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Chapter II: Atomic Physics Relevant to Fusion Plasmas 
 
As demonstrated in Ch. I, both the atomic physics and the interactions of plasma with the 
materials of the PFCs (in particular, the first wall of vacuum chamber and divertor targets) play 
very important role in virtually all edge plasma phenomena including plasma recycling, energy 
dissipation, divertor detachment, erosion of the PFCs, plasma contamination with impurities, etc. 
In this chapter, we will focus on the atomic physics issues relevant to fusion plasmas.  

Although atomic physics processes at the edge of magnetic fusion devices have some 
similarity to those in low-temperature gas discharge plasmas (e.g. see [1], [2], [3]), which have 
been under intense theoretical studies over hundred years, there are also important differences. 
First, the fusion plasma consists mostly of hydrogenic species, having some (~10%) helium as 
well as a potentially controlled (deliberately injected), relatively small percentage (~1%) of 
impurity species for plasma cooling (e.g. neon, argon, etc.), and some fraction of impurities 
originated from the erosion of the PFC materials (e.g. lithium, beryllium, tungsten, etc.). 
Secondly, unlike most of the gas discharges that feature rather homogeneous, low temperature 
(~1 eV) plasmas, the edge plasma parameters in fusion devices are very non-uniform (e.g. the 
edge plasma temperature in discharge can vary from sub-eV to few hundred eV). As a result, 
atomic processes taking place in edge plasma are very diverse and ranging from plasma 
recombination in low-temperature regions to both neutral hydrogen and impurity ionization at 
high temperatures (we notice that at temperature ~ keV neon can be completely stripped off of 
all electrons). As we will see, both diversity and inhomogeneity of the edge plasma parameters 
increase the number of atomic processes that should be allowed for, which complicates the edge 
plasma description. 
 In this section, we review basic quantum mechanical features of atomic species relevant 
for edge plasma studies and discuss the physics behind the Collisional-Radiative Model (CRM) 
widely used in fusion research for the description of the rate of different atomic processes. We 
will also consider some important examples of the application of the CRM to atoms, molecules 
and ions for edge plasma conditions, as well as line radiation transport in edge plasma and its 
implication for relevant atomic processes. 
 
II.1 Basic quantum mechanical features of atoms, molecules, and ions relevant for 
magnetic fusion research 
As known from quantum mechanics (e.g. see [4]), atoms, molecules and their ions can only 
occupy some particular quantum energy states bounded between the so-called ground state and 
ionization (or dissociation) continuum of the corresponding neutral/ion (or the 
molecule/molecular ion), which represents a free electron and the remaining ion (or separated 
neutrals and ions). Such states can be related to different electronic configurations and also, in 
case of molecules, to different rotational and vibrational states. It appears that the neutrals and 
ions occupying excited states (situated in energy space above the ground state) play important 
roles in virtually all atomic physics-related processes in edge plasmas even though the relative 
fraction of such particles is often small. The situation with excited particles is somewhat similar 
to that of free chemical radicals, which have low concentrations but are important in many 
chemical reactions (e.g. see [5], [6]). 

In this sub-section, we just review the main features of quantum states in the atoms, 
molecules, and ions relevant for edge plasma (for more details one can refer to [4] and special 
literature).  
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We start with quantum states in a hydrogen-like ion having one bound electron and the 
charge number of nucleus Z (the case Z=1 corresponds to the hydrogen atom). Omitting all 
relativistic effects, we find [4] that the energy levels, En , depend only on the principal quantum 
number n (1≤ n <∞ ) and  

 En
HZ = −

meZ
2e4

2!2
1

n2
,         (II.1) 

where zero energy corresponds to the free electron (continuum), me  and e are the electron mass 
and charge, and !  is the reduced Planck constant (we neglect here the terms of the order of the 
ratio of me  to the nucleon mass Mnucl ). From Eq. (II.1) it follows that the ionization potential 

of this hydrogen-like ion from the ground state n =1  is IHZ
=meZ

2e4 / 2!2 .  However, it 

appears that the quantum states with n >1  are not stable and decay rather quickly into states 
having lower principal quantum numbers. The decay time from the level n to level k ( k < n ) is 

determined by the Einstein coefficients, An→k
HZ , which in a quasi-classical Kramers 

approximation can be written as [3]: 

