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The axial modes (and breathing mode in particular) are among the most violent oscillation
modes in Hall thruster. Breathing mode is manifested by strong fluctuations of discharge
current and other plasma parameters. It is generally understood as the instability associated
with ionization and neutral depletion processes in the thruster channel, but a number of
other effects, such as temperature evolution and boundary conditions are also important.
Despite long history of studies, exact physical mechanisms and conditions for the instability
are not well understood. Within one-dimensional model we have proceeded to study the
general case of axial mode instabilities starting from of stationary (time-independent) solutions.
The nature and typical characteristics of stationary solutions are established with analytical
analysis. It is shown that the existence of the singular sonic point results in “stiff” profiles of
the accelerating electric field and other plasma parameters. Such “stiff” profiles have global
nature, in particular, show strong dependence on boundary conditions on the anode. Using
fluid and hybrid (fluid electrons and kinetic ions/neutrals) simulations we have studied the
axial stability of such global profiles. It is shown that axial instabilities are sensitive to the
electron/mobility and magnetic field as well as the electron temperature evolution model and
losses.

I. Nomenclature

A = cross section area of a Hall thruster
α = coefficient to electron wall collision frequency
β = ionization rate coefficient
βa = coefficient to anomalous Bohm frequency
bv = Bohm velocity factor
B = axial distribution of radial magnetic field
cs = ion-sound velocity
e = elementary charge
E = axial electric field
ε = electron energy
Ja = atom density flux
Jd = total (electron and ion) discharge current flux
JT = total (electron and ion) discharge current density
ID = total (electron and ion) discharge current

∗Professor, Department of Physics and Engineering Physics
†PostDoctoral Fellow, Nova Scotia Health Authority, 1276 South Park St, Halifax NS, B3H 2Y9 Canada
‡PhD student, Department of Physics and Engineering Physics
§Senior Scientist, Princeton Plasma Physics Laboratory
¶Directeur de Recherche, CNRS, LAPLACE
‖Directeur de Recherche CNRS, LAPLACE

1

D
ow

nl
oa

de
d 

by
 A

nd
re

i S
m

ol
ya

ko
v 

on
 A

pr
il 

13
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
40

80
 

 AIAA Propulsion and Energy 2019 Forum 

 19-22 August 2019, Indianapolis, IN 

 10.2514/6.2019-4080 

 Copyright © 2019 by Andrei Smolyakov. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA Propulsion and Energy Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2019-4080&domain=pdf&date_stamp=2019-08-16


km = electron neutral collision rate constant
K = electron collisional energy loss coefficient
L = channel length
µe = electron mobility
me = electron mass
mi = Xenon ion mass
Ûm = atom mass flow rate
n = plasma density (quasineutral)
ne = electron density
ni = ion density
n′i = ion density axial derivative at the sonic point
ns = plasma density (quasineutral) at the sonic point
N = atom density
νm = total electron momentum exchange frequency
νen = electron-neutral collision frequency
νwalls = electron-wall collision frequency
νB = anomalous Bohm electron frequency
νε = coefficient to anomalous electron energy losses
pe = electron isotropic pressure
qe = electron heat flux
Te = electron temperature
U = a constant in electron anomalous energy losses coefficient
φ = electric potential
φ′ = electric potential axial derivative at the sonic point
va = atom average velocity
vi = ion average velocity
vex = electron average velocity in axial direction
v′i = ion velocity axial derivative at the sonic point
W = electron anomalous energy loss coefficient
ωce = electron-cyclotron frequency
x = axial coordinate

II. Introduction

Ubiquitous axial breathing mode is one of the powerful nonlinear instabilities observed in Hall thrusters. Though
most easily seen in oscillations of the discharge current, it also involves fluctuations of other thruster parameters such as
ion, and neutral density, electric field, ion velocity and electron temperature. Despite long history of experimental and
theoretical studies the exact role of various plasma parameters on breathing mode remains unclear. Neither, the exact
conditions for breathing mode excitation are understood at this time.

