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Abstract—This paper proposes a novel method for the machine learn-

ing-based online prediction of generator dynamic behavior in large in-

terconnected power systems. Unlike the existing literature in this do-

main, which assumes faults occur immediately after a steady-state situa-

tion, the proposed method takes the possibility of multiple disturbances 

into account. It is founded on a simulation-based classification approach 

to indirectly take advantage of phasor measurement unit (PMU) data, 

which leads to improvements in robustness against load model uncer-

tainties. Relying on offline scenarios, the method developed conducts 

multiple time-domain simulations (TDSs) in parallel for a set of feasible 

two-machine dynamic equivalent models (DEMs) for each case. There-

after, common descriptive statistics are computed for the rotor angles 

obtained to form the feature space. The values taken via a feature selec-

tion process are then applied as inputs to ensemble decision trees, which 

train models capable of predicting both stability status and generator 

grouping ahead of time. In online situations, PMU data are used to cre-

ate DEMs and the predictors are collected by performing parallel TDSs 

for DEMs. The functionality of the proposed hybrid machine learning 

and TDS-based approach is verified on several IEEE test systems, fol-

lowed by a discussion of results. 

 
Index Terms—Feature selection, generator grouping, machine learn-

ing, multiple disturbances, phasor measurement unit (PMU), power sys-

tem dynamic behavior, simulation-based classification (SBC), transient 

stability. 
 

NOTATION 

The notation used throughout this paper is reproduced below for 

quick reference. 
 

Sets: 

Ω𝐺  Set of generator buses; 

Ω𝑆𝐶  Set of offline scenarios; 

Ω𝑙
𝑆𝐶  Set of all faults occurred at line 𝑙; 

Ω𝐶𝐺  Set of all unique coherency layouts appeared in Ω𝑆𝐶; 

Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅  Set of all unique combinations of the two-cluster genera-

tors; 

Ω𝑨𝑩,𝑙
𝑅𝑇  Set of DEMs required for real-time analysis of faults oc-

curred at line 𝑙; 
 

Constants: 

𝛾  A cut-off value for rotor angle difference among genera-

tors; 

𝛿𝑖
𝑗(𝑡)  Rotor angle of generator 𝑗 at instant 𝑡 for scenario 𝑖; 
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𝑛𝑖
𝐶𝐺  Number of coherent groups in pattern 𝑖; 

𝒀𝑟  Admittance matrix of the reduced network; 

𝐷𝑖  Damping constant of generator 𝑖; 
𝐻𝑖  Inertia constant of generator 𝑖; 
𝛿𝑖  Rotor angle of generator 𝑖; 
𝑥𝑑𝑖 , 𝑥𝑞𝑖  𝑑- and 𝑞-axis synchronous reactances of generator 𝑖; 

 

Functions: 

𝜓𝑖(𝑡)  Stability index of scenario 𝑖 at instant 𝑡; 

Δ𝛿𝑖(𝑡)  Maximum rotor angle deviation between any pair of 

generators at instant 𝑡 for scenario 𝑖; 
𝒟𝑖𝑗  Distance between rotor angles of scenario 𝑖 for DEM 𝑗; 

ℛ𝑖𝑗  Correlation between rotor angles of scenario 𝑖 for DEM 

𝑗; 

𝒞𝑖𝑗  Crest factor of scenario 𝑖 for DEM 𝑗; 

ℳℐ(. )  Conditional mutual information; 

𝑝(. )  Probability distribution function (PDF). 
 

I. INTRODUCTION 

OWER systems are typically confronted by various contingen-

cies that threaten network security. To better address such issues, 

operators put a set of conservative and preventive considerations in-

to practice to guarantee continuity of supply and avoid instability 

under high-stress events. However, such strict procedures limit the 

optimal utilization of network equipment, which consequently in-

creases system operation and planning costs [1]. On the other hand, 

operators cannot contemplate an infinite set of possible disturbances 

due to computational and economic restrictions, which means the 

chance of widespread blackouts remains for some rare scenarios.  

Although the issues discussed have garnered the attention of sev-

eral researchers in the past due to their importance [2], the inclusion 

of wide-area measurement systems has opened up opportunities to 

realize novel solution approaches to address operational challenges. 

For instance, approaches based on online monitoring and event de-

tection [3], fault locating [4], and stability prediction [5] models 

have been reported in recent years.  

In the stability context, the main idea is to develop a platform that 

can predict network instability with a reasonable time so that opera-

tors can trigger corrective and emergency control strategies to main-

tain synchronism of the system [5]. To this end, several methods 

have been proposed in recent years, relying on time-domain simula-

tions (TDSs) [6], transient energy functions [7], and machine learn-

ing (ML) techniques [8]. Among them, ML-based approaches have 

gained more attention as a result of their advantages for real-time 

applications. These methods employ supervised/unsupervised learn-

ing frameworks to train stability prediction models using a large set 

of data collected by offline simulations. Successful implementation 

of neural networks [8], extreme learning machine [9]–[10], and deci-

sion tree (DT) [11]–[12] have been reported in the literature. 
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Fig. 1. Voltage values of Gen 5 of the IEEE 39-bus test system under different (a) multiple disturbances, (b) combinations of load models. 
 

While [8]–[12] describe the stability status of the network, they 

are incapable of presenting any extra information about the system 

dynamic behavior. In an unstable multi-machine power system, 

some generators exhibit similar dynamic motion, i.e., their swing 

curves are so close that they can be considered as single clusters, 

known as coherent groups, with respect to other machines. Because 

coherent groups play a significant role in electing a proper post-fault 

control action [13], prediction of generator dynamic behavior that 

considers both stability status and generator grouping has been in-

troduced in the specialized literature [14]–[20], and is the main focus 

of this paper. 

In [14], a speed acceleration criterion is developed for generator 

grouping with a major focus on low coherency events. Although the 

introduced method is faster than conventional approaches, it still 

takes several seconds. The problem is formed in a multi-class classi-

fication theme in [15]–[19]. In [15], a degree of coherency is defined 

for each pair of generators and then these are applied as predictors to 

a DT-based classifier. Post-fault rotor angles obtained from phasor 

measurement units (PMUs) are employed in [17] and various predic-

tion engines, including DT, random forest, and support vector ma-

chine, are used for the model training stage. While [14]–[16] solely 

focus on identifying generator groups, past studies also address criti-

cal generators [17] and the sequence in which generators lose syn-

chronism [18]–[19]. Furthermore, a regression-based framework is 

performed in [20], where rotor angle swings are forecasted for dif-

ferent post-fault scenarios. Although the predicted values make this 

method superior to [15]–[19] in terms of better inputs for the deci-

sion-making process, topology changes are not considered in [20], 

which dramatically decreases the prediction accuracy [19]. 

To date, the majority of existing stability prediction approaches 

have been developed based on a simplifying assumption in which a 

fault occurs immediately after a steady-state situation [5]–[20]. 