 An→k
HZ ≈

1.6×1010Z4

n3k(n2 − k2)
s−1 .        (II.2) 

For a hydrogen atom, the inverse decay time from the first excited state to the ground one is 
A2→1
H ≈ 6×108s−1 . In some cases, it is important to have an estimate of the decay time from the 

level n to all lower levels, which is given by An
HZ = An→kk=1

k=n−1∑ . Then from Eq. (II.2) we have 

An
HZ ≈1.6×1010 Z
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(
)
) s
−1 .       (II.3) 

For a single hydrogen atom in vacuum, the number of available quantum states (the so-
called Rydberg states) is not limited. However, in the magnetic fusion environment, this is not 
the case. Even intuitively it is difficult to imagine hydrogen atom with an effective radius of the 
electron orbit larger than the average inter-ion distance ~ ne

−1/3  (e.g. the Inglis–Teller equation 

predicts that the highest observable hydrogen quantum state nmax ~ ne
−2/15  [7]). In practice, 

isolated high Rydberg states, being affected by the plasma-induced micro-electric field, 
Emicro ~ ene

2/3 , eventually disappear and merge with continuum, so that the number of states in 
Eq. (II.3) becomes finite. One can see this from the intensities of the Balmer series of hydrogen 
lines obtained from a wall-stabilized arc discharge and recombining divertor plasma of Alcator 
C-Mod tokamak (Fig. II.1). In the arc plasma with density ne ≈10

17cm−3 , the highest 
distinguishable Rydberg state corresponds to n ≈ 7  (Fig. II.1a), whereas in the divertor plasma 
of Alcator C-Mod, having a somewhat lower density, ne ≈10

15cm−3 , the Balmer lines merge to 
continuum at n ≈11 (Fig. II.1b).  
 



 3 

(a) 
 

(b) 
Fig. II.1. The Balmer series of lines (solid curves) obtained from a wall-stabilized arc discharge 
(a, Reproduced with permission from [8], © Springer 2016) and recombining divertor plasma of 
Alcator C-Mod tokamak (b, Reproduced with permission from [48], © AIP Publishing 1998). 

 
In magnetic fusion devices having strong 
magnetic field, an additional reason limiting 
available number of Rydberg states can be 
related to the Zeeman splitting of excited 
states and their spontaneous ionization by the 
effective electric field, EB ~ (VN / c)B , 
caused by neutral motion across the magnetic 
field (here B is the magnetic field strength, c 
is the speed of light, and VN  is the speed of 
the neutral).  

As we see, the structure of the 
quantum states in a hydrogen-like 
ion/hydrogen atom is rather simple. This 
“simplicity” is due to the peculiar degeneracy 
of quantum states over electron orbital 
angular momentum. However, the situation 
quickly becomes much more complex for 
atoms/ions having few electrons. As an 
example, in Fig. II.2 one can see the helium 
quantum energy levels, which now depend 
also on the total orbital angular momentum, 
L=0, 1, 2, … (which is usually denoted by 

the letters S, P, …), spin, S, and total angular momentum J=L+S (see the insert in Fig. II.2). The 
only exception is negative hydrogen ion, H− , also having two electrons, but only one bounded 
state with a low “ionization” potential of ~0.75 eV. H− makes (as we will see later) some 
contribution to divertor plasma recombination but plays an important role in the generation of 
MeV range neutral beams suitable for plasma heating in magnetic fusion reactors (e.g. see [9] 
and the references therein).  

 
Fig. II.2. The energy levels in the helium atom, 
singlets (para-) and triplets (ortho-), for the case 
with one electron on the ground state (1s) and 
one excited electron (taken from Wikipedia, 
https://en.wikipedia.org/wiki/Helium_atom)	
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 We notice that some excited quantum states of complex atoms/ions, the so-called 
“metastable” states (spontaneous transitions from these states to lower energy states are 
“forbidden” by selection rules [4]), exhibit no spontaneous decay to lower states for a time much 

longer than ~ 2×10−9s , which follows from Eq. (II.2) for the transition from the first excited to 
the ground state in the hydrogen atom. The examples of such metastable states in helium are the 
triplet electron configuration 23S1  (see Fig. II.2), having extremely long natural life-time ~104 s 

[10], and the singlet state 21S0  which has much shorter, ~20 ms [11], natural life-time. Such 

long-living metastable states (e.g. 23S1  in helium) play very important role in ionization balance 
of low temperature, weakly ionized plasma, by providing the so-called Penning ionization 
channel, A∗ +B→A+B+ + e , where A∗  is a particle on a metastable state with the energy 
higher than the ionization potential of the particle B (e.g. see [12], [13], [14] and the references 
therein). 
 So far, we were discussing quantum effects related to atoms/ions. However, plasma 
recycling on the PFCs results partly in the formation of molecules, which play an important and 
somewhat peculiar role in edge plasma processes.  

