
 

Abstract — Intentional controlled islanding (ICI) is the last resort 
to split an endangered power system into smaller islands to pre-
vent blackout. New lines that are planned by transmission expan-
sion planning (TEP) can affect the stability of islands during ICI. 
In this paper, an ICI-TEP method is proposed to improve the sta-
bility of islands by more efficient planning of transmission assets. 
Moreover, by developing a criterion for the frequency of center of 
inertia (COI) in each island, the frequency deviations of generators 
from the COI frequency are minimized to result in more stable 
islands. The proposed ICI-TEP, incorporating AC network repre-
sentation, is modeled as mixed-integer linear programming and 
quadratic convex problems ensuring tractability. A Benders de-
composition strategy is also proposed to solve the problem. Results 
of testing the proposed ICI-TEP method on IEEE 39-bus and 300-
bus test systems confirm its effectiveness, compared to conven-
tional TEP, in terms of coping with sever disturbances by creating 
more stable islands with a lower load shedding. 
 
Index terms — Transmission expansion planning, intentional 
controlled islanding, convex optimization, center of inertia, 
frequency stability. 

NOMENCLATURE 

Indices/sets 
� ∈ � Index and set for islands (subgraphs). 
ℓ ∈ ℰ� Index and set for all lines in island �. 
� ∈ ℒ� Index and set for candidate lines in island �. 

, � ∈ �  Indices and set for buses in island �. 
� ∈ �� Index and set for generators in island �. 
� ∈ � Index and set for planning periods. 
Parameters 
��� Investment cost of candidate line �. 
�� System base MVA. 

��,� Operation duration of island � at period �. 
�� Value of lost load at period �. 
� Discount rate of investment. 
��,�,�,� Binary parameter that is 1 if generator � is at bus 


 in island � at period �; 0 otherwise. 
��,ℓ,�,! Binary parameter that is 1 if line ℓ is from bus 
 

to bus � in island �; 0 otherwise. 
"�,ℓ,� Binary parameter that is 1 if line ℓ is connected 

to bus 
 in island �; 0 otherwise. 
#�,�$ , %�,�$  Active & reactive loads at bus 
 in period �. 

&�', (�' Shunt conductance and susceptance of bus 
. 
�ℓ)  Upper limit for apparent power of line ℓ. 
&ℓ, (ℓ Conductance and susceptance of line ℓ. 
*�+, *�)  Lower and upper limits for voltage of bus 
. 
��,-   Operation cost of generator �. 

#�.+, #�.)  Lower and upper limits for active power of gen-
erator �. 

%�.+, %�.)  Lower and upper limits for reactive power of 
generator �. 

/�,!+ , /�,!)  Lower and upper limits for angle difference 
across line 
�. 

0  A positive big value. 
Variables  
#�,�,�. , %�,�,�.  Active and reactive powers of generator � in is-

land � and period �. 
∆2�,�,� Speed deviation of generator � from COI fre-

quency in island � and period �. 
3�,�,� Proportion of load shedding to load demand at 

bus 
 in island � and period. 
4�,ℓ,�, ��,ℓ,� Auxiliary variables for active and reactive line 

flows. 
#�,ℓ,�, %�,ℓ,� Active and reactive flows of line ℓ in island � and 

period �. 
5�,� Binary planning variable that is 1 if line � is 

planned at period �; 0 otherwise. 
6�,�,�, 7�,�,!,� Transformed variables for convexification. 

8�,�,!,� Transformed variable for convexification. 
Other symbols are defined in the text as required. 

I. INTRODUCTION 

A. Motivation and Background 

Recent trends in power systems, such as increasing penetra-
tion level of renewable energy sources and increasing use of 
transmission capacity in electricity markets, have reduced the 
stability margins and therefore made these systems more vul-
nerable to severe disturbances [1]. As major disturbances may 
initiate high impact events, especially in stressed networks, par-
tial or total blackouts may occur with grave economic and so-
cial consequences. For instance, the US-Canadian blackout in 
2003 affected about 50 million people, and two major blackouts 
occurred in Sweden and Italy in the same year [1]. Another 
blackout in 2007 affected about 480,000 customers in Australia 
[2]. A recent partial blackout in 2019 left 73,000 customers 
without electricity in New York as a result of a transformer fail-
ure [3].  

Although power systems are designed to withstand credible 
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contingencies, they may experience challenging operation in 
fault situations, especially those including the failure of primary 
protections. In case of failure in the primary protection, faults 
may be cleared by the backup protection, which operates after 
an intentional delay [4]. This intentional delay is considered to 
provide sufficient time for local relays to possibly clear the 
fault. However, the persistence of faults becomes longer due to 
the intentional delay of backup protections. As a result, fault 
durations with orders of a few hundreds of milliseconds are 
practically possible [1], [5]. 

Intentional controlled islanding (ICI) is the last resort as a 
corrective control action to prevent partial or global blackout in 
large-scale power systems [1]. Following major disturbances, if 
available control actions are unable to keep a power system in-
tact, ICI can mitigate the disaster by creating stable and sustain-
able islands [6]. The islands are created considering different 
features including coherent groups of generators, generation ad-
equacy in islands, and minimum power flow disruption on 
healthy branches. Depending on the disturbance location and 
severity, different ICI scenarios are usually planned a priori to 
be implemented in real-time actions [7], [8], [9]. After island-
ing, system restoration should be done to reintegrate the islands 
considering their synchronization and stability issues. 