However, power systems frequently face various consecutive small 

and large disturbances that may occur before the system reaches a 

steady-state condition. According to the North American Electric 

Reliability Corporation, major disturbances normally include multi-

ple events [21]. A large load change or a component outage that may 

take place before a fault or contingencies such as successive or sim-

ultaneous faults [22], etc., can be considered as multiple large dis-

turbances that challenge past methods in terms of practical applica-

tions. 

To put it simply, multiple disturbances may occur and, once they 

do, the post-fault values received from PMUs may not lead to suita-

ble outcomes if injected into the past ML-based methods such as 

[8]–[20]. For illustration purposes, a three-phase fault is applied to 

line 21–22 of the IEEE 39-bus test system at 𝑡 = 1. The fault is 

cleared after 0.25 s and circuit breakers at both ends of the line trip; 

the voltage values recorded at generator 5 (Gen 5) are shown in Fig. 

1(a) (solid line). Three exemplary contingencies are applied before 

the main fault and the obtained values are depicted in Fig. 1(a). The 

figure shows the system may not be in a steady state when the last 

contingency takes place at 𝑡 = 1. The during-fault and post-fault 

values (𝑡 > 1) related to multiple disturbances are remarkably dif-

ferent than the case with a single contingency. In past ML-based 

techniques [8]–[20], all offline simulations, as well as the training 

stage, were conducted based on such a simplification. Therefore, 

during-fault and post-fault values, which are used as predictors, may 

not perform well in all situations, i.e., the data received from PMUs 

may not exactly follow the solid line shown in the post-fault window 

of Fig. 1(a). Hence, a framework that can address this deficiency 

would be of interest to power system operators. 

The majority of past stability prediction studies use a constant im-

pedance load model [5]–[20]. While characteristics of large accumu-

lated loads may not change substantially in a short period of time 

[23], they may experience noticeable seasonal shifts [23]–[24]. Alt-

hough such variations in load models may not necessarily affect the 

stability status of the network for a specific contingency [25], they 

will definitely alter measured post-fault values. Thus, past ML-based 

methods that directly use PMU data as predictors might be too sensi-

tive to actual load models. As an example, a three-phase fault is ap-

plied to line 21–22 of the IEEE 39-bus test system at 𝑡 = 0.5 and 

cleared after 0.25 s. Four different combinations of load models, in-

cluding constant impedance (CI), constant power (CP), and induc-

tion motor (IM), are considered for buses 15, 16, and 21; all remain-

ing loads are solely modeled by CI. The system is stable in all cases 

and the measured voltages of Gen 5 are reported in Fig. 1(b). The 

figure shows notable changes in post-fault values that may affect the 

prediction accuracy of the past ML-based techniques, such as [7]–

[20], in real-life situations. Because dynamic load models are hardly 

identifiable in real time, it might be helpful to develop stability pre-

diction techniques that have less sensitivity to such uncertainties. A 

simple method would be expanding offline simulations to cover var-

ious load models. However, this may not be feasible in large net-

works as a huge database would be required to cover an enormous 

number of possible scenarios. Another approach is to develop pre-

dictors that are less sensitive to load model variations, which may 

deserve further investigation. 

Aimed at addressing the drawbacks of the ML-based methods 

proposed for prediction of generator dynamic behavior to date dis-

cussed above, a novel approach is put forward. It is based on a hy-

brid ML and TDS algorithm that generates the required features for 

the classification stage. The PMU data are used to form a set of pre-

defined two-machine dynamic equivalent models (DEMs) for the 

network. The predictors, which reflect suitable resistivity against 

load model uncertainties, are obtained by applying TDS to the 

DEMs. Moreover, it introduces a framework that takes potential 
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multiple contingencies of the network into consideration. Such a 

procedure is introduced as simulation-based classification (SBC) and 

facilitates deriving generalized prediction models capable of pro-

cessing multiple contingencies relying on a limited number of of-

fline single-contingency scenarios. To the best of our knowledge, 

this is the first effort to incorporate either SBC or multiple contin-

gencies into the ML-based transient stability prediction problem. 

The term “multiple disturbances” is used in this paper to express any 

sequence of dependent and independent contingencies, regardless of 

any resulting instability or blackout [22]. The proposed method is 

successfully applied to several IEEE test systems, and the results ob-

tained are compared with existing techniques. 
 

II. GENERATORS DYNAMIC BEHAVIOR AND GENERAL THEME OF 

THE PROPOSED SIMULATION-BASED CLASSIFICATION APPROACH 

As reported in the specialized literature, prediction of generator 

dynamic behavior can be considered a classification problem that 

can be solved in two consecutive stages, i.e., stability identification 

and coherency detection [14]–[19]. If the system is determined to be 

stable, coherent generators are traced with respect to low-frequency 

oscillations [14]–[15]. In the case of an unstable network, which is 

the main focus of this paper, generator grouping is determined to 

find critical generators and subsequently initiate emergency control 

actions [16]–[19]. The methods engaged for offline detection of gen-

erator dynamic behavior and the general theme of the proposed clas-

sification approach are described next. 
 

A. Identification of Instability and Generator Groupings 

Several indices are introduced in the literature to identify stability 

status based on generator rotor angles or speeds. Here, the transient 

stability status is calculated at any instant of time as follows [11]: 
                                                                                         

                𝜓𝑖(𝑡) =
𝛾 − Δ𝛿𝑖(𝑡)

𝛾 + Δ𝛿𝑖(𝑡)
, ∀ 𝑖 ∈ Ω𝑆𝐶 (1) 

Δ𝛿𝑖(𝑡) = max(|𝛿𝑖
𝑗(𝑡) − 𝛿𝑖

𝑘(𝑡)|) , ∀ 𝑗, 𝑘 ∈ Ω𝐺  (2) 
 

where 𝛿𝑖
𝑗(𝑡) is the rotor angle of generator 𝑗 at instant 𝑡 for scenario 

𝑖; Δ𝛿𝑖(𝑡) represents the maximum rotor angle deviation between any 

pair of generators at instant 𝑡 for scenario 𝑖; 𝛾 is a cut-off value for 

rotor angle difference among generators and is set to 360° in this 

paper; Ω𝑆𝐶 and Ω𝐺 indicate sets of offline scenarios and generator 

buses, respectively; and 𝜓𝑖(𝑡) denotes the stability index of scenario 

𝑖 at instant 𝑡, in which positive (negative) values indicate a stable 

(unstable) network. 

Generator groupings are identified based on the rotor angle differ-

ence between generators. In this case, hierarchical clustering, which 

is widely used in previous studies, is put into practice [17]–[19]. For 

this purpose, an agglomerative (bottom-up) strategy is applied to 

make a hierarchical cluster tree. First, each generator is set as a sin-

gle cluster, and then iteratively mixed with nearby clusters based on 

a linkage criterion. The final clusters are obtained by cutting the tree 

by setting a threshold value for the linkage criterion, considered to 

be 360° in this work. A detailed process for coherency identification 

via hierarchical clustering is explained in [17]–[19], but any other 

method can be used without loss of generality. 
 