Since hydrogen is the major component in 
fusion plasmas, we will consider mainly the 
hydrogen molecules. As before, we will 
distinguish molecules containing different 
isotopologues of hydrogen molecule (e.g. H2, 
D2, DT, etc.) only when it becomes important, 
otherwise, we will call them just hydrogen 
molecules and use the notation H2. Molecular 
hydrogen having two nuclei introduces new 
features in the energy spectrum of the quantum 
states. Using disparity in electron and nuclei 
dynamics, related to the difference in their 
masses, one could start with the analysis of 
electronic states assuming that the separation 
distance, R, between the two nuclei is fixed (e.g. 
see [4]). As a result, the energy of the electronic 
quantum states and the corresponding 
electrostatic potential of the interacting nuclei, 
Un(R) , depend on R. Since the dynamics of 

nuclei, in zero-order approximation, is ignored, the potential curves Un(R)  remain the same for 

all isotopologues of hydrogen molecule (e.g. H2, D2, DT, etc.). The Un(R)  terms in diatomic 
molecules are described by the projections of the total orbital angular momentum on the axis 
passing through the two nuclei, Λ = 0,1, ...  (which are denoted with the Greek letters Σ,Π, ... ) 
and the total spin of all electrons S (in the same way as in atoms). Finally, for the case where the 
atoms in the molecule are the same, the Hamiltonian is invariant with respect to the change of 
sign of the coordinates of all electrons and we can speak of the parity of electron wave functions, 
which can be even, denoted as “g” or odd, denoted as “u” (from corresponding German words 

 
Fig. II.3 Molecular hydrogen terms.  

Reproduced with permission from [16], © 
Springer 2012. 
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“gerade” and “ungerade”). Strictly speaking, we cannot apply this property for diatomic 
hydrogenic molecules composed of different isotopes. But in practice, the isotopic effect 
produces a very tiny impact (of the order of the electron to nucleon mass ratio [15]) on the 
energy spectrum, which, in practice, affects only the line radiation transport we will consider 
later. As a result, the molecular terms of all diatomic hydrogen molecules are practically 
identical to that of H2, shown in Fig. II.3.  
 Once we know the potential Un(R) , we can account for the dynamics of nuclei 
describing the rotational and vibrational quantum states [4]. For the background state of 
molecular hydrogen isotopologues, we can introduce the rotational energy as 
Urot (R) = ErotK(K +1) , where Erot = !

2 / 2 "MR2 , !M  is the reduced mass of the nuclei and K  
is the quantum number (K=0, 1, 2, …) of the total angular momentum of the molecule. Then, 
using the potential UK(R) = Un(R)+Urot (R)  and expanding UK(R)  near the minimum at 

R = Rmin  we can write 

 UK(R) = UK(Rmin )+
!M
2
ωv
2 (δR)2  ,       (II.4) 

where δR = R −Rmin  and ωv
2 = !M−1d2UK(R) / dR

2
R=Rmin

. The quantum mechanical motion 

of a particle in a quadratic potential gives the following expression for the energy of the 
vibrational quantum states: Ev = !ωv(v+1/ 2) , where v is the vibrational quantum number (v=0, 
1, 2, …). As a result, the energy terms of the diatomic molecule include three components: 
electronic, rotational, and vibrational, which gives 
 Utot (R) = Un(R)+ErotK(K +1)+ !ωv(v+1/ 2) .     (II.5) 
The expression (II.5), where the contributions of vibrational and rotational states to the total 
energy are additive, is only valid for relatively low K and v values (e.g. see [4]), and for the 
higher ones their contributions are mixed. Therefore, the vibrational and rotational states are 
often called ro-vibrational states. Because the function Un(R)  remains the same for all 

isotopologues of the hydrogen molecule, from the definition of Erot  and ωv  we find their 

dependences on the reduced mass of the nucleon: Erot ∝1/ !M , ωv ∝1/ !M , and for the H2
molecule, !ωv = 0.54 eV  [4]. Different vibrational energy quanta for different isotopologues of 

the hydrogen molecule, but the same energy terms Un(R)  and, therefore, the same dissociation 
energy of 4.48 eV, result in a different number of the available vibrational quantum states, which 
can be estimated as vmax ∝ !M  (e.g. the H2  molecule has vmax =14 ).  