Since the frequency of a typical breathing mode (10-20 kHz) is within the range of ionization frequencies, one
expects that depletion of neutral density due to ionization is one of the important ingredients of the breathing mode.
Coupling of neutral and ion (plasma) densities lead to a simple zero-dimensional predator-prey model [1] in which the
full length of the ionization zone is replaced by the boundary values of the neutral and ion densities at the anode and the
end of the ionization zone assuming the constant values of the ion and neutral velocities [1, 2]. Various modification of
the predator-prey model were suggested later. One of the major problem of the zero-dimensional predator-prey model
is that stable oscillations predicted by such model are not reproduced in the system of one-dimensional differential
equations for neutral and ion densities with the same boundary conditions. Moreover, using the value of the neutral
density at the anode as an oscillating variable (as in the original model [1]) is inconsistent with the constant flux (and the
velocity) of the injected neutrals. It was suggested to use the fixed neutral density at the anode, while the neutral density
at the exit end of the zone became a time dependent variable [3]. It was shown that oscillations are damped in such
model, but the inclusion of the electron energy makes oscillations unstable [3]. The authors of Refs. [4–6] proposed to
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use the electron (instead of ion) continuity equation, and the electron velocity in the drift-diffusion approximation, with
the motivation that that electron mobility strongly affects the breathing mode.

It has been recognized [7] that self-consistent dynamics of the electric field is important for axial ionization modes.
In such model [7–9] the ion and neutral dynamics is complemented with the electron equation (Ohm’s law) and the
evolution of the electric field is determined by the quasineutrality constraint so that the total current is uniform. In hybrid
models, the ion dynamics is described kinetically [9–11] while the fluid model is used for electrons. The evolution of
the electron temperature was included in Refs. [9–11] in the lowest order (neglecting the electron heat flux), and the
electron diffusion in the Ohm’s law was also neglected. Complex pattern of unstable oscillations was observed and by
adjusting the value of the electron mobility, one can get the resulting oscillations close to the observed experimental
data [9, 10]. The authors of Ref. [11] have studied the linear instabilities in this model and have concluded that the
resistive instability is a critical element that triggers the fluctuations of the electric field: increase of the electric field
results in larger electron temperature, leading to enhanced ionization and depletion of the neutral density.

The resistive axial instability [11–13]occurs due to differential drift of the electron and ions and different nature of
the electron and ion response. The electron response is dissipative (the electron velocity is due to mobility) and the
velocity is in phase with the electric field. The ions are in the ballistic regime, so that the ion velocity is in phase with
the perturbations of the potential. The phase shift between ion and electron fluctuations results in positive feedback
leading to the instability [13]. The competition of the electron and ion equilibrium flow may result in the lower real part
of the frequency and even to the change in the direction of the mode propagation (from the ion to the electron velocity
direction). Instabilities within similar fluid model were considered in Ref. [14], but thought to be of higher frequencies
in the ion transit-time range. It was noted in Ref. [15] that the electron energy evolution brings additional unstable
modes of the transit-time nature.

General fluid equations including ionization were analyzed in Ref. [16] using the time scale separation valid for low
frequency ionization mode. It was proposed that that the evolution of the ionization (breathing) mode can be split from
other instabilities effectively reducing it to the predator-prey type cycle [16, 17].

At this time, there is large number of models proposed to characterize the breathing mode oscillations [18]. These
models vary from relatively simple zero-dimensional predator-prey type equations [19–21] to complex systems of fluid
equations that may include the (electron) energy evolution with heat flux, particle and energy wall and anomalous losses
[22, 23], ion energy evolution [24], neutral-wall collisions, multi-step ionization and induced magnetic field effect [25].
A sub-class of the models use the kinetic approach to describe the ions and neutrals behavior [10, 22, 23, 25, 26]. In
general, these models exhibit high sensitivity to various input variables, such as electron mobility (which has to be taken
anomalous in most cases), particle and energy losses and other plasma parameters.

Our analysis indicates that stationary solutions in this problem have complex structure and also sensitive to variations
of plasma parameters. The complex structure of stationary solutions is related to the well known problem in the
acceleration of ions by the electric field in quasineutral plasma, namely the transition via the sonic point: the point where
the local ion velocity is equal to the local ion-sound velocity. The importance of this transition has been noted in studies
of stationary plasma profiles [27–30]. The condition that no singularity occurs at the point vi = cs imposes certain
constraints on plasma parameter making the whole problem of stationary plasma profiles global, which is reflected in
the numerical stiffness of the solution. One consequence of this is that the boundary conditions affect plasma profile
globally across the full length of the thruster. A related problem may occur near the anode sheath where the singular
point vi = −cs is possible. Motivated by these observations, in this paper we investigate the role of boundary conditions
on the axial modes that involve ionization.