B. The Proposed Simulation-Based Classification Approach 

In the majority of past methods [8]–[19], the data received from 

PMU devices are directly selected as predictors. This process in-

creases the sensitivity of prediction models to several factors, includ-

ing  load  model,  PMU noise,  delay,  and missing data.  To  address  

 
Fig.  2. The overall process of the proposed simulation-based classification approach. 
 

some of these concerns, a simulation-based classification approach 

is employed in this work so that the predictors are obtained via 

TDSs. Because running a TDS for a relatively large network in real 

time is not plausible, a set of possible two-machine DEMs are gen-

erated with respect to an offline database and the outputs of online 

state estimators.  

To do so, a set of offline scenarios is generated, Ω𝑆𝐶, and TDS is 

carried out for each case; all load models are considered as CI in this 

stage and no multiple contingencies are applied to the database. 

Then, stability status and generator grouping are determined for each 

scenario based on Section II.A. Thereafter, a set of all unique coher-

ency layouts appearing in the offline scenarios, Ω𝐶𝐺, is formed. Co-

herency layouts are then traced and all possible combinations of 

those patterns that can separate the identified coherent groups into 

two categories, such as 𝑨 and 𝑩, are found (Ω𝑨𝑩,𝑖
𝐶𝐺 ). Using statistics, 

the maximum number of combinations appearing in pattern 𝑖 would 

be: 

|Ω𝑨𝑩,𝑖
𝐶𝐺 | =

1

2
∙ ((

𝑛𝑖
𝐶𝐺

1
) + ⋯ + (

𝑛𝑖
𝐶𝐺

𝑛𝑖
𝐶𝐺 − 1

)) =
2𝑛𝑖

𝐶𝐺
− 1

2
,       ∀ 𝑖

∈ Ω𝐶𝐺 , 𝑛𝑖
𝐶𝐺 > 1 

(3) 

where 𝑛𝑖
𝐶𝐺  indicates the number of coherent groups in pattern 𝑖. Fi-

nally, all unique combinations of the two-cluster generators (Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅) 

are obtained by (4): 

Ω𝑨𝑩
𝐶𝐺 = ⋃ Ω𝑨𝑩,𝑖

𝐶𝐺

𝑖∈Ω𝐶𝐺
 (4) 

For each offline scenario, the equivalent model of generators is 

calculated for all combinations found in (4) based on the available 

system data and the steady-state values, as explained in Section III. 

Parallel TDSs are then carried out to record the dynamic behaviors 

of the reduced systems. The rotor angles obtained from such simula-

tions are used to extract predictors; because these features are largely 

obtained via TDSs, rather than instantaneous PMU data, they ex-

press less sensitivity against different sources of uncertainties, as 

shown in Section V. Furthermore, 𝑛𝑖
𝐶𝐺  is a relatively small number, 

which makes Ω𝑨𝑩
𝐶𝐺  a finite set. Simulations empirically show that, for 

the IEEE 145-bus test system, 𝑛𝑖
𝐶𝐺 < 7, the average 𝑛𝑖

𝐶𝐺  is 3.24, and 

the size of Ω𝑨𝑩
𝐶𝐺  is 16 for the database generated in [19]. 

To find the prediction models, each transmission line is examined 

separately. Depending on the system under study, all faults occur-

ring in a sample line 𝑙, Ω𝑙
𝑆𝐶, only bring about a limited number of 

coherent  groups.  Because  the  faulted line can  be easily  identified  



 4 

 
Fig.  3. Network aggregation using a structure preservation technique. 
 

using available event detection algorithms [3]–[4], developing a co-

herency prediction model for each line,  which is rarely addressed in 

theliterature, can substantially increase the prediction accuracy. In 

this respect, the feature selection process explained in Section IV.B 

is employed to decrease the number of DEMs required for real-time 

analysis (Ω𝑨𝑩,𝑙
𝑅𝑇 ) of a particular line, such as 𝑙. 

The overall procedure of the proposed classification approach is 

illustrated in Fig. 2, where the main elements added to the scheme 

are highlighted. This diagram shows that, in online applications, the 

data received from PMUs are injected into the state estimation and 

event detection modules of the energy management system (EMS), 

and the important events are recorded. Once a fault occurs in the 

network and is identified by the detection tools, the first phase of the 

proposed method is triggered and several DEMs are calculated for 

the network based on the latest recorded steady-state situation. Once 

the detection algorithms, digital fault recorders, or relay signals indi-

cate that the fault has been cleared, real-time TDSs are conducted in 

parallel for multiple two-machine networks in which all events and 

multiple contingencies are considered during simulations. Multiple 

contingencies, if there are any, will be applied while running TDSs 

for each DEM. In other words, if a single contingency occurred, the 

TDSs only simulate one disturbance; however, if another event has 

taken place before the system reaches a steady-state situation, the 

TDSs starts from the last steady-state snapshot and simulates all 

events occurred in between. The data obtained in the simulations are 

then applied to the trained classification models, which reveal the 

dynamic behavior of the system. Because the majority of the input 

features are calculated based on simulations (and not direct PMU da-

ta), the predictors are less sensitive to load model uncertainties and 

capable of handling multiple contingencies. A detailed procedure for 

creating DEMs and the proposed solution framework are described 

in the following sections. 

It might be helpful to mention that although the proposed method 

does not directly apply the PMU data into the prediction phase, it 

employs PMU data to run state estimation and fault detection mod-

ules, as stated in Fig. 2. Hence, PMU placement should be carried 

out in a way that full observability of the network is met in normal 

operation. However, no other restrictions, such as placing PMUs on 

generator buses [9]–[20], are needed in the proposed framework. 

III. NETWORK AGGREGATION AND TWO-MACHINE DEMS 

A large multi-area interconnected power system is represented by 

multiple two-machine DEMs in this work. The last snapshot of the 

steady-state situation is employed for the aggregation calculations. 

Based on Section II.B, each element of  Ω𝑨𝑩
𝐶𝐺  contains two sets of 

generators, such as 𝑨 and 𝑩; an equivalent generator of each set is 

used for TDSs. The processes for finding both nodal and machine 

equivalents are described next. 

A. Nodal Aggregation 

A structure preservation technique, shown in Fig. 3, is conducted 

for bus reduction [26]–[27] where sets of nodes 𝑨 and 𝑩 are respec-

tively portrayed by terminal buses 𝑎 and 𝑏 while the following con-

ditions are met: 

• Aggregating each set of nodes does not change currents 

and voltages of the retained nodes; 

• The power injection from each terminal node remains the 

same as from the related aggregated nodes. 
 