Transmission expansion planning (TEP) is carried out to 
identify optimal network requirements to supply prospective 
demands in a secure and economic manner. Because planned 
lines affect power system stability, some preventive/corrective 
actions may be incorporated into TEP as long-term solutions to 
reinforce the system against blackouts. Weak transmission cor-
ridors are usually selected to be opened in ICI to minimize 
power flow disruptions in islands [9]. Thus, an ICI-oriented 
TEP (ICI-TEP) framework can improve system performance by 
enhancing the stability of islands in ICI events through more 
efficient planning of candidate lines. Out of different stability 
types, frequency stability is of concern for any disturbance 
causing a large loss of load or generation [10]. The frequency 
of center of inertia (COI) criterion has recently captured atten-
tion in power system stability studies [11], [12], [13]. The COI 
frequency is defined as the common synchronous frequency, to 
which generators tend in their steady-state conditions [12]. 
Managing the COI frequency reduces the drift of generator an-
gles [12]. 

Studying the ICI with a DC network model may lead to in-
feasible islands mainly due to out-of-bound voltages and local 
shortage/surplus of reactive power [9], [14]. However, inclu-
sion of nonlinear AC power flow equations can turn the AC-
based ICI-TEP model into a mixed-integer nonlinear program-
ming (MINLP) problem, which is computationally demanding 
and probably intractable in large-scale systems. To this end, lin-
earized or convex formulations of AC network model are pro-
posed in the literature [9], [15], [16]. The convex models can be 
efficiently solved using available solvers to achieve globally 
optimal solutions in a reasonable time [15]. 

B. Literature Review 

ICI is addressed in the literature using DC and AC network 
models. In [9], ICI is formulated with AC network models to 
minimize power flow disruption and load shedding with group-
ing of coherent generators. Power flow equations are linearized 

around the base point (unity for bus voltage magnitudes and 
zero for line angle differences) using a piecewise linearization. 
However, since the base point may differ for each bus in real 
applications, linearization accuracy may be affected. Also, the 
piece-wise linearization introduces new integer variables, 
which may make the model intractable when other modules, 
such as TEP, are imposed. In [1] and [7], an ICI algorithm with 
a DC network model is proposed by relaxing a mixed-integer 
linear programming (MILP) model into a linear programming 
(LP) problem solved by a recursive procedure. 

TEP with different features has also been reported in the lit-
erature. A dynamic TEP (including time-dependent investment 
decisions) with an AC network model can be computationally 
demanding. Thus, it is usually limited to small test cases in the 
literature. A dynamic TEP is proposed in [17]; however, a DC 
network model is used. A bi-level single-period TEP with AC 
optimal power flow (AC-OPF) constraints is proposed in [18] 
using the second order cone (SOC), McCormick, and big-M re-
laxations. Authors in [19] considered short-circuit levels in dy-
namic TEP and linearized power flow and impedance equations 
to achieve an MILP model. However, to the best of the authors’ 
knowledge, the effects of transmission planning on ICI scenar-
ios have not been addressed in the literature.  

The COI frequency concept has been studied in a number of 
works. In [11], a method is proposed to estimate COI frequency 
in online applications by decomposing swing equations of gen-
erators. An expression is obtained in [12] to determine COI fre-
quency through a linear combination of bus frequencies. In 
[13], the center of gravity concept is proposed to estimate local 
frequencies from the COI frequency. 

C. Contributions and Organization of the Paper 

In light of the literature review, the main contributions of this 
paper can be summarized as follows: 

• Incorporating ICI scenarios into TEP. This can increase 
the resiliency of transmission systems against major dis-
asters and extreme contingencies through more efficient 
planning of transmission assets. Consequently, blackout 
risk is reduced. 

• Enhancing frequency stability of islands in the proposed 
ICI-TEP. After deriving the frequency of COI for each 
island, the frequency deviations of generators from the 
COI frequency are minimized in every island. As a re-
sult, the stability of islands improves. Moreover, the 
proposed ICI-TEP model incorporates AC network rep-
resentation, which makes it possible to create more volt-
age secure islands by modeling voltage- and reactive 
power-related issues. 

• Presenting a Benders decomposition (BD) strategy to 
solve the proposed ICI-TEP problem. This strategy de-
composes the ICI-TEP problem into a small-scale inte-
ger linear programming (ILP) problem and three quad-
ratic convex (QC) problems to improve tractability and 
solution optimality.  

It is worth noting that the current paper presents a determin-
istic version of the proposed model for clarity and for better 
presenting the underlying ideas. However, it can be extended to 
incorporate power system uncertainties using available uncer-
tainty modeling approaches, such as stochastic programming 



approaches that model uncertainties using scenarios [20], ro-
bust optimization approaches that model uncertainties using 
bounded intervals [17], and information-gap decision theory 
(IGDT) methods that model uncertainties using uncertainty ho-
rizons [21]. All of these approaches require a deterministic 
model of the problem and start from it to characterize the un-
certainties. Thus, to extend the proposed deterministic ICI-TEP 
model to consider the associated uncertainties, which can be 
taken into account in the future works, having an efficient ICI-
TEP model improving frequency stability provides an effective 
starting point. 

The rest of this article is organized as follows. In Section II, 
the frequency deviation of generators after islanding is modeled 
using the COI frequency concept. The proposed ICI-TEP 
framework is formulated in Section III using a BD strategy; the 
solution procedure is also detailed in this section. Case studies 
and numerical results are presented in Section IV. Finally, Sec-
tion V concludes the paper. 

