .  

 Apply the linear transformation 

 (2) 

where  is the state vector in the new coordinates. Then, 

𝒛̇  (3a) 

 (3b) 

where  is the  component of . Consider a sole modal 

signal scaled by a gain K as control input, denoted as 

 (4) 

 The state equations then become 

𝒛̇  (5) 

where  is the closed-loop system state matrix in the new 

coordinates and  

 (6) 

The eigenvalues of the closed-loop system can be obtained by 

solving  

 (7) 

 Equations (6) and (7) illustrate that the feedback control loop 

will only alter the  mode. Ideally, if  is a 

negative real number, the  mode will be horizontally shifted 

to the left half plane without changing its frequency.  

III.  THE PROPOSED CONTROL STRATEGY AND ITS 

APPLICATION TO MULTI-POINT ACTIVE POWER MODULATION 

A.  The Proposed Control Strategy 

 Based on the theory in Section II, using the sole modal signal 

to close a static feedback control loop at the system input (# ) 

may be modeled as   

 

 

(8) 

where  is a synthesized modal signal of mode  scaled by a 

gain ,  denotes the gain for the modal signal in system 

output , and  represents the scaled modal observability. 

The controller is depicted in Fig. 1. 
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Fig. 1. The controller for the  mode at system input (# ). 



 
 

 For the sake of illustration, consider that the  mode is 

controlled by two controllers, i.e., the controllers at  and  

access the modal signal of the  mode, the closed-loop system 

state matrix in the new coordinates is 

 (9) 

 It can be seen from (9) that the controllers will only alter the 

 mode and the modified mode is given by 

, which implies that the damping control actions are 

fully decoupled and therefore: each controller is allowed to 

independently set up its contribution to the mode by adjusting 

the gain ; adding or missing any controller will not affect the 

effort of the other controllers. 

 The above control strategy may be extended to the control of 

multiple modes. Again, for ease of illustration, consider that 

two modes, e.g., modes #1 and #2, are controlled by four 

controllers, respectively. In particular, the controllers at  and 

 access the modal signal of mode #1, the controllers at  and 

 access the modal signal of mode #2. The modified modes 

can be obtained by solving the eigenvalues of a subset of the 

closed-loop system state matrix, denoted as 

 (10) 

where 

 

 

 Ideally, if the off-diagonal terms of (10) are inherent zeros, 

the controllers for the same mode and different modes are fully 

decoupled, because the eigenvalues of  are given by its 

diagonal terms. But, in reality, the off-diagonal terms may be 

non-trivial complex numbers. Moreover, it is noted that the s 
in (10) are non-trivial numbers as they are designed to modify 

the modes. So, to apply the proposed strategy to control both 

modes,  should be at least nearly either a lower or upper 

triangular matrix; then, the eigenvalues of  can be 

approximately given by its diagonal terms. To this end, the 

controllers that target mode #2 may need to be enabled at places 

that have small controllability for mode #1; then the cross 

modal terms induced by the control of mode #1 is no longer 

crucial in terms of  modal interactions. Moreover, if the natural 

frequency of mode #1 is close to the frequency of mode #2, then 

both  and  may need to be small, which requires that the 

control sites for mode #1 also have small controllability for 

mode #2. 

B.  Application to Multi-Point Active Power Modulation  

 Active power modulation may be executed by a system 

device that has fast power response capability, e.g., energy 

storage system. The dynamics of the power modulation may be 

modeled as a first order transfer function [8], as depicted in Fig. 

2. When a controller in Fig. 1 is connected to , as the 

system is excited, the device will provide a stabilizing signal 

 to the system1.  

 
Fig. 2. Simplified active power modulation block. 

 When applying the proposed strategy to control a group of 

such devices to damp a particular mode of frequency oscillation 

(electromechanical or common low-frequency), the power 

modulations may be engineered by employing the following 
method.  

 For a particular mode of oscillation, because the outputs of 

the controllers are in proportion to their respective , to 

pursue consistent amplitude of power response | | for all 

the devices, the gains of the controllers may be set up according 

to 

| |/| | | |/| | (11) 

Equation (11), which is equivalent to | |=| |, ensures that 

the damping contributions are allocated according to the modal 

controllability. Furthermore, to impose constraints on the 

response of each device, choose 

| |/| | | | | |  (12) 

where  may be the response limit of the device, denoted by 

. Clearly,  may serve as an index for 

selection of the actuators. 