Applying this method to both sides, the coherent buses are con-

verted into equivalent nodes using ideal phase-shifting transformers 

with complex ratios. Assuming nodal equations of the original net-

work, shown in Fig. 3, are as follows: 
                                                                                         

[
𝑰𝑨

𝑰𝑩
] = [

𝒀𝑨𝑨 𝒀𝑨𝑩

𝒀𝑩𝑨 𝒀𝑩𝑩
] [

𝑽𝑨

𝑽𝑩
] (5) 

Then the reduced admittance matrix, 𝒀𝑟, can be calculated by [26]: 
                                                                                         

𝒀𝑟 = [
𝒌𝑎

∗𝑡 ∙ 𝒀𝑨𝑨 ∙ 𝒌𝑎 𝒌𝑎
∗𝑡 ∙ 𝒀𝑨𝑩 ∙ 𝒌𝑏

𝒌𝑏
∗𝑡 ∙ 𝒀𝑩𝑨 ∙ 𝒌𝑎 𝒌𝑏

∗𝑡 ∙ 𝒀𝑩𝑩 ∙ 𝒌𝑏
] (6) 

                                                                                         

                      𝒌𝑎 = 𝑽𝑨 ∙ 𝑉𝑎
−1,                  𝒌𝑏 = 𝑽𝑩 ∙ 𝑉𝑏

−1 (7) 
                                                                                         

                       𝑉𝑎 =
𝑽𝑨 ∙ 𝑰𝑨

∗

(∑ 𝑰𝑨(𝑖)
|𝑨|
𝑖=1 )

∗ , 𝑉𝑏 =
𝑽𝑩 ∙ 𝑰𝑩

∗

(∑ 𝑰𝑩(𝑖)
|𝑩|
𝑖=1 )

∗ (8) 

where 𝒌𝑎 and 𝒌𝑏 represent complex ratio vectors of the ideal trans-

formers. Eq. (8) verifies the power balance and unveils voltage val-

ues at the terminal buses. 
 

B. Generator Aggregation 

The dynamic equivalent of a group of generating units is known 

as a single generator reflecting the same speed and power flow pa-

rameters as the original generators during any perturbation. Such 

equivalent generators are connected to terminal buses, shown in Fig. 

3, and represent aggregated parameters of the generating units and 

their control systems. A non-iterative procedure proposed in [26] is 

employed in this paper to calculate equivalent parameters; it relies 

on structure preservation of the coefficient matrices in the time-

domain representation of synchronous machines. Based on this 

method, the inertia constant (𝐻), damping constant (𝐷) on the sys-

tem MVA base, and rotor angle (𝛿) of the equivalent machine con-

nected to bus 𝑎, 𝐺𝑎, can be calculated by (9): 
                                                                                         

𝐻𝑎 = ∑ 𝐻𝑖

|𝑨|

𝑖=1

, 𝐷𝑎 = ∑ 𝐷𝑖

|𝑨|

𝑖=1

, 𝛿𝑎(0) =
∑ 𝐻𝑖 ∙ 𝛿𝑖

|𝑨|
𝑖=1

𝐻𝑎
 (9) 

The equivalent 𝑑- and 𝑞-axis synchronous reactances on the sys-

tem MVA base are obtained by (10)–(11). 𝑥𝑑𝑖 and 𝑥𝑞𝑖  respectively 

represent the  𝑑- and 𝑞-axis synchronous reactances of generator 𝑖. 
The same procedure can be used to obtain equivalent transient and 

subtransient reactances [26].  
                                                                                         

𝑥𝑑𝑎 =
1

∑ 𝒌𝑎(𝑖) (
cos2(𝛿𝑖 − 𝛿𝑎)

𝑥𝑑𝑖
+

sin2(𝛿𝑖 − 𝛿𝑎)
𝑥𝑞𝑖

)
|𝑨|
𝑖=1

 
 (10) 

 

                                                                                         

𝑥𝑞𝑎 =
1

∑ 𝒌𝑎(𝑖) (
cos2(𝛿𝑖 − 𝛿𝑎)

𝑥𝑞𝑖
−

sin2(𝛿𝑖 − 𝛿𝑎)
𝑥𝑑𝑖

)
|𝑨|
𝑖=1

 
(11) 

 

Other equivalent parameters including transient time constants, 

excitation system, and turbine governor are also considered in this 

work, but not reported here as they are not a part of the contribution 

of this paper. A detailed process for calculating those values can be 

found in [26]–[27]; it goes without saying that any other technique 

can be used without loss of generality.  

Dynamic aggregation methods require information about coherent 

groups that lie behind the proximity of generator speed in each 

group. Thus, depending on deviation in their speed, some errors can 
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occur in calculating parameters of the equivalent machine. Because 

Ω𝑨𝑩
𝐶𝐺  contains all possible two-machine coherent groups, such errors 

may appear in some DEM layouts depending on the system operat-

ing point. However, they rarely affect the performance of the pro-

posed prediction approach because the time-domain solutions would 

feed into a machine learning procedure before any decision is made. 
 

IV. THE PROPOSED SOLUTION FRAMEWORK 

Based on Ω𝑨𝑩
𝐶𝐺  calculated in (4), several two-machine equivalent 

networks are derived for each offline scenario using the last availa-

ble steady-state snapshot. Then, a TDS is carried out for each re-

duced network in which all consecutive faults and contingencies are 

implemented by updating 𝒀𝑟 or parameters of the equivalent genera-

tors during simulations. Overall, Ω𝑨𝑩
𝐶𝐺  parallel simulations are con-

ducted for each offline scenario and rotor angle values of the equiva-

lent machines are recorded. Those values are then pushed into the 

feature extraction, feature selection, and training procedures, as ex-

plained below. 
 

A. Feature Extraction 

Assume 𝛿𝑎,𝑖𝑗 and 𝛿𝑏,𝑖𝑗 are rotor angle values of the equivalent 

generators 𝑎 and 𝑏, which are calculated for coherency pattern 𝑗 (𝑗 ∈

Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅) of scenario 𝑖 (𝑖 ∈ Ω𝑆𝐶). The following common descriptive sta-

tistics are employed to extract features from the rotor angles ob-

tained. 

1) Distance between Rotor Angles 

The sum of the absolute difference between rotor angle samples, 

𝒟𝑖𝑗, is calculated based on (12) and considered as a feature. 
                                                                                         

𝒟𝑖𝑗 = ∑ |𝛿𝑎,𝑖𝑗(𝑛) − 𝛿𝑏,𝑖𝑗(𝑛)|

𝑛∈Ω𝑛

, ∀ 𝑖 ∈ Ω𝑆𝐶 , 𝑗 ∈ Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅ (12) 

where Ω𝑛 is the set of time samples. If coherent generators are cor-

rectly selected, a very small amount of deviation between these two 

signals indicates a stable system, while very large values correspond 

to an unstable one. 
 