II.  MODELING THE STABILITY OF ISLANDS USING THE COI 
FREQUENCY CONCEPT 

An integrated power system before islanding can be consid-
ered in a steady-state operating point at its steady frequency, 
which also represents the generators’ speed. Following a severe 
disturbance (which may lead to islanding), unbalance occurs 
between power generation and consumption, a matter that per-
turbs frequency by accelerating or deaccelerating generators. 
Swing equations of a generator describing its transient behavior 
are expressed as [11]: 

9:
9� = 2 − 20, (1a)

2?
20

92
9� = #@ − #A −B$(2 − 20), (1b)

where : and 2 are the rotor angle and speed of the generator, 
respectively after the disturbance; 20 is the steady-state syn-
chronous speed before the disturbance; ? is the generator iner-
tia constant; #@ is the generator mechanical input power; #A is 
the generator output power after the disturbance; and B$ is the 
generator damping coefficient. Note that this damping parame-
ter is different from the frequency-sensitive load change used in 
some works, such as [22], to model the power consumption de-
pendency of loads on frequency. Because turbine governors 
usually have long time constants compared to electrical param-
eters, #@ can be assumed fixed in transient stability analysis 
[11]. In addition, some higher-order parameters, such as those 
associated with transformer tap changers, can also be assumed 
constant during the short study period of islanding. Integrating 
(1b) results in: 

∫ 2?
20

92
F

F=F0
= ∫ {#@ − #A −B$(2 − 20)}

�

�=0
9�, (2)

where � = 0 corresponds to the instant that the disturbance oc-
curs. Considering a short time period ∆� after disturbance and 
evaluating electrical power #A,� and speed 2� as two constants 
at � = ∆�, (2) can be approximated as: 

2?
20

(2� − 20) ≈ {#@ − #A,� −B$(2� − 20)}∆�, (3)

where ∆2 = 2� − 20 is the generator speed deviation after the 
disturbance; ∆# = #A,� − #@ is the change in the generator 
active output power after the disturbance. 

Depending on the time varying variables #A and 2 at the 
right-hand side of (2), the approximation accuracy of (3) can be 
evaluated at two scenarios: (i) #A is low compared with #@ dur-
ing the fault due to low voltage magnitude at generator termi-
nals. The term B$(2 − 20) is also small since generator speed 
2 is close to the pre-disturbance speed 20 in the transient sta-
bility study period, and B$ is small [23]. Then, since #@ is 
dominating in (2), the term under integration is almost constant 
and can be taken out of the integration leading to (3); (ii) #A is 
not low compared with #@. Although, the term under integra-
tion in (2) is time varying, the approximation still holds enough 
accuracy. Note that we are not trying to estimate the nonlinear 
function in (2); instead, we estimate the integral value. Further 
analysis in this regard is presented in Section IV. 

By rearranging (3), we obtain a linear approximation for the 
generator speed change, i.e. (2? 20⁄ )∆2 ≈ −(∆# +
B$∆2)∆�, which can be solved for ∆2 as: 

∆2 ≈ −∆�
2? 20⁄ + B$∆�∆# = P∆#, (4)

where P = −∆� (2? 20⁄ + B$∆�)⁄  is a constant for a given 
generator. Consequently, the speed of generator � at time ∆� 
after the disturbance is given as: 

2� ≈ 20 +∆2� = 20 + P�∆#�. (5)

Eq. (5) expresses the speed of generator � (2�) as a function 

of its power disruption (∆#�) that occurs due to the disturb-

ance. In this equation, 20 and P� are constants. 
Considering the fact that the splitting of a power system into 

islands is decided by grouping of coherent generators [6], each 
island experiences a new frequency of COI after islanding. The 
frequency of COI is the frequency, to which generator speeds 
converge in steady state. The frequency of COI for each island 
is given as [11], [12], [13]: 

2R,S = ∑ ?�2�∀�
∑ ?�∀�

, (6)

where 2R,S  is the COI frequency of the island determined by 
all generators of the island; and ?� is the inertia constant of 

generator � in the island. By substituting (5) in (6) and with 
some mathematical manipulations, (6) can be rewritten as: 

2R,S = 20 +
∑ (P�?�∆#�)∀�

∑ ?�∀�
. (7)

Eq. (7) gives the frequency of COI for each island as a func-
tion of the pre-islanding frequency (20) and power disruptions 
(∆#�) that generators incur after islanding. 

To maximize the stability of islands after ICI and to reduce 
the amount of load shedding that is required to maintain the sta-
bility of the islands, the speed deviations of generators from the 



island’s COI frequency should be minimized in each island. In 
other words, because 2R,S  is the target speed for island’s gen-
erators in the steady-state condition, minimizing the deviation 
will ease the convergence trajectory of generator speeds toward 
2R,S . 

The speed deviation of each individual generator from the 
island’s 2R,S  is given as ∆2� = 2� − 2R,S . By substituting 

2� and 2R,S  from (5) and (7), respectively, and after mathe-
matical manipulations, we obtain: 

∆2� = P�∆#� ∑ ?�∀� −∑ (P�?�∆#�)∀�
∑ ?�∀�

. (8)

Eq. (8) expresses the speed deviation of generator � from the 
island’s COI frequency (∆2�) as a function of power disrup-

tions applied to generators (∆#� ,∀�) due to islanding. Note 

that ∆2� can be positive or negative for a specific generator 
depending on its comparative speed with respect to other gen-
erators in the island. In the next section, we use (8) to minimize 
the total deviations of generator speeds from the COI frequency 
to improve the frequency stability of islands after ICI.  

III.  PROPOSED MODEL AND SOLUTION SCHEME FOR ICI-TEP 

The overall solution procedure proposed to solve the ICI-
TEP problem is illustrated in Fig. 1 using a BD strategy includ-
ing a master problem (MP) and three subproblems (SPs). This 
approach enhances the transparency of the ICI-TEP solution in 
terms of decomposing different objectives of the problem. The 
MP optimizes the investment decisions, SP1 eliminates infeasi-
bilities considering operational and technical constraints, SP2 
minimizes operation costs and power disruptions of islands, and 
SP3 minimizes frequency deviations of generators from the is-
land’s COI frequency as another objective function. The steps 
of Fig. 1 are detailed in the ensuing subsections. Note that co-
herent generators usually do not change as a result of adding 
new lines in TEP based on the slow coherency criterion [24].  