 The actual power responses of the devices are determined by 

the closed-loop system dynamics. Larger gains of the 

controllers tend to result in larger power responses of the 

devices. However, it also means larger damping will be added 

to the target mode, which renders a mitigation effect on the 

maximum values and duration of the power responses. 

Moreover, the concerned mode of oscillation is usually 

triggered by a transient event occurs in the system. In this 

regard, stimulation of the system at different locations in a non-
linear simulation environment may be necessary to properly set 

up the gains of the controllers. The main tuning involved will 

be adjusting the weights in (12) and simultaneously scaling the 

gains of the controllers. Note that the damping that the 

controllers can provide is mainly dependent on the availability 

of the supporting devices and how large the oscillation will be 

under the most severe contingency. As more devices partake in 

the control of a mode, the damping contribution needed from 

each device can be smaller, therefore smaller pressure put on 

the individual devices. Automation of the gain tuning process 

may deserve further study. 

 For a large power system with geographically dispersed 
actuators, the multi-mode control strategy may be applied. This 

is based on the fact that the electromechanical modes are 

usually controllable at some particular sites (areas) and the 

1. This type of modulating control is physically interpretable, it has been 

well observed from the experiments that a qualified control signal tends to be 

out of phase with the oscillation signal seen by the device’s terminal bus 

frequency, which indicates that the device will dissipate the oscillation energy 

or say provide damping torque to the oscillation. 



 
 

common low-frequency mode is widely controllable at the 

system interconnection buses. So, it is possible to group the 

devices to simultaneously control multiple modes with less 

control interactions. However, as set forth in the previous sub-

section, the decoupled multi-mode control requires a stricter 
actuator selection that may sacrifice the optimality of the 

control of each single mode in terms of the asset utilization. 

Nevertheless, under certain circumstances, e.g., when pursuing 

simultaneous control of electromechanical oscillations and the 

transient frequency swing and/or control of closely spaced 

inter-area modes of oscillations with explicit control cost 

allocation and robustness to disturbances, the proposed strategy 

may be an option. Optimization of the multi-mode control 

strategy may deserve further investigation.  

IV.  DETERMINATION OF THE INPUT SIGNAL  

 In this section, the LQRSP technique is formalized as a tool 

for determining the input signal of the controller depicted in 

Fig. 1, some practical considerations of the presented approach 

are also discussed. Then, the procedure for controller design is 

summarized. 

A.  Determination of the Input Signal Using LQRSP 

 In (9), the proposed damping controller needs to access a 

pure modal signal to achieve the respective mode mobility. But, 

it may be difficult to realize this in practice. Therefore, the goal 

here is to help the controllers access a modal selective signal 

whose modal observability is dominated by the target mode. In 

static feedback control, this may be accomplished by carefully 

pairing the system outputs and inputs. For instance, using 

 to obtain an input signal, which features 

≫  for any mode , for the 

purpose of improving the damping of the  mode. 

Nevertheless, it is not easy to achieve this for a large power 

system without the help of a systematic algorithm, as each 

system state may significantly participate in multiple mode 

dynamics, which can be seen from (2). Ideally, we expect a 

solution so that the required system outputs are readily 

accessible via the ever maturing dynamic state estimators [14], 

e.g., the rotor speed. As follows, the LQRSP technique [15] is 

formalized as a tool for determining the desired input signal 

using the least number of system states.    
 a) Brief Review of the LQRSP: If we consider that the system 

output in (1b) is a combination of full system states, i.e., the 

state vector is observed by an  identity matrix, the LQR-

based sparsity-promoting optimal control problem can be 

formulated as [16]: 

{
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where  is the expectation operator,  is an  positive 

semi-definite matrix designed to penalize particular system 

dynamics,  is a  positive definite matrix, and  is the 

number of system inputs selected to equip controllers, for our 

distributed controller design, . Normally, the matrix  is 

an identity matrix, and  with  as the control 

input vector and  as the disturbance input vector. 

 is the sparsity promoting function,  is the 

weight on the corresponding gains , and  is usually a small 

positive number within a range to promote the sparsity of the 

gain matrix . For , the control reduces to a standard  

optimal control problem, the optimal gain matrix  can be 

obtained by solving the Algebraic Riccati Equation (ARE), and 

 is usually fully populated with non-zero entries. By 

gradually increasing , the sparsity promoting process tends to 
strike a balance between the dynamic response performance 

and the number of communication links (i.e., the number of 

non-zero entries of ). The algorithm is available in Matlab as 

lqrsp. 

 b) LQRSP as a Tool for Determining the Modal Selective 

Signal: In [16], the authors mentioned that the sparse LQR may 

be modal selective by using a proper state cost function, e.g., 

the state cost can be squared relative rotor speed and angle 

between two groups of machines for the purpose of controlling 

a specific inter-area mode. Thus inspired, two types of state 

costs are employed below to search the desired input signals for 
the controllers. 