 In Fig. II.3, in addition to the molecular terms for H2 , are also shown the terms for the 

positive molecular ion, H2
(+) , and the negative one, H2

(−) . The latter is metastable with a 
relatively short natural life-time. However, it plays a crucial role in both the excitation of 
vibrational levels by electron impact H2(v)+ e→H2

(−)→H2(v ')+ e  and dissociative attachment 

H2(v)+ e→H2
(−)→H+H−  (e.g. see [12], [17], [18] and the references therein). 
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II.2 Collisional-radiative model 
As we already mentioned, excited states of atoms and molecules in edge plasmas play important 
roles in virtually all atomic physics-related processes. Here, using the example of a hydrogen 
atom, we consider the basic physics of the CRM which is the main approach for a quantitative 
description of the processes the excited states can be involved in. 

The population of excited states (for the simplest case of hydrogen-like ions, they 
correspond to n >1 ) in edge plasma, depending on the plasma parameters, is determined by an 
interplay of electron impact excitation, electron transition from the continuum, radioactive decay, 
re-absorption of resonance photons, etc. We notice that for the energies relevant for the edge 
plasmas, the impact excitation of electronic and vibrational states by atoms and ions is usually 
negligible. Therefore, we start with a short review of electron-involved processes and their 
contributions to the rate equations governing the population of the excited states.  

The binary interactions of particles, including electrons and heavy particles (atoms, 
molecules, and ions), are usually described by the effective cross-section, σ , of the particular 
process. In a very general case, σ  depends on the relative speed of the interacting particles. 
Taking into account the large mass difference between the electrons and nuclei, for the case of 
electron interactions with atoms, molecules, and ions, the relative speed of the interacting 
particles is virtually equal to the electron speed. As a result, the cross-section of such interaction 
only depends on the electron kinetic energy, Ee . The cross-sections of many processes relevant 
for the edge plasmas are available from both quantum mechanical calculations and experiments  
(e.g. see [19], [20], [21] and the references therein). We notice that the cross-sections of the 
forward and reverse processes are related by the principle of detailed equilibrium (e.g. see [22]), 
so there is no need to calculate them separately. 

As an illustration, we consider here the cross-sections of some electron-hydrogen 
interaction processes relevant to the population of excited states. For example, the cross-section 
of the electron impact excitation of the hydrogen atom from a level k to level n ( k < n ) can be 
written (e.g. see [23]) as 

σk→n
H (Ee) =

128

33/2Z4
!2

mee
2

#

$

%
%

&

'

(
(

2
k5n7

(n2 − k2)5
ℓn(εe

nk +1)

εe
nk +1

=

=
32

33/2
e2

ΔEnk

#

$
%
%

&

'
(
(

2
kn3

(n2 − k2)3
ℓn(εe

nk +1)

εe
nk +1

,   (II.6) 

where  εe
nk = (Ee −ΔEnk ) / ΔEnk , ΔEnk = Ek −En  is the energy difference between the levels n 

and k, which gives for a hydrogen-like ion ΔEnk ∝ (k
−2 − n−2) . The cross-section for electron 

transition from continuum to hydrogen excited state n due to radiative recombination, 

H+ + e→H(n)+ !ω  (where Ee −En
H = !ω , recall that En

H  is negative), is given by the Kramers 
formula (e.g. see [12]) 

 σcont→n
H (Ee) =

8π

33/2(137)2n3
e2

Ee

$

%
&
&

'

(
)
)

2

1−
En
H

Ee

$

%

&
&

'

(

)
)

−1

.     (II.7) 
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Applying the classical Thompson formula for the hydrogen atom ionization cross-section from 
the excited state n, we find  

σion
n (Ee)∝

e2

En
H

#

$

%
%

&

'