A. Graph-Based Representation of Islanding Scenarios 

A power system can typically be represented by a graph X =
(, ℰ) where  is the set of nodes (buses) and ℰ is the set of 
edges (lines). Each credible severe fault results in its corre-
sponding ICI scenarios. It is expected that the outcome of the 
proposed method changes if a different set of faults are em-
ployed. Set � includes all probable islands (i.e., subgraphs) 
that may be created in ICI scenarios in a TEP planning horizon. 
The island � ∈ � is a subset of the main graph (X� ⊂ X) and 
is represented by its own set of generators ��, buses �, and 
lines ℰ�. We assume the integrated system as the first element 
of � (� = 1) denoting the normal pre-islanding state. All ICI 
subgraphs start from � = 2. We also assume that subgraphs 
X� (∀� ≥ 2) are determined a priori using appropriate ICI ap-
proaches, such as those presented in [1], [7], considering coher-
ent generators and cut-sets. Note that since the proposed ICI-
TEP method foresee ICI scenarios, in order to minimize the in-
vestment cost, it does not typically plan new lines in cut-sets, 
which would be opened in ICI scenarios. 

B. Master Problem (MP): Obtaining Optimal Investment Plan 

The total cost of the ICI-TEP problem includes the invest-
ment cost, operation cost, and islands’ load shedding (LS) cost. 
These cost terms are decomposed between the MP and SPs. The 
MP minimizes the net present value (NPV) of the time-depend-
ent investment cost in (9) as a small ILP problem. Since X� ⊂
X1 (∀� ≥ 2), � ∈ ℒ1 in (9a) includes candidate lines of X1 that 
contain all candidate lines. If a decision is made to build a line 
at time period �, (9b) makes it available at subsequent periods. 

Min 4`- ≥ ∑ ���(5�,� − 5�,�−1)
(1 + �)�−1∀�∈ℒ1,�

. (9a)

5�,� ≥ 5�,�−1. (9b)

C. Subproblem 1 (SP1): Making the Solution Feasible 

SP1 is designed to polish the investment solution obtained 
from the MP to make it feasible. At early iterations of the BD, 
to minimize (9a), all binary variables are usually set to zero (im-
plying no candidate line is planned). When this investment plan 
is applied to SPs, power system constraints may be infeasible 
over the planning horizon because new lines may be needed to 
meet the load growth. Therefore, SP1, as formulated by (10) as 
a QC problem, is solved subject to power system constraints to 
remove infeasibilities. From physical point of view, it is possi-
ble to meet load growth by adding new lines as many as needed. 
Consequently, the internal loop of Fig. 1 converges after a few 
iterations when new lines are added to the network. In (10), 

, � ∈ �, � ∈ ��, ℓ ∈ ℰ�, and � ∈ ℒ1. In other words, (10) is 
satisfied for all islands � ∈ � (including the integrated system 
with � = 1). 

 
Fig. 1. Proposed solution method for the ICI-TEP problem. 
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Min 4l-1 ≥ ∑ (�1�,�,� + �2�,�,� + �3�,�,� + �4�,�,�)
∀�,�,�

. (10a)

5�,� = 5�,�̅̅̅ ̅̅ ̅̅ ̅̅    →  h�,�l-1. (10b)

∑#�,�,�. ��,�,�,�
∀�

−∑#�,ℓ,�(��,ℓ,�,! − ��,ℓ,!,�)
∀ℓ,!

= (1 − 3�,�,�)#�,�$ +&�'6�,�,� + �1�,�,� − �2�,�,�. (10c)

∑%�,�,�. ��,�,�,�
∀�

−∑%�,ℓ,�(��,ℓ,�,! − ��,ℓ,!,�)
∀ℓ,!

= (1 − 3�,�,�)%�,�$ −(�'6�,�,� + �3�,�,� − �4�,�,�. (10d)

0 ≤ 3�,�,� ≤ 1. (10e)

4�,ℓ,� = &ℓ ∑6�,�,�"�,ℓ,�
∀�

−&ℓ ∑7�,�,!,���,ℓ,�,!
∀�,!

 
−(ℓ ∑8�,�,!,���,ℓ,�,!

∀�,!
. (10f)

��,ℓ,� = −(ℓ ∑6�,
,�"�,ℓ,�
∀


+ (ℓ ∑ 7�,
,�,���,ℓ,�,!∀
,�
 

−&ℓ ∑8�,�,!,���,ℓ,
,�
∀�,!

. (10g)

4�,ℓ,� −0(1 − 5ℓ,�) ≤ #�,ℓ,� ≤ 4�,ℓ,� +0(1 − 5ℓ,�). (10h)

��,ℓ,� −0(1 − 5ℓ,�) ≤ %�,ℓ,� ≤ ��,ℓ,� +0(1 − 5ℓ,�). (10i)

#�,ℓ,�2 +%�,ℓ,�2 ≤ 5ℓ,�(�ℓ))2. (10j)

#�.+ ≤ #�,�,�. ≤ #�.) . (10k)

%�.+ ≤ %�,�,�. ≤ %�.) . (10l)

(*�+)2 ≤ 6�,�,� ≤ (*�) )2. (10m)

7�,�,!,� tan /�,!+ ≤ 8�,�,!,� ≤ 7�,�,!,� tan /�,!) . (10n)

7�,�,!,� = 7�,!,�,�. (10o)

8�,�,!,� = −8�,!,�,�. (10p)

7�,�,!,�2 + 8�,�,!,�2 ≤ 6�,�,�6�,!,�. (10q)