 For the control of an electromechanical mode, choose 

 (14) 

And for the control of the common low-frequency mode, 

choose 

 (15) 

where  and  denote a pair of (aggregated) synchronous 

machine speed variables that oscillate against each other under 

a particular inter-machine oscillation,  is the amount of 

synchronous machine in the system, and  is a scalar;  

denotes the center-of-inertia (COI) speed of the system,  and 

 denote respectively the inertia time constant and the speed 

variable of synchronous machine . 

 c) Interpretation: Given that the LQR can be viewed as a 
controller that intends to shrink the energy of the input-output 

frequency response [17], the following inference may serve as 

an interpretation of the approach. Based on (3a), (3b) and the 

modal properties, and assuming zero initial conditions, a unit 

impulse in the selected input yields the following responses in 

the  output 

 (16) 

Therefore, a particular mode may dominate a synthesized 

output response by linearly combining the responses of 

different system outputs. Using (14), the response of the 

common mode tends to be excluded while the response of a 

particular inter-machine mode is emphasized. Using (15), the 

responses of inter-machine modes are greatly eliminated while 

the response of the common mode is retained as the speed 



 
 

variables oscillate coherently under the common mode 

dynamics. According to (6) and (7) and following the logic of 

the LQR control, it can be inferred that if the impulse response 

of a system output is dominated by a single mode, then the 

controller tends to find a gain matrix that stresses the modal 
signal of the dominant mode while excluding the other modal 

signals. Because excessive modal signals of non-dominant 

modes will increase the control energy yet are unable to reduce 

the response energy of the dominant mode, and hence the 

overall energy, the result is the desired input signal. 

 d) Practical Considerations: In practice, a proper transient 

stability model should be prepared and updated; this is beyond 

the scope of this paper but has been routinely utilized in power 

system operations and planning. Standard linearization 

techniques may be employed to obtain the state-space model.  

When carrying out the LQRSP, the modal selectivity of the 

input signal tends to be perfect by using the optimal gain matrix; 
the interaction among the controllers, which violates the 

decoupling goal, tends to increase as the modal selectivity 

deteriorates. Therefore, a trade-off occurs between the desired 

control performance and the sparsity of the gain matrix for each 

controller. As confirmed later, the presented approach helps to 

find the desired input signal for a controller resulting from a 

linear combination of the states of the systems. And, thanks to 

the sparsity-promoting technique, all the controllers need to 

access rotor speed variables of the synchronous generators but 

without sacrificing the optimal control performance possibly 

because of the modal structure of the modes. Despite wide-area 
signals being required, the LQR-based implementation, which 

guarantees phase margin, ensures that the control system is 

robust to the communication delays as demonstrated in [16]. In 

addition, the selection of  and  in (14) is the result of modal 

structure investigation and coherency grouping, prior know-

ledge of the system is preferred; a linear combination of 

frequency differences that mimics the relative speed of the 

oscillating areas is suggested for setting up the state cost, as the 

common mode is usually the main contributor to the input-

output dynamics. The use of LQRSP to simultaneously 

determine the input signals for a set of controllers by combining 

the control inputs into a single LQR may also be feasible, 
however, the distributed formulation presented represents an 

opportunity for parallel implementation of the input signal 

determination for a large set of controllers. A systematic 

algorithm is desired to automate the input signal determination 

process.   

B.  Damping Controller Design Flowchart 

 A design procedure for the damping controllers for a 

particular mode is summarized in Fig. 3. Steps 1-2 aim to 

prepare the linear model and choose control locations for the 

concerned mode. Steps 3-4 are related to the determination of 

the input signal for each controller using the approach 

introduced in Section IV-A; as usual in control design trial and 

error might be encountered especially for the parameters used 

in the LQRSP algorithm. Steps 5-6 are devoted to the gain 

tuning using the approach introduced in Section III-B. 

V.  VALIDATION ON A TWO-AREA SYSTEM 

A.  System Description and Problem Statement  

 Kundur’s two-area system in [18] is adapted for a detailed  

 
Fig. 3. Design flowchart of the damping controllers for a particular mode.  

 
Fig. 4. Two-area system. D1 and D2 are the integrated power devices. 