To clarify the role of the sonic points, we first study the structure and type of global stationary profiles. These
profiles are then used to study the excitation of breathing mode fluctuations. It is important to note that here we
deal with convective versus absolute instabilities and Fourier mode analysis for breathing mode does not provide full
information[31]. We employ the initial value numerical simulations to study the stability of stationary solutions (found
by different methods from stationary equations). It is found that some stationary solutions represent a global minima so
they can be reached from arbitrary initial state. We investigate the role of boundary conditions on the breathing mode
oscillations and show that boundary conditions for the quasineutral region affect the instabilities.

III. The steady-state solutions and sonic point transition
Here, we analyze stationary plasma flow at given values of the discharge current ID and the neutral flux Ja. Our

emphasis is on the constraints imposed by the regularity condition at vi = cs . Stationary profiles were considered earlier
and the role of a singular point was considered [27, 28, 32], however explicit constraints imposed by the regularity
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conditions were not discussed. For simplicity, here we consider the isothermal case, so temperature is assumed constant
and uniform in space. We also neglect plasma losses. Stationary equations are written as follows

va
∂N
∂x
= −βNn, (1a)

∂

∂x
(nivi) = βNni, (1b)

vi
∂vi
∂x
= − e

mi

dφ
dx
+ βN(va − vi), (1c)

dφ
dx
= − Jd

niµe
+

vi

µe
+

1
eni

∂Teni
∂x

, (1d)

where the total discharge current flux is Jd = nivi − neve, and the neutral density N can be deduced from the equation
N =

Ûm
mivaA

− nivi
va

. The mass flux is defined from the latter equation as Ja = nva =
Ûm

mi A
. Here, β is the ionization

rate, µe is the electron mobility perpendicular to the magnetic field, va is the neutral flow velocity, Te is the electron

temperature. These equations imply quasi-neutrality ni = ne = n. The diffusion term
1
en
∂Ten
∂x

in Ohm’s law is important
to describe the plasma flow in the anode region and also results in the sonic point singularity.

The electron mobility µe is given by the classical expression for collisional transport in the transverse magnetic field:

µe =
e

meνm

1
1 + ω2

ce/ν2
m

, (2)

where ωce = eB/me is the electron cyclotron frequency and νm is the total electron momentum exchange collision
frequency. In general, νm is

νm = νen + νwalls + νB, (3)

where νB is the anomalous cross-field transport due to field fluctuations and νwalls is the collision frequency with walls.
In this however, classical value of the electron mobility was used. From this a set of three ordinary differential equations
for the derivatives of vi , ni , and φ can be derived

(c2
s − v2

i )
dvi
dx
= βnac2

s − βnavi(va − vi) + ν∗evevi ≡ F1(n, Jd, Ja), (4a)

(c2
s − v2

i )
dn
dx
= βnan(va − 2vi) − ν∗enve ≡ F2(n, Jd, Ja), (4b)

(c2
s − v2

i )
e

mi

dφ
dx
= βnac2

s (va − 2vi) − ν∗evevi ≡ F3(n, Jd, Ja), (4c)

where c2
s = Te/mi , ν∗e ' ωceωci/νe. The right hand side of these equations depend on two parameters and the density

at the critical point, which fully define the operational space: Jd and Ja. The density n = ns is defined by the condition
that the sonic point has no singularity which requires F1(n, Jd, Ja) = F2(n, Jd, Ja) = F3(n, Jd, Ja) = 0. These equations
lead to the following condition for the density

βµecs(va − 2cs)n2
s + (csva + βµeJa(2cs − va))ns − Jva = 0. (5)

This is a quadratic equation, which gives two values of ns for given values of Ja and Jd . When Jd and Ja are given,
one finds ns from (5). The value of φ′ can be obtained from the Eq. (4c) after ni and vi are known. When the functions
F1 (n, Jd, Ja), F2 (n, Jd, Ja) and F3 (n, Jd, Ja) are expanded near the point vi = cs , the following equation for v′i = ∂φ/∂x
is obtained

v′2i + v
′
i

[
βna

(
1 − va

2cs

)
+ ν∗e

(
1 − Jd

ncs

)]
+

1
2
ν∗eβna

Jd
ncs
+

1
2
β2nan

(
1 − 2cs

va

)
= 0. (6)
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This is the quadratic equation as well, so two roots for the derivatives v′i , n′i and φ
′ are possible for each value of ns .