Eq. (10a) minimizes the sum of non-negative slack variables 
�1�,�,�, �2�,�,�, �3�,�,�, and �4�,�,� as power imbalance penal-
ties that appear in (10c)–(10d). We assume that a generation 
expansion plan is already available and generators are added 
through ��,�,�,� over the planning period [25], [26]. A zero ob-

jective function 4l-1 in (10a) implies that all power imbalances 
are mitigated. As shown in Fig. 1, the internal loop is iterated 
until 4l-1 becomes zero. In (10b), binary decision variables 5�,� 
are fixed to their optimal values 5�,�̅̅̅ ̅̅ ̅̅ ̅̅ obtained by the MP in (9) 
in the previous iteration. This way, SP1 saves the QC feature by 
relaxing binary variables. In (10b), h�,�l-1 indicates the associ-
ated dual variable, which will be used later in constructing 
Benders infeasibility cuts. These dual variables are the sensitiv-
ity of the objective function 4l-1 with respect to variable 5�,�, 

i.e. s4l-1 s⁄ 5�,� evaluated at 5�,� = 5�,�̅̅̅ ̅̅ ̅̅ ̅̅. Dual values are usu-
ally accessible after solving the optimization problem using 
available solvers [27]. 

Power balance for each bus at every subgraph is established 
by (10c) and (10d), where the first term gives the total active/re-
active generation at bus 
 and the second term is the total ac-
tive/reactive power leaving bus 
 through existing and candidate 
lines. Active and reactive load shedding is also modeled in 
(10c) and (10d) by 3�,�,� to keep islands stable after ICI. Load 
shedding limits are constrained by (10e). Slack variables in 
(10c) and (10d) model the generation deficiency and surplus. 
For instance, if �1�,�,� (�2�,�,�) is nonzero in (10c), we have 
active generation surplus (deficiency) at bus 
. Only one of 
�1�,�,� and �2�,�,� can be nonzero for a given bus 
 at period � 
in subgraph � (and similarly for �3�,�,� and �4�,�,�). Equations 
(10f) and (10g) calculate auxiliary variables for active and re-
active line flows, respectively. Equations (10h) and (10i) model 
active and reactive flows of lines using the big-0  linearization 
technique to prevent bilinear terms (multiplication of binary 
and continuous variables). For existing lines, we have 5ℓ,� = 1 
in all planning periods.  

To make the model convex, (10f) and (10g) employ varia-
bles 6�,�,�, 7�,�,!,�, and 8�,�,!,� instead of commonplace varia-

bles of bus voltages and phase angles (*�,�,�, /�,�,�). The exact 
expressions for these transformed variables are 6�,�,� = *�,�,�2 , 

7�,�,!,� = *�,�,�*�,!,�cos/�,�,!,�, and 8�,�,!,� =
*�,�,�*�,!,�sin/�,�,!,�, where /�,�,!,� = /�,�,� − /�,!,� [16]. If 
these exact nonlinear expressions had been incorporated into 
(10), SP1 would have been nonconvex. Alternatively, their re-
laxed forms are embedded in (10) to obtain a QC model of the 
network AC representation [15], [16].  

The apparent ratings of lines are limited in (10j) as quadratic 
constraints. If a candidate line is not chosen (i.e., 5ℓ,� = 0), 
(10j) enforces #�,ℓ,� = %�,ℓ,� = 0. Thus, the flows of non-con-
structed candidate lines do not affect (10c) and (10d). Active 
and reactive power limits of generators are given in (10k) and 
(10l). Constraint (10m) bounds 6�,�,� within its limits. Con-
straint (10n) relates two relaxed variables 7�,�,!,� and 8�,�,!,�. 
Symmetric and skew-symmetric properties of 7�,�,!,� and 

8�,�,!,� are forced by (10o) and (10p), respectively. To 
strengthen the QC relaxation, the SOC requirement is imposed 
by (10q) [28]. Note that (10q) is convex in spite of having a 
bilinear term [16]. 

D. Subproblem 2 (SP2): Obtaining Optimal Operation Cost 

After mitigating power imbalances by SP1, the operation 
cost is minimized in SP2. To do this, power generation costs of 
the integrated system (X1) and load shedding costs of islands 
(X�,∀� > 1) are minimized as the first and second summations 
in (11a). Load shedding may be required to stabilize islands af-
ter ICI. The constraints of SP2, which is a QC problem, are 
given in (11b)–(11e). 



Min 4l-2 ≥ 
∑ (#�,�,�. ��)��,���,-

(1 + �)�−1�=1,�,�
+ ∑ (3�,�,�#�,�$��)��,���

(1 + �)�−1∀�>1,�,�
. (11a)

5�,� = 5�,�̅̅̅ ̅̅ ̅̅ ̅̅   →  h�,�l-2. (11b)

∑#�,�,�. ��,�,�,�
∀�

−∑#�,ℓ,�(��,ℓ,�,! − ��,ℓ,!,�)
∀ℓ,!

 
= (1 − 3�,�,�)#�,�$ +&�'6�,�,�. (11c)

∑%�,�,�. ��,�,�,�
∀�

−∑%�,ℓ,�(��,ℓ,�,! − ��,ℓ,!,�)
∀ℓ,!

 
= (1 − 3�,�,�)%�,�$ −(�'6�,�,�. (11d)

(10e)–(10q). (11e)

Binary values obtained by the MP are fixed in (11b). Equa-
tions (11c) and (11d) are similar to (10c) and (10d), from which 
slack variables are removed. Considering Fig. 1, SP2 can be 
feasible without the slack variables since infeasibilities are al-
ready mitigated by SP1. Equations in (11e) model the remain-
ing power system, TEP, and relaxation constraints similar to 
(10). 