Table I 

Electromechanical Modes and the Common Mode 

 

 

 

 

 
Fig. 5. Root locus, two-area system case. 

validation of the proposed methodology with the help of Power 

System Toolbox [21]. Two active power injection devices are 

integrated into the system near the loads as depicted in Fig. 4. 

The devices are both operating at 20 MW. For illustration 

purposes, there is no response limit assigned to the devices. The 

generators are modeled using a sub-transient generator model 

(6th order). Simple exciter (1st order) is installed on the 

generators. Simple turbine-governor model (3rd order) is 
employed to model the mechanical power dynamics of the 

generators. No PSS is enabled. The loads are modeled as 

constant impedance loads for both the active and reactive power 

consumptions. Eigen-analysis reveals that the system is stable, 

and the electromechanical modes and the common mode are 

listed in Table I. It is seen that the system’s inter-area mode is 

lightly damped due to possibly the heavy power transfer and the 

fast-acting voltage regulators. The goal here is to damp the 

M

G1

D1D2

M

G2

M

G3

M

G4

Modes Eigenvalues 

Local 1 (G1 vs G2) –0.5344 + 7.2711i 

Local 2 (G3 vs G4) –0.8146 + 8.0112i 

Inter-area (G1,G2 vs G3,G4) –0.0414 + 4.1733i 

Common (Coherent) –0.4720 + 0.3909i 



 
 

inter-area oscillation by efficiently modulating the active power 

injections of the integrated devices. Before proceeding, to gain 

some insights into the necessity of a scientific control design, 

some empirical output feedback strategies are reviewed. For a 

static feedback control loop that is established between the 
specified system output and the power set point of D2, the root-

locus is depicted in Fig. 5. Although all of the strategies can 

improve the damping of the inter-area mode, several important 

issues are noteworthy:  

1) When using the rotor speed of generator 2 as control 

input, the inter-area mode obtains relatively small mode 

mobility compared to the common mode and local mode 

1. So, to achieve a desired damping improvement of the 

inter-area mode, excessive control energy may be 

consumed by those two well-damped modes.  

2) The ‘local average speed’  removes the local 

mode mobility, but the common mode mobility is still 

relatively large. 

3) The ‘local speed difference’  destabilizes the 

local mode while adding small damping to the inter-area 

mode. In addition,  stabilizes local mode 1 while 

destabilizing the inter-area mode. 

4) The ‘speed difference’  slightly degrades the 

damping of local mode 1. Therefore, the damping 

improvement of the inter-area mode needs to be limited 
in order to alleviate the side-effect on the local mode. 

 The similar results are observed for D1. Moreover, the 

movement of system modes on the complex plane may be more 

complicated when multiple devices partaking in the control of 

a more complex system. In the following, the proposed method 

is first applied, and then it is compared with the optimal control 

strategy in [16], which suggests a feedback that controls both 

the inter-area mode and the common mode. The usefulness of 

the proposed method can be illustrated from this comparison. 

B.  Proposed Solution  

  For illustration purposes, the design process of controller 1 

(C1) for D1 is detailed here.  is chosen as the state 

cost for the LQR, where  and  denote respectively the 

rotor speed variables of generators 1 and 3. The magnitude 

frequency response of the open-loop transfer between the 

device’s power set point and the synthesized output  is 

shown in Fig. 6. The inter-area mode dominates the response, 

so it is expected that the resulting gain matrix of the LQR with 

40 logarithmically spaced values, the LQRSP delivers 

following information. As shown in Fig. 7, for , the gain 

matrix given by ARE is fully populated and, as  increases, the 

number of non-zero entries of the gain matrix is greatly reduced 

while the control performance slightly deteriorates. For 

, the gain vector is [0.0002, –1.1139, 0, –1.0413, 

0, 1.1873, 0, 1.0431, 0], where 0 denotes zeros, the four 

relatively large numbers are the gains for the rotor speed 

variables of generators 1-4, respectively. The relatively small 

number is the gain for the rotor angle state of generator 1. It is 

very small, thus it is reasonable to remove it from the gain 

vector. Therefore, the gain vector selected for C1 is [0, –

1.1139, 0, –1.0413, 0, 1.1873, 0, 1.0431, 0], which means that 

the input signal of the controller in Fig. 1 is 

1.1139 +1.0413 –1.1873 –1.0431 .   

 
Fig. 6. Magnitude frequency response of the open-loop transfer. 