(
(

2 εe
n −1( )
εe
n( )
2

,        (II.8) 

where εe
n = Ee / | En

H | . Eq. (II.8) gives a good agreement with more sophisticated models (e.g. see 
[23]).  
 Interestingly, the dependences for electron impact excitation, radiative recombination, 
and ionization somewhat similar to Eq. (II.6)-(II.8) can be found from simple dimensional 
arguments. Indeed, the excitation (or ionization) cross-section, σexc , should depend on the 

electron energy Ee  and the energy difference between the initial and final quantum states 

(including continuum) ΔEnk . Therefore, the most general expression for σexc  can be written as 
follows [3]  

 σexc
k→n (Ee) =

e2

ΔEnk

$

%
&
&

'

(
)
)

2

fexc
k,n (εe

nk ) ,       (II.9) 

where the function fexc
k,n (x)  ( fexc

k,n (x <1) = 0 ) depends on some quantum mechanical 
particularities of the transition (e.g. on n and k). We notice that the scaling following from Eq. 
(II.9) works rather well for many inelastic processes ranging from neutral and ion ionization [3] 
to electron excitation (e.g. the electron impact excitation of hydrogen-like ions from n=1 to k=2  
follows Eq. (II.9)  for a wide range of Z [24]).  

Eq. (II.9) predicts an important feature of the excitation and ionization cross-sections: 

their maximum values, which are ~ ΔEnk( )−2 , increase roughly ~ n4  with increasing n. In 

addition, both the excitation and ionization energy thresholds decrease with increasing n, which 
increases the number of electrons that can contribute to these transitions. The latter circumstance 
is particularly important for low-temperature plasma, such that T < IH . Finally, recalling Eq. 
(II.3), we see that the rate of spontaneous decay of highly excited states falls down. All these 
effects suggest an appreciable population of the excited states and emphasize the importance of 
these states in overall reaction rates (e.g. hydrogen ionization).  

In other words, the so-called multistep processes including multiple excitation/de-
excitation of atoms, molecules, and ions with following ionization, radiation, recombination and 
other processes affecting the population of excited states can significantly alter the rates of many 
atomic processes. They include not only ionization, recombination, and radiation loss, but also 
many other processes. Moreover, as we will see later, the presence of excited particles can 
“switch on” some important chemical reactions, which would not be possible otherwise.  

To allow properly for the impact of the excited states on the rates of different atomic 
processes, one should consider the rate equations for the populations of these states. As an 
illustration, we consider here the rate equations for the excited states of a hydrogen atom. First, 
we should recall that the rate of a “reaction” (e.g. ionization) involving binary collisions between 
particles A and B can be written as KAB[A][B] , where [A]  and [B]  are the densities of species 
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A and B and KAB  is the rate constant of this reaction, which can be expressed in terms of the 

cross-section of the process, σAB ≡ σAB(|
!
VA −

!
VB |) , as follows (e.g. see [22]) 

KAB = d!vA d
!vBσAB(|

!vA −
!vB |) |

!vA −
!vB |∫ fA(

!vA)fB(
!vB) [A][B]( )−1 ,  (II.10) 

where fA(
!vA)  and fB(

!vB)  are the distribution functions of species A  and B over velocity 

space normalized to their densities [A]  and [B]  (e.g. d
!vAfA(

!vA)∫ = [A] ). 
Being interested in binary collisions of electrons with “heavy” hydrogen atoms and 

protons, we can ignore the speed of the “heavy” particles in the expressions for the 
corresponding rate constants (II.10). As a result, the rate constants of electron-“heavy” particle 
interactions (e.g. electron impact excitation of the hydrogen atom Kk→n

(e) ) only include averaging 

over the electron distribution function fe(
!v,!r, t) :  

Kk→n
(e) ne = σk→n

(e) (v)vfe(
!v,!r, t)d!v∫ ,        (II.11) 

where σk→n
(e) (v)  is the cross-section of the process under consideration. Thus, strictly speaking, 

in order to find the rate constant, one needs also allow for the evolution of the electron 
distribution function. However, today it is not feasible to use a fully kinetic approach for the 
study of all processes in the edge plasmas. Therefore with some exceptions, which will be 
considered in Ch. VI, edge plasma transport codes use a fluid approach where the distribution 
functions of the plasma particles are assumed to be shifted Maxwellian (applicability and 
limitations of this assumption will be considered in Ch. VI). Since the electron flow velocity in 
the edge plasma is much lower than the thermal electron speed, one can use in Eq. (II.11) the 
non-shifted Maxwellian electron distribution function. As a result, the rate constants of binary 
reactions involving electrons (e.g. Kk→n