E. Subproblem 3 (SP3): Improving the Stability of Islands 

The frequency deviations of generators from their island’s 
COI frequency have been already obtained in (8). To establish 
more stable islands after ICI, total frequency deviations of gen-
erators at every island are minimized by SP3 as given in (12).  

Min 4l-3 ≥ ∑ (�5�,�,� + �6�,�,�)
∀�>1,�,�

. (12a) 

5�,� = 5�,�̅̅̅ ̅̅ ̅̅ ̅̅       →  h�,�l-3. (12b) 

∆#�,�,� = #�,�,�. − #�,�.0. (12c) 

∆2�,�,� =
P�∆#�,�,� ∑ ?�∀� −∑ (P�?�∆#�,�,�)∀�

∑ ?�∀�
. (12d) 

∆2�,�,� + �5�,�,� − �6�,�,� = 0. (12e) 

(11c)–(11e). (12f) 

The objective function 4l-3 in (12a) minimizes the sum of 
non-negative slack variables modeling frequency deviations of 
generators. Investment binary decisions are fixed in (12b) with 
the dual value h�,�l-3. In (12c), #�,�.0 represents the active output 

power of generator � at period � before ICI (pre-islanding state) 
and ∆#�,�,� is the change in the generator active power after 
islanding. The frequency deviations of generators after ICI are 
given by (12d). Positive slack variables in (12e) model the lag 
or lead of the frequency of generator � with respect to the COI 
frequency of the island. Only one of variables �5�,�,� and 

�6�,�,� can be nonzero for a given generator at a period in an 
island. By minimizing the sum of these slack variables in (12a), 
frequency deviations of generators after ICI are minimized. Alt-
hough the objective function in (12a) may not ultimately be 

zero, it will be minimized to improve the stability of the islands. 
Other constraints related to system operation, TEP, and relaxa-
tions are imposed by (12f). 

F. Feasibility and Infeasibility Cuts 

The MP objective including the SP2 feasibility cut is given 
in (13a). The SP2 feasibility cut is specified in (13b). Infeasi-
bility cuts resulting from SP1 and SP3 are expressed by (13c) 
and (13d), respectively. These cuts are added to the MP in each 
iteration. 

4`- ≥ ∑���(5�,� − 5�,�−1)
(1 + 8)�−1∀�,�

+ { ⋅ (13a)

{ ≥ 4l-2̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +∑h�,�l-2(5�,� − 5�,�̅̅̅ ̅̅ ̅̅ ̅̅)
∀�,�

. (13b)

4l-1̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +∑h�,�l-1(5�,� − 5�,�̅̅̅ ̅̅ ̅̅ ̅̅)
∀�,�

≤ 0 ⋅ (13c)

4l-3̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +∑h�,�l-3(5�,� − 5�,�̅̅̅ ̅̅ ̅̅ ̅̅)
∀�,�

≤ 0 ⋅ (13d)

where 4l-1̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 4l-2̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, and 4l-3̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ parameters are the values obtained 
for objective functions SP1, SP2, and SP3, respectively. The 
feasibility cut { in (13a) steers the MP solution as the BD lower 
bound toward the BD upper bound to converge (as shown in 
Fig. 1). By adding cuts (13) at each iteration, SPs affect the MP 
optimal investment plan through their dual variables and objec-
tive functions. 

Using the proposed solution scheme, the ICI-TEP problem 
is decomposed into smaller problems: the MP, SP1, SP2, and 
SP3 described by (9), (10), (11), and (12), respectively. The MP 
is a small ILP problem. Also, since binary variables 5�,� are 
fixed to 5�,�̅̅̅ ̅̅ ̅̅ ̅̅ in SPs, SPs are relaxed from binary variables and 
they represent QC problems. The MP and SPs can be efficiently 
solved using available solvers to achieve their global optimal 
solution within a proper optimality gap. However, the original 
ICI-TEP problem (without decomposition) represents a mixed-
integer QC programming (MIQCP) problem that might be in-
tractable. The integrated MIQCP model can be described as a 
multi-objective optimization problem: 

min(4`- + 4l-2, 4l-3) (14a) 

s.t. (9), (10e)–(10q), (11a), (11c)–(11d), (12a),  

(12c)–(12e). (14b)

IV.  CASE STUDIES AND NUMERICAL RESULTS 

To evaluate the performance of the proposed ICI-TEP 
method, its results are compared with those of the conventional 
TEP (C-TEP) method, in which ICI is separately performed. All 
optimization codes are implemented in GAMS 27.1.0 and 
solved by the GUROBI 8.1.1 solver on a personal computer 
with a 3.2 GHz i7 CPU and 16 GB of RAM. The maximum 
number of iterations in the inner and outer loops of Fig. 1 is set 
to 200. The case studies are examined with the BD convergence 
tolerance of 0% and 0.5%. Since the BD convergence tolerance 
is normalized by �(, it is possible to set its percentage value in 



advance regardless of the system size. The cost of load shedding 
is assumed $10,000/MWh [29]. For the generation expansion, 
we follow the basic generation expansion model of [19] to ex-
pand the capacity of existing power plants as an input to our 
proposed method. 