Once v′i , n′i and φ
′ are determined, one can integrate the equations (4a-4c) from the point vi = cs in both directions. The

further constraints are imposed by boundary conditions at the anode side (to the left from the singular point), the global
conditions of the discharge length and the applied voltage.

The flow acceleration from the subsonic to supersonic regimes (via the sonic point) in Hall thrusters is somewhat
similar to the gas acceleration in the Laval nozzle. The singular point must be maintained regular, which requires that
the RHS of Eqs (4) is at the sonic point. This is the condition that makes the solution stiff across the whole length from
the anode to the cathode stiff therefore restricting the possible choice of boundary conditions.

For numerical estimates we used plasma parameters typical for the cylindrical Hall thruster. Electron temperature
Te was taken constant along the channel, what implies that the ionization rate coefficient β is constant as well. All
parameters are summarized in the Table 6.1 in Ref. [33].

In general, the boundary conditions at the left side can be affected by the anode sheath. We note here that in
quasineutral model, there is no natural sheath potential drop due to predominant loss of electrons. The sheath like
profile is maintained by the large density gradient inward (density increasing from the left boundary), as a result the
electric field near anode may reverse sign to maintain the total current constant. The negative electric field (toward the
anode) may result in another singularity vi = −cs at the boundary. Sheath and no-sheath solutions have been discussed
in the literature and observed experimentally [30, 34–36]. Therefore we allow for general situation with vi ≥ −cs and
consider how does the condition on the anode sheath boundary (specifically, the value of the velocity at the boundary)
affect stationary solutions and their stability.

IV. Stationary solutions in operational space diagram and their axial stability

A. Discharge current and injection rate operational space diagram
Important point is that real solutions for ns, v′i , n′i and φ

′, exist only in a certain range of the values of Ja and Jd,
which can be easily found from the quadratic equation. Here we give examples of ns , v′i , n′i , and φ

′ diagrams, calculated
for parameters from the Ref. [33]. For each value of ns , the v′i , n′, φ′ derivatives are calculated, and stationary solutions
were obtained by the integration from the sonic point in both directions: to the anode and to the cathode. Integration
was done from 0 to −L and from 0 to L, where 0 is the location of the sonic point. When integration was done in a
negative direction, it was stopped after the ion velocity reached −cs value, so the solution is obtained over the interval
X larger than the thruster length L. By selecting the interval of the given length L, various possible solutions with
different values of the potential difference across can be defined. The selection both the length L and the potential
difference defines a unique solution.

0.1 0.3 0.5 0.7 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

B

C

A

a)

0.1 0.3 0.5 0.7 1.0 1.2 1.4 1.6
-6

-3

-0

 3

 5

 8

11

14

A
1C

1

A
2

C
2

B
1

B
2

b)

Fig. 1 Diagrams of a) ns and b) v′i as functions of the discharge current ID at fixed value of Ja. Two roots in v′i
correspond to one value of ns from the high density branch. Only small portion of the lower density branch has
real solutions for v′i , such as points A and B.

Different types of the solution are presented in Figs. 1a and 1b as a function of Id, at a fixed value of Ja. Here
ID = eJdA, where A is a thruster channel cross-section. For a fixed J, there is a maximum value of Ja for which the
solutions exist, 1. For the values of the current smaller than some maximum value, equation 5 has two roots: high
density and low density branches. However, for large fraction of the lower density branch the corresponding values
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of the velocity, density and potential gradients become complex which means absence of the solutions in this region,
which is shown by dashed-green line in Fig. 1a and in the Fig. 3), which was zoomed-in and rescaled figure 3.

The high density "ns" root "C", corresponding to the lower current ID , generates two different real roots for v′i , n′,
and φ′ - "C1" and "C2". The profiles of the ion velocity, density and potential for these roots are shown in Fig. 2. One of
these solutions, shown as "C2" is decelerating and is of no interest for the thrusters. The vi profile for "C1" root shows
supersonic ion acceleration. It is shown here as starting from −cs condition at the anode sheath boundary, but other
choices are possible with different value of the discharge voltage.

-2.0 -1.0  0.0  1.0  2.0  3.0
-5

 0

 5

10

15

20

25

a)

-2.0 -1.0  0.0  1.0  2.0  3.0
0.0

0.5

1.0

1.5

b)

-2.0 -1.0  0.0  1.0  2.0  3.0
-200

-140

 -80

 -20

  40

 100

c)

Fig. 2 a) Velocity vi , b) density ni , and c) potential φ profiles for the root "C". Dashed lines are the ion sound
velocity level– ±cs .