 

 

 
Fig. 7. Sparsity-promoting results.  = cardinality.  denotes the 

quadratic performance degradation of a sparse gain matrix  relative to the 

optimal gain matrix . 

 

 
Fig. 8. Closed-loop system modes. 

 The ideal closed-loop system modes given by 

 are depicted in Fig. 8; #58 is the controller gain. It 

can be seen that only the inter-area mode is significantly 

modified indicating the modal selectivity of the input signal. To 

verify the theoretical derivation, the mode-move calculated by 

the scaled mode mobility in (9) is given in (17). 

 

 

 

(17) 

 The controller 2 (C2) for D2 is designed by following the 

same procedure, and the gain of the controller is tuned based on 

(11) using C1 as a reference. So, the devices are expected to 

have a similar amplitude of power response during the 

modulation process. The modes of the closed-loop system with 

C2 and that with two controllers are also depicted in Fig. 8, 

respectively. 



 
 

 
Fig. 9. Relative speed of generators 1 and 3. 

 

Fig. 10. COI speed. 

 

Fig. 11. Power responses of the devices. Proposed method vs [16]. 

 

Fig. 12. Relative speed of generators 1 and 2. 

 
Fig. 13. Power responses of the devices. Proposed method vs [16] with reduced 

gain. 

  Non-linear simulations are carried out to show the impact of 

the controllers on the system’s oscillatory dynamics. At 2 s, the 

system is excited by a step increase in the exciter reference of 

generator 2. Under such type of disturbance, the system will 

undergo a process of converging to a new synchronous 
reference. This, however, alters the linear time invariant system 

assumption that the control approach relies on. Nevertheless, 

such disturbance provides an opportunity to examine the 

performance of the controllers when the synchronous reference 

varies within a small range, which is the nature of a real power 

system. In this paper, the rotor speed variables are captured by 

differentiating each rotor speed from a common reference (i.e., 

1 p.u.). The relative speed of generators 1 and 3 is plotted in 

Fig. 9. It evidently shows that the controllers work in a 

superposition manner to damp the inter-area oscillation. The 

COI speed in Fig. 10 shows that the controllers have almost no 

influence on the trajectory of the system’s synchronous 
reference. Indeed, as shown in Fig. 8, the controllers have trivial 

influence on the system’s common mode, which defines the 

shape of a small-signal frequency swing [19]. Fig. 11 shows the 

devices’ power responses during the modulation process, which 

indicates that only the oscillation signal of the inter-area mode 

is passing through the controllers and the gain tuning for 

shaping the power responses is effective. The disturbance 

significantly excites local mode 1 and the oscillation dictates 

the initial evolution of the relative speed of generators 1 and 2, 

as shown in Fig. 12, which indicates that the modulations have 

a trivial effect on the mode dynamics. It is commonly 
recommended that synchronous machines take responsibility 

for mitigating the local mode of oscillations via modulation of 

their excitation systems, if necessary.  

C.  Comparison with the Optimal Control Strategy in [16] 

 The power devices are enabled for implementing a sparse 

LQR with the optimal control strategy in [16], i.e., the  in (13) 

is now a 2 × 2 identity matrix; and the state cost is 

. Sparsity-promoting results show that the 

controller tends to access the four generator speed variables (the 
same communication cost as that required by the proposed 

controllers) without sacrificing the optimal control 

performance. The resulting controller is tested by the same 

disturbance. As shown in Figs. 9-11, the controller takes more 

control energy from the devices to achieve the same damping 

improvement for the inter-area mode as done by the proposed 

controllers. This is because some control energy are spent on 

controlling the common mode; however, the improvement of 

the system’s primary frequency response is not very significant 

besides the frequency nadir. Moreover, if the devices are not 

ready to permanently increase/decrease their power injections 

(e.g., due to economic dispatch), the control actions will be 
infeasible. In the standard (sparse) LQR design, the (near) 

optimal gain array is fixed for a given performance index, and 

there is no standard guideline for accommodating the input 

constraints; however, this case study shows the controller gains 

have some flexibility with respect to tuning without altering the 

control effect (controlling the common mode and the inter-area 

mode), possibly due to the simple control structure, modulation 

type and location, and the distinct frequencies of the two modes. 

The inter-area mode was therefore moved so that its damping is 

close to that obtained by the proposed controllers. Given that in 



 
 

static feedback control the eigenvectors of the system state 

matrix are fixed, the traces in Fig. 9 for the ‘Closed-loop with 

C1 and C2’ and ‘Closed-loop with [16]’ cases nearly coincide 

with each other. 