A. IEEE 39-Bus Test System 

A 5-year planning horizon with a 7% annual load growth is 
assumed for TEP on the modified IEEE 39-bus test system with 
a 20% increased loading level [19]. We have run the basic GEP 
model of [19] to expand the capacity of existing power plants 
using 197 MW generation units to meet the demand levels. As 
a result, for the IEEE 39-bus test system, we have obtained 12, 
4, 5, 0, and 7 generation units to be installed in planning years 
1, 2, 3, 4, and 5, respectively. This test system is shown in Fig. 
2. Candidate branches (lines and transformers) are considered 
in existing corridors with the same specifications as existing 
branches. Time domain simulations are carried out by DIg-
SILENT software package. Types of AVR and governor are as-
sumed as IEEE T1 and BPA GG, respectively [30]. We consider 
an islanding scenario in the third year initiated by a three-phase 
fault at line 2-3 near bus 2. This fault occurs at � =1 sec and is 
cleared at � =1.65 sec [1]. This fault-on period is probable if the 
primary protection relay fails to operate. After clearing the 
fault, three groups of coherent generators are formed [1]: {G31, 
G32}, {G33, G34, G35, G36}, and {G30, G37, G38, G39}, in 
which G~ denotes generator at bus ~. If the system is not is-
landed following this fault, it experiences unacceptable operat-
ing conditions as depicted in Fig. 3. As seen from Fig. 3(a), after 
clearing the fault, G30, G37, G38, and G39 fail to reach stable 
angles. This situation mainly challenges the synchronism and 
thus threatens the angle and frequency stabilities of a power 
system. The instability of these four generators can also be seen 
from their rotor speeds in Fig. 3(b). Moreover, in Fig. 3(c), volt-
age magnitudes of some buses that experience larger voltage 
fluctuations are plotted for the period following the fault at � =
1 sec. Before occurring the fault, all voltages were in their per-
mitted range [0.95,1.05] pu. Shortly following the fault, volt-
ages at some buses become as low as 0.2 pu, while after a few 
seconds, some buses such as 25, 26, and 27 experience voltage 
increase as high as 1.23 pu.  

Note that although generator angles and speeds may be more 
important variables in islanding, voltage excursions should be 
also observed [10]. Consequently, if the network is not split into 
islands, global blackout may happen as a result of cascading 
trips caused by out-of-range generator angles and speeds as well 
as out-of-range voltages. However, using ICI, the network is 
split into three islands considering coherent generator groups as 
illustrated in Fig. 2 [1]. Therefore, in this ICI scenario, we have 
the main graph � = 1 corresponding to the pre-islanding system 
that includes all buses and subgraphs � = 2, 3, 4 corresponding 
to the three islands. To evaluate the accuracy of approximating 
(2) with (3), we have checked these equations for 10 generators 
in the IEEE 39-bus test system. The largest error is 2.1% hap-
pening at G39 that experiences the most varying term under the 
integration in (2). Other generators have lower approximation 
errors. 

Planning results obtained by C-TEP and proposed ICI-TEP 
methods are presented in Table I. It is seen that the C-TEP 

method has 7 planned lines with a total investment cost of 
$15.5M. The total cost (including investment, load shedding, 
generation, and blackout costs) is $6881.1M. After islanding, 
$171.1M load shedding cost is yielded in C-TEP. The C-TEP 
method does not consider islanding scenarios while it plans 
lines. Thus, line 16–17, which is planned in the 2nd year, is a 
cut-set that is opened in the ICI (see Fig. 2). This implies that 
islands 2 and 3 may become more vulnerable after islanding due 
to opening of line 16–17.  

On the other hand, the proposed ICI-TEP method plans 10 
lines (1 line in the 2nd year, 7 lines in the 3rd year, and 2 lines in 
the 4th year) with the investment cost of $33.1M. These lines 

Fig. 2. One-line diagram of the IEEE 39–bus test system with its islands. 
 

(a) 
 

(b) 
 

(c) 
Fig. 3. Post-fault variables in the IEEE 39-bus system without islanding, (a) 
rotor angles, (b) rotor speeds, (c) critical voltages. 
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are planned to meet load growth and to reinforce the network 
against the ICI. Although this investment cost is higher than that 
of the C-TEP method, a lower load shedding cost of $131.2M 
is needed (23.3% lower than C-TEP). The three additional lines 
make it possible to reduce the load shedding. Using the invest-
ment cost of 197MW units [19], the generation expansion cost 
for this test system is obtained as $2,255.96M, which is about 
36% of the ICI-TEP total cost. 

It is worthwhile to note that both methods of C-TEP and ICI-
TEP have used load shedding to maintain load-generation bal-
ance in islands. However, the transient behavior and the stabil-
ity of the solutions in Table I should also be analyzed by time-
domain simulations. 

Time-domain simulation results of the ICI-TEP solution are 
shown in Fig. 4. To easily discriminate generators of islands in 
Fig. 4, the curves of the generators in islands 1, 2, and 3 are 
depicted with green, blue, and red based colors. The largest an-
gular oscillation in Fig. 4(a) occurs in the generators of island 3 
{G30, G37, G38, G39}. As seen in Fig. 4(b), islands 1, 2, and 
3 finally approach their own steady-state frequencies as 
1.000637, 1.00361, and 0.988458 pu, respectively. All islands 
are stable although island 3 experiences a more difficult situa-
tion with larger angular fluctuations and a lower steady-state 
frequency. In addition, all voltages in the three islands are in 
their normal range [0.95,1.05] pu; therefore, there is no voltage 
security problem such as tripping of devices due to out of range 
voltages. Consequently, the proposed ICI-TEP method has been 
able to save the stability of islands by appropriately reinforcing 
the transmission system as the backbone of islands. Thus, it has 
zero blackout cost as specified in Table I. 

Time-domain simulation results of the C-TEP solution are 
depicted in Fig. 5. Islands 1 and 2 can converge to a new stable 
point with their own steady-state frequencies as 1.000663 and 
1.000344 pu, respectively. However, as seen in Fig. 5(a), all 
four generators of island 3 {G30, G37, G38, G39} have rotor 
angle fluctuations making island 3 unstable. Considering Fig. 
5(b), G39 (which is the largest generator of the system) accel-
erates its speed and has to be finally separated from other gen-
erators of the island. These four generators in island 3 fail to 
converge to a common speed and thus, frequency of island 3 
becomes unstable. One reason is that the transmission system 
of this island is not strong enough at the ICI time. Although line 
16–17 is planned by the C-TEP method (Table I), it is opened 
in the ICI and therefore island 3 becomes vulnerable. Compar-
ison of Fig. 4 and Fig. 5 validates the resiliency and stability 
improvement of the ICI-TEP solution.  