2) Correlation between Rotor Angles 

In a stable system, rotor angles of the equivalent generators are 

supposed to swing with each other. As such, the correlation between 

these two sets of data, ℛ𝑖𝑗, can be used as a feature to identify the 

dynamic behavior of the system. 
                                                                                         

ℛ𝑖𝑗 =
∑ [(𝛿𝑎,𝑖𝑗(𝑛) − 𝛿𝑎,𝑖𝑗

̅̅ ̅̅ ̅) ∙ (𝛿𝑏,𝑖𝑗(𝑛) − 𝛿𝑏,𝑖𝑗
̅̅ ̅̅ ̅)]𝑛∈Ω𝑛

√∑ (𝛿𝑎,𝑖𝑗(𝑛) − 𝛿𝑎,𝑖𝑗
̅̅ ̅̅ ̅)

2

𝑛∈Ω𝑛  ∙ √∑ (𝛿𝑏,𝑖𝑗(𝑛) − 𝛿𝑏,𝑖𝑗
̅̅ ̅̅ ̅)

2

𝑛∈Ω𝑛

 (13) 

where overbar represents the average value of the signal. 
 

3) Crest Factor 

Crest factor is an index of a signal indicating the ratio of peak val-

ues to the effective value [28]. This factor represents the extreme-

ness of the peaks in a waveform. If the generators in a two-machine 

equivalent system are not properly grouped, the rotor angles may 

have a wavy character, i.e., the stability status of the system may not 

be clearly identified from the rotor angle signals obtained. Thus, the 

crest factor is calculated by (14) and considered a feature to reflect 

this phenomenon. 
                                                                                         

𝒞𝑖𝑗 =
‖𝛿𝑎,𝑖𝑗 − 𝛿𝑏,𝑖𝑗‖∞

√
1

|Ω𝑛|
∑ (𝛿𝑎,𝑖𝑗 − 𝛿𝑏,𝑖𝑗)

2

𝑛∈Ω𝑛

, ∀ 𝑖 ∈ Ω𝑆𝐶, 𝑗 ∈ Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅ (14) 

where ‖ . ‖∞ represents the ℓ-infinity norm. 

In addition to the statistical factors explained above, fault type, 

fault duration, and stability status in the steady-state, 𝜓𝑖(0), are used 

as input features. The first two parameters can be easily obtained 

from event detection modules while 𝜓𝑖(0) is found by (1). These pa-

rameters have been shown to increase overall stability prediction ac-

curacy [11]. 
 

B. Feature Selection 

Prediction of generator dynamic behavior can be interpreted as 

solving classification problems for a set of input features and an ob-

servation vector. Assume 𝐶 = [𝑐𝑘]|Ω𝑆𝐶|×1 is the observation vector; 

in the case of stability prediction, it contains the stability status of 

each offline scenario (𝑐𝑘 ∈ {0,1}) [9]–[12]. Considering Ω𝐶𝐺 as a set 

of all unique coherency layouts in Ω𝑆𝐶, 𝐶 reflects the class label of 

each scenario (𝑐𝑘 ∈ {1, … , |Ω𝐶𝐺|}) for generator grouping prediction 

[15]–[19]. In this paper, a unique model is trained for each line; so, 

𝐶 is confined to a set of all fault scenarios that occurred in each line. 

Considering the features extracted in Section IV.A, the total size 

of the feature space for each line would be 3 × |Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅|. Because cal-

culation of the statistical features discussed above does not incur a 

heavy computational burden, the size of Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅ is the major factor that 

may confine application of the proposed framework in real-time sit-

uations. To resolve this issue, a conditional mutual information 

(ℳℐ)-based method is employed to minimize the two-machine co-

herency set [29]. ℳℐ is a widely used information-theoretic quantity 

that measures how much information is communicated, on an aver-

age basis, in one random variable about another. For the observation 

vector 𝐶 and a feature vector 𝑋, ℳℐ is defined as [29]: 

ℳℐ(𝐶; 𝑋) = ∑  ∑ 𝑝(𝑐, 𝑥) ∙   log (
𝑝(𝑐, 𝑥)

𝑝(𝑐) .  𝑝(𝑥)
)

𝑥∈𝑋𝑐∈𝐶

 (15) 

where 𝑝(𝑐, 𝑥) indicates the joint probability distribution function 

(PDF) of 𝐶 and 𝑋, and 𝑝(𝑐) and 𝑝(𝑥) respectively represent the 

PDFs of 𝐶 and 𝑋. 𝑐 and 𝑥 denote any points belonging to 𝐶 and 𝑋, 

respectively. Notably, a binned format of 𝑝(𝑐, 𝑥), 𝑝(𝑐), and 𝑝(𝑥) 

can be utilized to approximate these variables with a low computa-

tional burden [29]. 

For each two-machine DEM, ℳℐ between the statistical features 

reported in Section IV.A and the observation vector 𝐶 is calculated. 

Among them, the feature with the maximum ℳℐ, 𝑋𝑖, is selected as 

representative of that layout: 

𝑋𝑖 = arg   max
𝐹𝑖 ∈{𝒟𝑖,ℛ𝑖,𝒞𝑖}

{ℳℐ(𝐹𝑖 , 𝐶)} , ∀𝑖 ∈ Ω𝑨𝑩
𝐶𝐺̅̅ ̅̅ ̅ (16) 

Assume 𝑋 is the set of representative features, defined by (16), 

and 𝑆 is the subset of selected features. For a new feature 𝑋𝑖  ∈ 𝑋 to 

be selected, it is expected that the amount of information about 𝐶 

provided by 𝑋𝑖 , which is not already supplied by 𝑆, must be the larg-

est of all candidate features in 𝑋\𝑆 (all members of 𝑋 that are not 

members of 𝑆). In other words, the conditional mutual information 

of 𝐶 and 𝑋𝑖 , given the subset of already selected features 𝑆, should 

be maximized. Such conditional ℳℐ can be calculated as follows: 

ℳℐ(𝐶; 𝑋𝑖|𝑆) = ℳℐ(𝐶; 𝑋𝑖) − 𝛽 ∙ ∑ ℳℐ(𝑋𝑠; 𝑋𝑖)
𝑋𝑠∈𝑆

 (17) 

where 𝛽 is a factor that controls the redundancy penalization among 

single features and is set to 1 |𝑆|⁄  in this paper [29]. 

The overall process of finding the optimal number of two-machine 

DEMs required for real-time prediction in line 𝑙, (Ω𝑨𝑩,𝑙
𝑅𝑇 ), is as fol-

lows: 
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Fig.  4. Coherent patterns* identified in offline scenarios 
* Patterns with rare possibility of occurrence (≤ 3 × 10−4) are ignored. 

TABLE I 

DATA FOR THE NETWORKS USED IN SIMULATIONS 
 

Network 
# of transmission 

lines 
|Ω𝐺| 

|Ω𝑆𝐶| 
(unstable %) 

39-Bus 34 10 12500 (23.10%) 

68-Bus 66 16 12500 (13.92%) 

140-Bus 206 48 20000 (17.06%) 

145-Bus 401 50 20000 (14.14%) 

 

Step  1) Find the representative feature of each reduced network 

using (16); 

Step  2) For all features 𝑋𝑖  ∈ 𝑋, calculate ℳℐ(𝐶; 𝑋𝑖); 

Step  3) Find the feature that maximizes ℳℐ(𝐶; 𝑋𝑖) and add it 

to the subgroup of selected features 𝑆; 
Step  4) Select the next suitable feature, 𝑋+, by: 

𝑋+ = arg  max
𝑋𝑖∈𝑋\𝑆

{ℳℐ(𝐶; 𝑋𝑖|𝑆)} (18) 

Step  5) Update 𝑆 and repeat Step 4 until the stopping criterion 

is met; 

Step  6) Consider the obtained 𝑆 as the set of selected two-

machine DEMs for line 𝑖, Ω𝑨𝑩,𝑙
𝑅𝑇 . 