For the higher values of the current, Id , closer to the maximum value, situation looks more complex. Here, there are
two roots for the density and, correspondingly, there are four possible real solutions for the velocity derivative (two for
each values of density). These are shown in Fig. 1b and, schematically, in Fig.3, as A1, A2, B1, and B2. Only one of
these is compatible with the accelerating solution and boundary condition at the anode; this solution is very similar to
C2. The other solutions (not shown here) are either decelerating, or cannot be continued below the vi = cs velocity and
cannot be matched to the condition at the anode.

In summary, it was found that for the given value of the mass flux Ja there exists a range of the discharge fluxes Jd ,
where a single solution with accelerating ions exists, this region marked solid blue in Fig. 3, not to scale; for some range
of the Ja and Jd values, there are no solutions, marked as dashed-green, and in some region, with the current close to
the maximum, there are four solutions, marked in solid and dashed red in Fig. 3.

B. Stability and the nonlinear axial modes oscillations
We have studied the stability of obtained stationary profiles in time-dependent simulations. Here we report only the

cases with standard Bohm condition at the left boundary, vi = −cs . Nonlinear initial value time-dependent simulations
were performed with the obtained stationary profiles (with corresponding boundary conditions) an an initial state.

Depending on the parameters of stationary solutions, we have identified four distinctly different situations, summarized
in diagram Fig.4, not to scale.

For lower values of the discharge current (Zone 1) the stationary profiles remain stable and there are no current
oscillations in this region. The discharge current oscillations appear for Jd in Zone 2. It is important to note that the
nature of oscillations, as well as their amplitude and frequency, changes as the value of Jd increases. At the beginning
of the Zone 2, for lower values of Jd, the oscillations have small amplitude and frequency (see Fig. 5a, b) and have
well pronounced single frequency (see Fig. 5a, d). Closer to the end of Zone 2, oscillations amplitude and frequency
grow. In Zone 3, there is a transition to multimode oscillations (see Fig. 5b, e) with further increase of amplitude and
frequency. At the end of Zone 3 oscillations amplitude reaches its maximum, however, oscillations become strongly
non-linear with and the frequency is sharply reduced.

V. Fluid and hybrid modeling of the axial modes dynamics with the electron energy evolution
Here we present a self-consistent one-dimensional axial model that includes additional physical elements such as wall

energy losses and electron energy evolution. The simulations were performed with full fluid model and hybrid model,
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Fig. 3 Diagrams for ns (top) and v′i (bottom) as functions of the discharge flux Jd at a fixed value of Ja,
not to scale: Dashed-green – no real solutions. Solid blue – two roots, one of which is the expected solution
corresponding to the ion acceleration. Red (dashed and solid) – the regions with four solutions, only A2 root
corresponds to the good accelerating solutions.

Fig. 4 Stability diagram of stationary solutions in the ns/v′i , Jd space at a fixed value of Ja. In Zone 1 (orange
solid), there are no oscillations. In Zone 2 (blue solid), there exist strongly coherent oscillations. In Zone 3 (red
solid and dashed), the multimode oscillations are present.
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Fig. 5 Discharge current time traces (a-c) and corresponding Fourier spectra (d-f) for different regimes of ID .

where ions and neutrals are modeled as particles (particle-in-cell method). BOUT++ computational framework[37]
was used for full fluid simulations, as in Section IV. Hybrid simulations were performed with the code developed
at LAPLACE laboratory, France [10, 22, 23, 38]. One of the goals was to compare the results of fluid and hybrid
simulations and study the role of boundary conditions, which for ions can be chosen rather arbitrary in fluid code. Such
freedom of boundary conditions is absent in the kinetic ion model. The model and parameters of the simulations are
chosen to correspond to the one of LANDMARK benchmarking cases [39].