(e) ) depend on the electron temperature Te  only. 
For the case where the population of the excited states is due to electron impact and 

emission and reabsorption of photons, a symbolic form for the corresponding rate equations can 
be written as follows 

d[Hn]
dt

= −[Hn ] ne Kn→k
(e) + νn→k

(rad)

k≠n
∑

k≠n
∑

&
'
(

)
*
+
+ Kk→n

(e) [Hk ]
k≠n
∑ ne

+ νk→n
(rad)[Hk ]

k≠n
∑ + Sn

(rad)

k≠n
∑ +Sn

(transp)
,  (II.12) 

where [Hn ]  and ne  are the densities of hydrogen atoms in the quantum state n and electrons 

respectively; Kk→n
(e)  is the rate constant of electron-induced transition from the state k to the 

state n; νk→n
(rad)   is the effective frequency of spontaneous decay of the state k to the state n. Sn

(rad)  

and Sn
(transp) are the sources and sinks of the population of different quantum states, caused by 

photon absorption and transport of atoms, respectively (we notice that the states k can also 
include continuum). 
 Examining different terms in Eq. (II.12), one finds that for the edge plasma conditions, 
the characteristic equilibration time of the population of excited states (described by the first 
term on the right-hand side of Eq. (II.12)) is usually much shorter than the characteristic times of 
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i) variation of the hydrogen density in the ground state, | dℓn[H1] / dt |
−1  and ii) transport of 

exited states described by the last term in Eq. (II.12). As a result, the population of all 
electronically excited states in a hydrogen atom can be considered in a local quasi-steady 
approximation assuming that [H1]  and the plasma density and temperatures are fixed. A similar 
approximation is often used for chemical radicals in theoretical models of chemical reactions 
(see [5], [6] and the references therein). The equations following from this approximation, that 
greatly simplifies the rate equations for the population of excited states, are called the 
Collisional-Radiative Model. Originally it was developed for hydrogen, and then extended to 
helium, impurities, and molecular hydrogen (e.g. see [25], [26], [13], [27], [28] [29], [30], [31], 
[12] and the references therein). 
 The CRM can be simplified further by using proximity of the states with n ≈ nmax  to 
continuum and describing their population by the local thermodynamic equilibrium (LTE) by 

implementing the Saha equilibrium, so that [Hnmax
]∝[H+]ne , (see [25], [26], [29], [13], [5], 

[12] and the references therein). Moreover, since in edge plasmas [H1]>> [Hn ]
n=2

n=nmax
∑ , we can 

assume that [H1]  equals to the density of atomic hydrogen [H] . As a result, we arrive at the set 

of linear algebraic equations for the population of quantum states 1< n < nmax : 

0 = −[Hn ] neKn→k
(e)

k=1,k≠n

nmax
∑ + neKn→cont

(ion) + νn→k
(rad)

k=1

n−1
∑

&
'
(

)(

*
+
(

,(
+ neKk→n

(e) [Hk ]
k=1,k≠n

nmax
∑

+ νk→n
(rad)[Hk ]

k>n

nmax
∑ +Kcont→n

(rec) [H+]ne + Sn
(rad)

k≠n
∑

 , (II.13) 

where the rate constants Kn→cont
(ion)  and Kcont→n

(rec)  describe ionization and radiative recombination 

from the continuum. Recalling that [Hnmax
]∝[H+]ne , we find that the solution of Eq. (II.13) 

can be expressed as a linear combination of the density of atomic hydrogen [H] , the product 

[H+]ne , and a term describing radiation-induced transitions Sn
(rad) . Neglecting, for simplicity, 

the Sn
(rad)  terms, we have  

[Hn ]= ξn
H[H]+ ξn

H+ [H+]ne ,         (II.14) 

where the functions ξn
H  and ξn

H+  can be found from the solution of corresponding sub-sets of 
Eq. (II.13) in terms of the electron and hydrogen ion densities and the rate constants and the 
frequencies of radiative decay Kn→k

(e) , K1→cont
(ion) , νn→k

(rad) , and Kcont→n
(rad) . Substituting expression 

(II.14) into the equation for the population of the ground state, from (II.12) we find 
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d[H]
dt

= − K1→cont
(ion) + Kk→cont

(ion) ξk
H

k=2

nmax
∑

%
&
'