C. The Training Process 

Simulations empirically show that the fault location significantly 

affects either the system instability or the generator coherency lay-

out. Thus, it is reasonable to train a single prediction model for all 

faults taking place in each line; this action reduces the search space 

and increases the prediction accuracy. Because a minimum level of 

observability is mandatory for the successful operation of the state 

estimators, there must be enough measurement devices in the net-

work to also handle the fault detection process. Such an assumption 

will not restrict the application of the proposed method in real-life 

systems, while a single prediction model can also be derived for the 

whole network in a straightforward manner. 

In this paper, the training stage is handled by ensemble DTs [11]. 

DT is one of the most popular machine learning tools, and is widely 

used in the literature for classification and regression purposes. DT 

has been used in several recent papers in this domain, e.g., [17]–

[19], and shown to perform very well with a medium-sized database 

[11], which is the case in this paper. However, because the ML 

method, itself is not part of the contribution of this work, any other 

technique can also be used without loss of generality. Once the set of 

selected two-machine DEMs is obtained by the proposed conditional 

ℳℐ-based method, the associated features calculated in Section 

IV.A are used as the input features of the ensemble DTs; in total, 

3 × |Ω𝑨𝑩,𝑙
𝑅𝑇 | features are fed into each DT. The DTs are constructed 

based on the standard classification and regression tree (CART) and 

the ensembles are fabricated using the boosting technique. The 

trained models are saved on a local disk and retrieved during online 

applications. 

 
Fig.  5. Distribution of the selected features for different test systems. 
 

V. TESTS AND RESULTS 

The proposed solution framework is implemented in the Python 

environment, through which an automated offline scenario genera-

tion process is formed. The Python scripts interact with the PSS/E 

software [30] to run transient stability for each scenario, build 

DEMs, and conduct TDSs for two-machine DEMs. The developed 

package is tested on several networks including IEEE 39-, 68-, 140-, 

and 145-bus test systems. The number of offline scenarios generated 

for each network is shown in Table I; for each network, 3-phase 

faults are applied to buses and transmission lines of the original sys-

tem. The location of each fault, number of faults in each line, and 

fault durations (2–15 cycles) are randomly selected. The fault im-

pedance is set based on [11] and the load consumption at each bus is 

randomly scaled by 0.65–1.25 with respect to the base demand. 

Moreover, 𝑁 − 1 and 𝑁 − 2 situations are considered while generat-

ing scenarios and cover about 20% of the dataset to reflect topologi-

cal changes. The TDS is conducted for 20 s after fault clearance in 

each case, and the data obtained are recorded in phasor format, two 

samples per cycle, with respect to the standard PMUs [17]. The 

computer used in this study featured an Intel 3.4-GHz CPU with 16 

GB of RAM. Using the established platform, various simulations 

were carried out in two scenarios to evaluate the performance of the 

proposed method, as described next. 
 

A. First Scenario 

In this scenario, the prediction of generator dynamic behavior is 

conducted for IEEE test systems, and the results obtained are com-

pared with those from existing techniques. The generator grouping 

algorithm, explained in Section II, is applied to an offline database 

and the total number of unique coherent patterns identified in each 

network is shown in Fig. 4. This figure shows the IEEE 39-bus sys-

tem reflects the greatest number of patterns among the studied net-

works. Then, each coherent pattern is solely traced, all possible 

combinations that can divide it into two groups of generators are 

found, and these are applied to (4). The |Ω𝑨𝑩
𝐶𝐺 |, shown in Fig. 4, rep-

resents the total number of unmatched combinations of two-cluster 

generators appearing in the database. It indicates the number of par-

allel two-machine TDSs that should be carried out during the train-

ing process for each offline scenario. For instance, in the case of the 

IEEE 140-bus system, 22 parallel two-machine DEMs are formed 

for each scenario and a single TDS is conducted for each. 

To reduce the number of two-machine TDSs for online applica-

tions, the data obtained are applied to a feature selection process ex-

plained in Section IV.B. Based on that, the optimal number of two-

machine TDSs is identified for each faulted line, and the results de-

rived are summarized in Fig. 5. Comparing Figs. 4 and 5 shows the 

feature selection process can substantially reduce the input features 

in all networks; as an example, the average number of two-machine 

TDSs  is  reduced  from 21 to 9 in  the  IEEE 39-bus  system,  which 

 

 

|Ω𝐶𝐺| |Ω𝑨𝑩
𝐶𝐺 | 
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Fig.  6. Distribution of normalized crest factors for two DEMs representing train-

ing cases wherein a fault occurred at line 2–3 of the IEEE 39-bus system. 
 

TABLE II 

AVERAGE STABILITY ASSESSMENT/PREDICTION ACCURACY FOR THE DATASET 

(%) 
 

Network 

Accuracy (%) 

Assessment based on a 
properly selected DEM* 

Prediction based on the 
proposed method 

Stable Unstable All Stable Unstable All 

39-Bus 94.48 85.32 89.90 99.45 97.26 98.35 

68-Bus 95.36 86.43 90.89 99.91 96.17 98.04 

140-Bus 94.90 85.85 90.37 99.83 98.05 98.94 

145-Bus 93.27 84.66 88.96 99.39 96.84 98.11 
* Indicates a single DEM that represents the correct grouping of generators. 
 

TABLE III 

COMPARISON OF AVERAGE PREDICTION ACCURACY FOR DIFFERENT IEEE TEST 

SYSTEMS (%) 
 

Item Test situation 39-bus 68-bus 140-bus 145-bus 

Stability 
status  

prediction 

[17] with PFC = 20 95.59 94.39 95.58 92.67 

[17] with PFC = 60 96.96 96.36 97.50 95.47 

[19] with PFC = 60 97.45 95.72 97.75 97.32 

Proposed method 98.35 98.04 98.94 98.11 

Coherency 

prediction 

[17] with PFC = 20 87.27 87.95 92.96 86.13 

[17] with PFC = 60 92.67 92.37 92.79 92.32 

[19] with PFC = 60 94.06 92.79 92.80 92.89 

Proposed method 96.45 96.53 94.85 95.17 
 

represents more than a 57% reduction in computational burden in 

online applications. It might be helpful to mention that although 

faults applied to some specific lines trigger a single coherent pattern 

for the original network because 𝑁 − 1 and 𝑁 − 2 situations are 

considered in this work, more than one DEM is required for each 

line to perform the prediction with suitable accuracy. 