A. Basic model equations
In the fluid model, neutral dynamics is modeled with the simple advection equation

∂N
∂t
+ va

∂N
∂x
= −βNn, (7)

where va is a constant. Ion dynamics is described with basic equations for cold unmagnetized ions

∂ni
∂t
+

∂

∂x
(nivi) = βNni, (8)

∂vi
∂t
+ vi

∂vi
∂x
=

e
mi

E − βNvi, (9)

where we include the ionization source term βnnni with ionization coefficient β; omit the pressure term, viscosity tensor
in momentum equation; and temperature evolution. Electron dynamics is given by:

∂ne
∂t
+

∂

∂x
(neve) = βnnne, (10)

0 = − e
me

E − e
me
(ve⊥ × B)x −

1
neme

∂ (neTe)
∂x

− νmvex, (11)

3
2
∂

∂t
(nTe) +

5
2
∂

∂x
(nevexTe) +

5
2
∂qe
∂x
= −nevex

∂φ

∂x
− nenaK − nW, (12)
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where νm is the total electron momentum exchange frequency, W is the anomalous energy loss coefficient, K is the
collisional energy loss coefficient, qe is the electron heat flux.

W = νεε exp (−U/ε), (13)

where ε = 3/2Te, U = 20 eV. Heat flux across magnetic field is

qe = −µenTe
∂Te

∂x
. (14)

From Eq. (11) we express the electron velocity as

vex = −µeE − µe
ne

∂pe
∂x

, (15)

where the electron mobility µe given by Eq.3.
and the total electron momentum exchange collision frequency is

νm = νen + νwalls + νB, (16)

where the electron-neutral collision frequency νen, electron-wall collision frequency νwalls, and anomalous Bohm
frequency νB are given with:

νen = kmna, (17)
νwalls = α107 [s−1], (18)
νB = (βa/16) eB/me . (19)

where km = 2.5 × 10−13 m−3s−1, α and βa are adjusting constants.
The profile of external magnetic field is shown if Fig. 6, with the channel’s exit in the peak of magnetic field

intensity. For this electron mobility model we will use different parameters inside and outside the channel, the near wall
conductivity contribution αin = 0.2, αout = 0. The anomalous contribution is set to βa,in = 0.1, βa,out = 1.
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Fig. 6 The magnetic field profile used in simulations, with the channel exit located 2.5 cm from anode (dashed
line).

We will assume plasma quasineutrality and neglect a potential drop on the Debye sheath near the anode. The total
(discharge) current density JT is determined from the condition∫ L

0
Edx = U0, (20)
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and given as

JT =
U0 +

∫
L

0

(
vi

µe
+

1
n
∂pe
∂x

)
dx∫

L

0

dx
enµe

. (21)

Therefore, the full system of equations to be solved,

∂N
∂t
+ va

∂N
∂x
= −βNn, (22)

∂n
∂t
+

∂

∂x
(nvi) = βNn, (23)

∂vi
∂t
+ vi

∂vi
∂x
=

e
mi

E − βNvi, (24)

3
2
∂

∂t
(nTe) +

5
2
∂

∂x
(nveTe) +

5
2
∂qe
∂x
= nveE − nnaK − nW, (25)

where the electric field E is obtained from the electron momentum Eq. (15). This system is solved with the following
boundary conditions. A constant mass flow rate determines the value of na at the boundary, as well as recombination of
plasma that flows to the anode, hence the boundary condition:

N(0) = Ûm
mi Ava

− nvi(0)
va

. (26)

Bohm type condition for ion velocity can be imposed at the anode vi(0) = −bv
√

Te/mi , where bv = 0–1 is the Bohm
velocity factor which can be varied. Both anode and cathode electron temperature are fixed with Te(0) = Te(L) = 2 eV.
All other boundary conditions are not imposed (free).

Hybrid model has the same electron equations, while ions and neutrals are described via particle-in-cell method
[22, 23, 38].

B. Role of boundary conditions and temperature evolution
Several characteristic features were observed with simulations in full fluid and hybrid models for νε,in = 0.4 · 107 s−1.

Generally, fluid and hybrid models show good agreement in the time averaged plasma parameters profiles, see Fig. 7. The
agreement in the amplitude of the oscillating current and spectra are rather qualitatively similar but differ quantitatively,
see Fig. 8.

The main cycle of low frequency (breathing mode) consists of several stages. The ions in the reverse electric field
are moved relatively fast to the anode (∼ 1 km/s). Then ions that reached the anode recombines and form peak in the
neutral density near the anode, the enhanced density hump is advected into the ionization zone producing more ions.
The ion density increases and fraction of ions is again moved to the anode, and the process repeats. Increasing va
results in growth of oscillation frequency, approximately linearly. For va = 150 m/s the frequency is 10 kHz, which
corresponds to neutral flyby time on the width of the ionization zone 1.5 cm observed in the simulations. Oscillations
amplitude is also slightly increasing for larger neutral flow velocity.