 By reducing accordingly the gain for the power command 
signal for each device, as shown in Fig. 13, the maximum power 

responses are aligned with that commanded by the proposed 

controllers; however, there are still non-trivial steady-state bias, 

and the effect that the controller has on the inter-area mode is 

reduced, as shown by the relative generator speed in Fig. 9 and 

the tails of the power responses in Fig. 13.   

D.  Discussions 

 Based on the above study, the advantages of the proposed 

control strategy may be briefly summarized as follows: It shows 

improved flexibility and efficiency than the conventional 

strategy in terms of mitigating the critical oscillation with 

bounded stabilizing signals. Because of the (verified) super-

position feature, the single-point control energy can be greatly 

reduced if considerable devices partake in the control, thereby 

reducing the effects of control actions on the steady-state 

operation of the devices. These features may be favorable for 

the utilization of DERs in wide-area damping control, by which 
may help build a healthier power system damping structure. 

VI.  SIMULATION ON A LARGE SYSTEM 

 To examine the applicability and scalability of the control 

approach, a study on the New England 39-bus system is carried 

out. 15 active power injection devices are integrated into the 

system, as depicted in Fig. 14. For illustration purposes, there 

is no response limit assigned to the devices. The power export 

of the NE system, i.e., , exhibits a large swing 

under a power imbalance event; careful examination reveals 

that the swing is mainly governed by the 0.6 Hz inter-area mode 

and the system’s common mode. The goal here is to mitigate 

the swing of this key power transfer by commanding the power 

injections of the 15 devices with the proposed control strategy 

(a large swing may trigger the protection and therefore the 

cascading issues). According to the modal controllability 

shown in Fig. 15, devices {D1, D5–D15} are selected to 

improve the damping of the 0.6 Hz inter-area mode, the state 

cost is ; devices {D2–D4} are 

selected to improve the damping of the common mode and 

equation (15) is employed as the state cost. Note that the 

selection is for illustration purposes and may not be the best 

one, as the two modes have distinct frequencies and other 

devices may be assigned to control the common mode without 

introducing significant modal interactions. However, care may 

need to be taken when the common mode dynamics become 

faster as the system inertia decreases. Again, optimization of 
the decoupled multi-mode control needs further investigation. 

After determining the input signals (only rotor speed variables 

are involved), the gains of the controllers are initially tuned 

based on (11) and then simultaneously scaled to achieve a 

desired damping for the respective mode. The ‘root locus’ 

depicted in Fig. 16 is obtained by simultaneously scaling the 

gains for two controllers of the two modes. The uniform motion 

of modes indicates that the modal controllers are nearly 

decoupled.  
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Fig. 14. New England 39-bus system. Blue circles denote the integrated active 

power injection devices.  

Fig. 15. Modal controllability of the devices. (a) 0.6 Hz inter-area mode. (b) 

The common mode. Selected devices for controlling each mode are encircled. 

 
Fig. 16. ‘Root locus’, New England 39-bus system case. 

 
Fig. 17. (a) Power export of the NE system. (b) COI speed. 

 

Fig. 18. Power responses of the devices. (a) {D1, D5–D15}. (b) {D2–D4}. 



 
 

 As shown in Figs. 17 and 18, in response to a sudden load 

increase in the NE part of the system, the devices gracefully 

modulate their power injections to damp their respective mode 

of oscillations. As a result, the swing of the power export of the 

NE system is reduced by about (peak-to-peak) 50 MW for this 
particular event and the tie-line power oscillations converge in 

10 seconds. The power responses of {D2-D4} are large; 

however, the pressure of each device can be relieved if more 

devices nearby are responsive. It is worth emphasizing that the 

proposed decoupling control for electromechanical oscillations 

and the transient frequency swing only reduces the interactions 

from the viewpoint of a linear system and does not eliminate 

the interactions, as they are essentially non-linear dynamics, 

especially when the later one appears. In addition, a smoother 

frequency excursion may help the electromechanical controls 

behave properly, as the deviation of system frequency may 

drive the synchronous machines away from their operating 
points.  

VII.  CONCLUSIONS 

This paper proposes a new wide-area control strategy for 

modulating multiple active power injections to mitigate the 

critical frequency oscillations. The initial results showed that 

the approach has the potential to be a choice for system planners 

to unlocking large-scale DERs for damping control under 

particular operating conditions, with a unique advantage of 

distributing the control effort to many geographically dispersed 

sites so that small modulation is needed at each single site. 
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