('

)
*
'

+'
[H]ne

+ Kcont→1
(rec) + ne Kk→1

(e) ξk
H+ + ne

−1 νk→1
(rad)ξk

H+

k=2

nmax
∑

k=2

nmax
∑

%
&
'

('

)
*
'

+'
[H+]ne +SH

transp

, (II.15) 

where the first and second terms on the right-hand side of Eq. (II.15) can be interpreted as the 
hydrogen ionization and electron-ion recombination (EIR) rates (including both radiative and 
three-body recombination). Accordingly, the expressions in the first and second braces on the 
right-hand side of Eq. (II.15) are called the hydrogen ionization, Kion

H , and electron-ion 
recombination (EIR, which includes both radiative and three-body recombination processes), 
Krec
H , rate constants. As a result, we can re-write Eq. (II.15) as follows 

 d[H]
dt

= −Kion
H ne[H]+Krec

H ne[H
+]+Sn

(transp) .      (II.16) 

The CRM is widely used in the modeling of gas discharge, fusion, and astrophysical 
plasmas (e.g. see [25], [13], [27], [28] [29], [30], [31], [12], [23] and the references therein). It is 
much simpler than the time-dependent rate equations (II.12) whereas allowing for the impact of 
excited states on both the ionization and recombination processes. We notice that since the 
population of excited states is established in a competition of electron-induced transitions and 
spontaneous decays, both rate constants Kion

H  and Krec
H  depend on the electron density and 

temperature. However, in optically thick plasma, re-absorption of resonance photons (in fusion 
plasmas they are usually Lyα  and Lyβ ) can alter the population of the excited states (recall 

terms Sn
(rad)  in Eq. (II.13)) and, therefore, the ionization and recombination rate constants.  
We will see below that because of high ionization rates of the excited states, the multistep 

processes including excitation and quenching of the excited hydrogen levels result, at sufficiently 
high plasma density, in a significant increase of the effective hydrogen ionization rate constant. 
Moreover, even the constants of elastic processes involving excited states can depend on n. In 
particular, the rate Kcx

(n)  of the so-called charge exchange process, H(n)+H+→H+ +H(n) , 

increases with increasing n and is proportional, although approximately, to n4  [32]. Such elastic 
collisions play a vital role in plasma-neutral momentum exchange and divertor detachment 
physics (e.g. see [33] and the references therein). Therefore, a correct assessment of the impact 
of excited states on overall momentum exchange is important.  

A crude estimate of the effective resonance charge exchange rate constant, based on a 
simple averaging of corresponding cross-sections over relative population of excited states, 
similar to that of the ionization rate constant, Kcx = Kcx

(n)[Hn ] / [H]n∑ , demonstrates a 

significant increase of Kcx  in comparison to the cross-section involving hydrogen in the ground 

state, Kcx
(1)  [34]. If this simple estimate held, it would imply an important impact on both 

hydrogen transport and plasma-neutral coupling described with both Monte Carlo codes and 
fluid models (e.g. see [35]). However, more thorough consideration shows that such a simplified 
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description of the contribution of the excited states to hydrogen transport and plasma-neutral 
momentum exchange is incorrect [36].  

For a proper consideration of ion-neutral momentum exchange we need to consider the 

distribution functions of protons, fi (
!v) , and atoms in all excited states, f(n)

H (!v) . Then, since the 

charge-exchange cross-section of excited states is much higher than that of the ground state, 
recall Kcx

(n) ∝ n4 , we can assume that not only the density of the excited states (as it is 

considered within CRM) but also their velocity distribution functions f(n)
H (!v)  can be treated in a 

quasi-equilibrium approximation leaving only a relatively slow variation of density and 
distribution function of the ground state. Then we can write the following counterparts of Eq. 