The combination of the ion recycling on the anode side and temperature evolution are important for the low
frequency oscillations. Ion recombination at the anode is included via the corresponding boundary condition for neutral
atoms (26). When the ion recycling is turned the low-frequency oscillations disappear and the profiles are stationary.
Low-frequency oscillations are sensitive to the ionization coefficient and they are not observed without the electron
temperature evolution with fixed profile.

We have investigated how the magnitude of the anode boundary conditions affects the modes stability, Fig.10. The
reduction of the absolute value of the velocity at the boundary reduces the amplitude of the oscillations, and below
0.6 · cs the oscillations disappear.

We also performed the simulations with higher energy losses νε,in = 107 s−1 resulting in lower electron energy and
oscillations of the lower amplitude, as shown in Fig.11. In it is interesting that for these parameters both methods show
coexistence of low and high frequency modes, see Fig. 11.
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Fig. 7 Spatial distribution of time averaged macroscopic profiles from fluid and hybrid models for νε =
0.4 · 107 s−1.
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Fig. 8 Total, ion, and electron currents resulted from fluid model (left) and hybrid model (right) for νε =
0.4 · 107 s−1. Ion and electron currents are evaluated at x = 5 cm.

VI. Summary
Axial ionization modes involve the complex nonlinear dynamics of the ionization, ion acceleration, electron mobility,

and diffusion. The interaction of these processes determines steady state profiles as well as spatial and temporal
variations of the plasma density, ion velocity, neutral density, and total current.

Fluid models are based on the ion and electron density conservation (including ionization), ion momentum balance,
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Fig. 9 Spectral density of the total current for fluid model (left) and hybrid model (right) for νε = 0.4 · 107 s−1.

Fig. 10 Minimum and maximum values of the oscillating current for various ion velocities at the anode,
expressed as fractions of the Bohm velocity. Note that oscillations are absent for vi < −0.6Cs

and the electron flow in drift-diffusion approximation as well as the evolution of the electron energy. Fluid simulations
of the quasi-neutral axial modes require boundary conditions imposed on the anode side as well as the condition for
the electron temperature at the cathode. Different boundary conditions may exist at the anode sheath and quasineutral
plasma interface.

In this paper, we study the nonlinear dynamics of the axial modes together with conditions for the existence of
stationary solutions. The analysis of the stationary profiles show that there is a limited freedom in the choice of boundary
condition due to global constraints imposed the regularization of the sonic point transition. For a simple case of
uniform and constant temperature, fixed velocity of neutral injection, and without wall losses, we have semi-analytically
determined the operational space diagram (in terms of the total current and mass injection rates).

The presence of the regularized sonic point makes steady-state plasma profiles rather stiff; therefore, the range of
boundary conditions, where the solutions exist, may be limited. The operational space of the system parameters (total
current, neutral flux, and plasma density) was investigated and was shown to have a complex structure. Analogous
restrictions exist in more general case of the non-uniform temperature that will be reported elsewhere.

Our analysis shows that stability and characteristics of the axial modes are sensitive to the values of transport
coefficients, boundary conditions, and the nature and parameters of the electron energy and its evolution. Stability
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Fig. 11 Total, ion, and electron currents resulted from fluid model (left) and hybrid model (right) for νε =
107 s−1. Ion and electron currents are evaluated at x = 5 cm, νε = 107 s−1.

analysis of axial modes for a simplified case of uniform temperature and magnetic field with classical values of electron
conductivity demonstrate the relatively high frequency (∼100 kHz) oscillations (for magnetic field typical for CHT).
The increase of the electron mobility and decreasing magnetic field in general result in reduction of frequency and even
to disappearance of oscillations. Different oscillations patterns are identified (coherent, weakly coherent, and nonlinear)
depending on the parameters of stationary solutions.

For the full model, when the electron energy equation is included, we have performed the comparison of the
results from the fluid and hybrid modeling. The results from both methods are qualitatively similar but there are some
quantitative differences in the oscillations amplitudes. Sensitivity to the boundary conditions, energy evolution and
value of anomalous collisions and transport are identified in both approaches.

These results indicate importance of the self-consistent modeling of azimuthal and axial modes. Coupling between
the two types of modes is expected because the azimuthal modes are driven by axial gradients in plasma parameters
such as the density and electric field, which experience large spatial and temporal variations during breathing mode
oscillations. In turn, axial modes are sensitive to the value of the anomalous transport produced by the azimuthal modes.
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