The network aggregation and the two-machine DEM calculations 

reported in Section III are the backbones of the feature generation 

process for the proposed technique. Considering the simplifications 

applied, such a procedure itself, can assess approximate stability for 

a reduced network. However, in real-time applications, the generator 

grouping is not known, and thus the reduced network cannot be 

formed. Nonetheless, because the proposed framework runs TDSs 

for all possible DEMs, it might be helpful to evaluate the stability 

assessment accuracy of the two-machine system, with known coher-

ent groups; it gives a sense of the quality of the input features. The 

results of such an assessment are shown in Table II. This table 

shows that, on average, the two-machine DEM could lead to 90.89% 

accuracy for the IEEE 68-bus system; the lowest prediction accuracy 

is 88.96% for the IEEE 145-bus test system. The simulation results 

reveal that the reduced system can fairly predict the stable cases, 

with above 93% accuracy, but performs moderately on unstable cas-

es. It is empirically seen in simulations that the two-machine system 

may fail to correctly assess stability for cases with more than two 

generator groups. Nevertheless, the obtained results indicate that the 

approximate calculations of the two-machine system have the poten- 

TABLE IV 
AVERAGE PREDICTION ACCURACY FOR DIFFERENT TOPOLOGIES OF THE 

DATASET (%) 
 

Network 
Stability status prediction Coherency prediction 

𝑁 − 0 𝑁 − 1 𝑁 − 2 𝑁 − 0 𝑁 − 1 𝑁 − 2 

39-Bus 98.29 98.65 99.01 96.62 95.82 95.58 

68-Bus 98.14 97.65 97.24 96.71 95.85 95.76 

140-Bus 99.07 98.56 97.35 95.02 94.50 93.18 

145-Bus 98.16 98.02 97.25 95.30 94.71 94.40 
 

TABLE V 
SENSITIVITY ANALYSIS OF GENERATOR MODELING ERROR ON AVERAGE 

PREDICTION ACCURACY FOR THE IEEE 39-BUS SYSTEM 
 

# 
Subtransient 

reactance 

Subtransient 

time constant 

Excitation 

system 

Stability status 

prediction (%) 

Coherency 

prediction (%) 

1 -* - - 88.19 80.71 

2 
+ - - 91.41 84.54 

3   - 92.20 85.16 

4  -  97.32 95.53 

5    98.35 96.45 
* Average value is used for equivalent modeling; + Detailed value is used. 

 

tial to be used as input features of a stability prediction model. 

The proposed solution framework, shown in Fig. 2, is applied to 

each network to solve both stability prediction and generator group-

ing problems. A stratified 5-fold technique is employed to divide the 

whole database; the evaluation process is reiterated five times utiliz-

ing diverse training sets, and 20% of the dataset is used as test sam-

ples in each iteration. The average stability prediction results ob-

tained are reported in Table II, which shows the lowest prediction 

accuracy obtained on the dataset is 98.04%. Moreover, the proposed 

method is capable of correctly predicting more than 99.39% of sta-

ble cases, i.e., it is unlikely to trigger an incorrect emergency control 

action for a stable system.  

For the sake of comparison, the techniques reported in [17] and 

[19] are implemented and applied to the same database; as these 

methods require post-fault data, different post-fault cycles (PFC) of 

voltage and rotor samples are considered input features for the clas-

sification process. It might be helpful to mention that PFC is a peri-

od for which the prediction algorithm waits to receive enough 

amount of data before making the prediction; for a 60-Hz system, 

PFC=60 means the prediction model waits for 1 second after clear-

ing the fault. The results obtained are reported in Table III, which 

shows the proposed method outperforms the existing techniques in 

all networks. For instance, in case of coherency prediction for the 

IEEE 39-bus system, the proposed method is more than 3.78 and 

2.39% superior to [17] and [19], respectively. This is despite the fact 

the proposed method does not require any post-fault data, which 

substantially reduces the prediction time. 

To better exemplify the effects of DEMs on generator grouping, 

the distribution of 328 training samples associated with faults occur-

ring at line 2–3 of the IEEE 39-bus system is shown in Fig. 6. This 

figure shows that even two DEMs can form a proper visual distinc-

tion between different coherent groups. With TDSs of multiple 

DEMs, the proposed framework generates enough input features to 

enable the ensemble DT to reach high prediction accuracies. 

To measure the performance of the proposed technique for the 

system topological changes, detailed prediction results are reported 

in Table IV for different layouts. This table shows the prediction ac-

curacy for the original network (𝑁 − 0) is a little bit (<1%) more 

than the other situations. The main reason behind this behavior is 

that almost 80% of the dataset is related to the normal topology and 

thus the ML-technique can develop a better prediction model. It is 

empirically  seen  in  simulations that the proposed method can fairly 
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TABLE VI 
EFFECTS OF PMU NOISE ON THE AVERAGE PREDICTION ACCURACY (%) 

 

Item Test situation 

39-bus 145-bus 

Without 

noise 

With 

Noise 

Without 

noise 

With 

Noise 

Stability status 

prediction 

[17] with PFC = 60 96.96 96.33 95.47 94.70 

Proposed method 98.35 98.26 98.11 97.97 

Coherency  

prediction 

[17] with PFC = 60 92.67 92.11 92.32 91.69 

Proposed method 96.45 96.29 95.17 94.88 

 
TABLE VII 

DETAILED COMPUTATIONAL TIME FOR DIFFERENT IEEE TEST SYSTEMS 
 

Item Details 39-Bus 145-Bus 

Offline training  
 

(time in minutes) 

Run and record TDS for all scenarios  77.446 210.741 

Form DEMs, run and record TDS for DEMs 128.632 257.916 

Extract features and find Ω𝑨𝑩,𝑖
𝑅𝑇  9.055 53.197 

Build prediction models 14.726 106.933 

Total 229.859 628.787 

Online 

application for a 

single test 

sample 
 

(average time in 

seconds) 

Steady-state and 
during fault 

Form DEMs 0.259 0.418 

After fault  

clearing 

Run TDS for DEMs 0.216 0.201 

Extract features 0.013 0.011 

Apply prediction 

model 
0.008 0.008 

Total 0.237 0.220 

 

predict different topological changes if the coherency group is avail-

able in the dataset.  

Aimed at evaluating the effects of different parameters involved 

in the generator aggregation process on the final prediction accuracy, 

a sensitivity analysis is carried out. In this test, the equivalent inertia 

constant, damping constant, synchronous reactance, etc. are calcu-

lated in detail based on (9)–(11) and the effects of modeling error on 

some parameters are investigated with the results reproduced in Ta-

ble IV. To this end, 𝒌𝑎(𝑖), 𝒌𝑏(𝑖), and 𝛿𝑖 are assumed to be the same 

for all generators of a coherent group, which results in an average 

value for each parameter. Table IV shows the excitation system re-

flects the most effects on prediction accuracies and the subtransient 

time constant represents the least. The solutions obtained reveal that 

the aggregation technique, introduced in Section III, suitably per-

formed the equivalent modeling and was well integrated into the 

proposed framework. 