As a result of blackout in island 3, its total load has to be 
shed resulting in the blackout cost �� = $566.9M (Table I), 
which is much higher than the investment cost of C-TEP 
($15.5M). This blackout cost, caused by the instability of island 
3, incurs an unintentional significant load shedding cost, which 
is different from the intentional load shedding cost �+l  that is 
used to maintain load-generation balance in islands. This shows 
that although the C-TEP method has lower investment cost 
compared with the proposed ICI-TEP method, it results in sig-
nificant financial losses as it fails to establish stable islands en-
countering major disturbances. As reported in Table I, the pro-
posed ICI-TEP method results in the total cost of $6293.4M, 

which is 8.5% lower than that of the C-TEP method 
($6881.1M). 

The computation times, as reported by GAMS, are 56.4 and 
63.2 sec for the C-TEP and ICI-TEP methods, respectively, 
with a zero BD convergence tolerance. Since the ICI-TEP 
solves the integrated network and islands simultaneously, its 
computation burden is slightly higher than C-TEP. The compu-
tation time of the integrated MIQCP model (14) is 1123 sec 
(18.7 min) for this test case. 

TABLE I 
PLANNING AND OPERATION RESULTS OF THE IEEE 39-BUS TEST CASE 

Method Planned Lines 
�� , ��, ���, ��, 

��  (M$) 

C-TEP 
Y2: 16–17. Y4: 7–8, 14–15. Y5: 4–14, 10–
13, 10–32, 13–14. 

15.5, 6127.6, 171.1, 
566.9, 6881.1 

Proposed 
ICI-TEP 

Y2: 3–18. Y3: 9–39, 10–13, 13–14, 14–15, 
17–27, 25–26, 26–27. Y4: 4–14, 10–32. 

33.1, 6129.1, 131.2, 0, 
6293.4 

Y~: planning year ~. �S : Investment cost. �.: Generation cost. �+l : Load 
shedding cost. ��: Blackout cost. �� : Total cost. 

 

(a) 

(b) 
Fig. 4. Time domain simulation results of ICI-TEP solution, (a) rotor angles, 
(b) generator speeds. 

(a) 

(b) 
Fig. 5. Time domain simulation results of C-TEP solution, (a) rotor angles, (b) 
generator speeds. 
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B. IEEE 300-Bus Test System 

This test system, which has 300 buses, 411 branches, and 69 
generators, is chosen to evaluate the scalability of the proposed 
method. The criteria that are considered for candidate lines, 
load growth, and planning years are similar to those already ex-
plained in Subsection IV-A. The generation expansion plan is 
assumed to install 197 MW units with the numbers of 6, 10, and 
10 at planning years 3, 4, and 5, respectively. Two ICI scenarios 
are assumed to occur in the 2nd and 4th years as shown in Table 
II [7]. 

The results of C-TEP and ICI-TEP are presented in Table III. 
To save space, only the number of planned lines in each year is 
provided. The total number of planned lines with the C-TEP and 
ICI-TEP methods is 50 and 56, respectively. Investment costs 
obtained by the C-TEP and proposed ICI-TEP methods are 
$616.8M and $623.0M, respectively. Although the cost and 
number of planned lines of ICI-TEP method are slightly higher 
than those of C-TEP method, it leads to a significantly lower 
load shedding cost ($5.0M versus $64.4M) due to providing 
more reinforced islands. As seen in Table III, the proposed ICI-
TEP method has 37/51 new lines available in the ICI of the 
2nd/4th year versus 33/45 new lines available in C-TEP method. 
Because the additional new lines of the ICI-TEP method are 
planned considering the ICI scenarios, the load shedding cost is 
significantly decreased by more than 92.2% compared with C-
TEP method. Using the investment cost of 197MW units [19], 
the generation expansion cost for this test system is obtained as 
$2,094.82M, which is about 13% of the ICI-TEP total cost in 
Table III. 

The computation times for the ICI-TEP and C-TEP methods 
are 2195.7 and 1389.2 sec, respectively, with a 0.5% BD con-
vergence tolerance. Considering a zero BD convergence toler-
ance, the computation times become 3403.4 and 2125.3 sec for 
the ICI-TEP and C-TEP, respectively. These execution times 
are competing for a planning problem implying the scalability 
of the models. However, the integrated MIQCP model (14) 
could not be solved even after 24 hours execution time implying 
the effectiveness of the proposed BD strategy to make the prob-
lem tractable. 

V. CONCLUSIONS 

In this paper, the performance of TEP is enhanced by incor-
porating ICI scenarios to increase the resiliency of power sys-
tems in case of major disturbances resulting in islanding. A cri-
terion based on the COI frequency of islands is also proposed 
to improve the frequency stability of islands after splitting the 
network. The proposed ICI-TEP method is formulated as a con-
vex model using AC network representation. The numerical ex-
periments illustrate that: 1) compared to conventional TEP 
method, the proposed ICI-TEP method, by a slightly higher in-
vestment cost, not only reduces the intentional load shedding 
cost, but also avoids unintentional significant load shedding 
cost (blackout cost) because of planning a more reinforced 
transmission network leading to more stable islands encounter-
ing major disturbances, and 2) The proposed ICI-TEP method 
has high scalability as its computation time for the IEEE 300-
bus test system with a 5-year planning horizon is only 36.6 
minutes. 
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