To determine the effects of PMU noise on the proposed technique, 

IEEE 39- and 145-bus systems are considered in additional examina-

tion. White Gaussian noise with a signal-to-noise ratio equal to 34 

dB is added to the dataset, i.e., to both training and test data, and the 

training process is repeated. The results obtained for the proposed 

method are illustrated in Table VI and compared to those of [17] 

with PFC=60. This table shows that, on average, stability status pre-

diction accuracy decreases by 0.70% and 0.12% for [17] and the 

proposed method, respectively; in other words, the proposed method 

is 5.83 times less sensitive to PMU noise. Because the developed 

method only relies on the last steady-state snapshot of the grid, PMU 

noise may minimally change the stability status of the system. The 

proposed method mistakenly classified the stability status in only 10 

and 13 cases for the IEEE 39- and 145-bus systems, respectively. 

The simulations empirically show that the operating point of those 

cases was close to the stability boundaries, and thus the inclusion of 

PMU noise affected the decision made. 

To assess the curse of dimensionality, detailed computational time 

of the proposed method for two IEEE test cases is reproduced in Ta-

ble VII. This table shows the offline training process took about 230 

minutes in the case of the IEEE 39-bus network, of which 137.69  

 
Fig.  7. Performance of different methods on test data for the IEEE 39-bus system 
considering multiple contingencies. 

  

minutes is spent to run parallel TDSs for DEMs and to extract fea-

tures. Simply put, with respect to the existing stability prediction 

methods where direct PMU data are employed, the proposed tech-

nique increases the computational burden of the offline model train-

ing stage by 60%. However, the simulation time still meets the engi-

neering requirements; in the IEEE 145-bus network, the training 

process takes around 10.5 hours. In addition, the dataset generation 

can be conducted in parallel using high-performance computing 

(HPC), which can substantially reduce the training time for larger 

networks. 

Table VII shows that, in online applications, DEMs are formed in 

the steady-state situation and the nodal aggregation is conducted 

during a fault. Once the fault clears, parallel TDSs are triggered and 

the features are extracted. Simulations empirically show that running 

20 s of post-fault simulations using the PSSE transient stability 

module takes about 8 ms for an equivalent two-machine network. 

With this, and in the case of the IEEE 39-bus system, the overall 

post-fault simulation time of the proposed method is 0.237 s. Com-

paring this value with about 1 s waiting time of [17] and [19] for 

𝑃𝐹𝐶 = 60, the proposed framework is almost 4.2 times faster in 

online applications. 
 
 

B. Second Scenario 

In this scenario, the effects of multiple contingencies and load 

model uncertainties on the performance of the proposed method are 

evaluated. Moreover, to better reflect the contrast with the existing 

techniques, the solutions obtained are compared with [17] (while 

𝑃𝐹𝐶 = 60). 

First, one-fifth of the database associate with the IEEE 39-bus sys-

tem is randomly selected and called “test data” from now on. A por-

tion of the test cases (10, 20, or 30%) is randomly selected. Then, an 

extra three-phase fault with a random location and random fault du-

ration (2–15 cycles) is applied to each case. This extra contingency 

is set to be cleared by tripping the faulted line, and the main fault is 

applied at least 5 to 60 cycles (selected by chance) after clearance of 

the first contingency. A new TDS is carried out for each case; be-

cause 𝑁 − 1 and 𝑁 − 2 contingencies were considered while gener-

ating offline scenarios, the multiple faults did not lead to an unfore-

seen coherency pattern. The prediction models trained in the first 

scenario are applied to all test cases and the results obtained are de-

picted in Fig. 7. This figure shows the proposed stability prediction 

method is robust against multiple contingencies; in the worst case, 

the accuracy only drops by 2.07% with respect to the first scenario. 

Applying [17], which directly uses PMU data, to the same dataset, 

the prediction accuracy reduction is more than 5.14%, i.e., the pro- 
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Fig.  8. Performance of different methods on test data for the IEEE 39-bus system 
considering load model uncertainties. 
 

 

TABLE VIII 

PERCENTAGE OF CASES IN WHICH STABILITY STATUS OR COHERENCY PATTERN 

ARE CHANGED WITH THE INCLUSION OF UNCERTAINTY IN THE LOAD MODEL ON 

TEST DATA OF IEEE 39-BUS SYSTEM (%) 
 

Cases in which 
Percentage of loads with uncertain model 

10% 20% 30% 

Stability status changed 0.31 1.06 1.93 

Coherency pattern changed 0.42 1.27 2.69 

 

posed method is almost 2.48 times more robust than [17] when it 

comes to multiple contingencies.  

Aimed at evaluating the effects of load model uncertainties, a por-

tion of loads (10, 20, or 30%) in each test case is randomly selected. 

Then, the electrical model of each chosen load is randomly modified 

so that up to 30% of the base demand is assumed to be modeled by 

CP and up to 30% by IM; the remaining portion is modeled by a CI 

load model. A new TDS is conducted for each test case and the data 

obtained are recorded. While no new coherency pattern appeared in 

this test, load model uncertainties did cause some changes in the sta-

bility status or coherency pattern of test cases compared to Table II. 

Such changes are reproduced in Table VIII, which shows that, in the 

worst case, the stability status of 1.93% of cases and the coherency 

pattern of 2.69% of the test cases changed. Hence, the sensitivity of 

generator dynamic behavior to load model uncertainty is considered 

to be 2.69% in this study. 

To assess the sensitivity of the prediction techniques to load model 

uncertainties, the offline prediction models trained in the first sce-

nario are applied to the new test data. The data obtained are plotted 

in Fig. 8, which shows that, in the worst case, the accuracy of the 

proposed stability status prediction is reduced by 1.82% with respect 

to the first scenario, which is still 1.37 (i.e. (4.31-1.82)/1.82) times 

better than [17]. Because the proposed framework is founded on a 

simulation-based classification approach in which all load models 

are considered as CI during both offline and online applications, it is 

unable to track the effects of load model uncertainties and any 

changes in the stability status or coherency pattern of the generators. 

However, because it does not directly use PMU data, it has more ro-

bust performance against load model uncertainties compared to the 

available techniques [5]–[20]. 

 

VI. CONCLUSION 

This paper proposed a novel solution framework for prediction of 

generator dynamic behavior. Relying on simulation-based classifica-

tion, an aggregation method was employed to derive DEMs for each 

network. Parallel TDSs were carried out for equivalent two-machine 

DEMs, which resulted in a set of features used for training the pre-

diction models. A conditional mutual information-based approach 

was used for feature selection and an ensemble DT was implemented 

to build up prediction models. The proposed framework was suc-

cessfully applied to several IEEE test systems and the results ob-

tained were compared to existing techniques. The findings and com-

parisons demonstrated the effectiveness of the proposed method in 

real-time applications. 

Further research may be conducted to enhance the prediction per-

formance of the proposed method by adopting other machine learn-

ing techniques. In addition, the proposed offline training procedure 

can be improved with a framework that can handle significant 

changes in the operating condition of the system in a timely manner 

suitable for day-ahead operation.  
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