(II.13) and (II.15) for the distribution functions f(n)
H (!v)  allowing, in addition to electron-neutral 

interactions and spontaneous decays of excited states, for the charge-exchange processes: 

0 = −f(n)
H (!v) neKn→k

(e)

k=1,k≠n

nmax
∑ + neKn→cont

(ion) + νn→k
(rad)

k=1

n−1
∑

&
'
(

)(

*
+
(

,(
+ νk→n

(rad)f(k)
H (!v)

k>n

nmax
∑

+ neKk→n
(e) f(k)

H (!v)
k=1,k≠n

nmax
∑ −Kcx

(n) nif(n)
H (!v)−[Hn ]fi (

!v){ }
,  (II.17) 

and  

df H(!v)
dt

= −ne K1→k
(e)

k=2

nmax
∑ +K1→cont

(ion)
$
%
&

'&

(
)
&

*&
f H(!v)

+ neKk→1
(e) + νk→1

(rad)( )f(k)H (!v)
k=2

nmax
∑

$
%
&

'&

(
)
&

*&
−Kcx

(1) nif
H(!v)−[H]fi (

!v){ }
,  (II.18) 

where ni is the proton density, f H(!v) ≡ f(1)
H (!v) , df H(!v) / dt = ∂f H(!v) / ∂t + !v ⋅∇!rf

H(!v) . For 

simplicity, we assume that σcx
(n)(v)v ≡ Kcx

(n)  does not depend on the velocity v and neglect all 
free-to-bound transitions (i.e. recombination processes), which assumes the electron temperature 
corresponding to “ionizing” plasma. We notice the integration of Eq. (II.17)−(II.18) over the 
velocity space brings us back to Eq. (II.13) and (II.15) and, therefore, to the following relation 

[Hn ]= d!vf(n)
H (!v)∫ , with [Hn ]  given by the CRM. To find f(k)

H (!v)  we observe that the solution 

of Eq. (II.17) depends only on fi (
!v)  and f H(!v) . Then, following [37], we can write the 

functions f(n)
H (!v)  as f(n)

H (!v) = [Hn ] δnfi (
!v) / ni + (1−δn )f

H(!v) / [H]{ } , where δn are the partition 

coefficients. Substituting this expression for f(n)
H (!v)  into Eq. (II.17)−(II.18), we obtain algebraic 

equations for δn , which are somewhat similar to the equations (II.13) but allowing also for 
charge exchange processes of the atoms on excited states: 
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0 = −[Hn ]δn neKn→k
(e)

k=1,k≠n

nmax
∑ + neKn→cont

(ion) + νn→k
(rad)

k=1

n−1
∑ +Kcx

(n)ni
'
(
)

*)

+
,
)

-)

+ νk→n
(rad)[Hk ]δk

k>n

nmax
∑ + neKk→n

(e) [Hk ]δk
k=1,k≠n

nmax
∑ +Kcx

(n)ni[Hn ]

,   (II.19) 

and the following equation for the evolution of the function f H(!v) : 

 

df H(!v)
dt

= −Kion
H nef

H(!v)−Kcx
H nif

H(!v)−[H]fi (
!v){ } ,    (II.20) 

where the first term on the right-hand side of Eq. (II.20) describes just the effective ionization 
rate constant, recall Eq. (II.16), and 

Kcx
H = Kcx

(1) + ni
−1 neKk→1

(e) + νk→1
(rad)( )δk [Hk ] / [H]( )

k=2

nmax
∑ ,     (II.21) 

is the effective charge exchange rate constant taking into account the contribution of the excited 
states. As we see, the structure of the expression (II.21) is very different from effective charge 
exchange cross-section accounting for the contribution of excited states 
Kcx = Kcx

(n)[Hn ] / [H]n∑  suggested in Ref. [34]. 
 By adopting Grad expansion of both the neutral and ion distribution functions (see Ch. VI 
for details), it is possible to extend the analysis of the role of excited states to a very general 
hydrogen-ion elastic collision operator (including the charge-exchange one). However, it goes 
beyond our simple demonstration of the possible extension of the CRM to the evaluation of an 
impact of the excited states on elastic collisions and neutral transport. Calculations performed in 
[37] have shown that in a contrast to the results from [34], Kcx

H  exceeds Kcx
(1)  by only 10-15% 

and an impact of the excited states on neutral hydrogen transport is not very important. This is 
because of: i) the comparability of the magnitude of Kcx

(1)  to the electron impact excitation rate 
constant of the hydrogen atom, and ii) fast transition from excited to the ground state. However, 
the conclusion of the importance of electron exchange recombination of an impurity ion in the 
course of the interactions with excited hydrogen atoms [34] largely holds because hydrogen in 
the ground state does not undergo such a “resonance” charge exchange process. 
 The application of the CRM to impurity atoms/ions and molecules results in more 
complex equations than Eq. (II.13), Eq. (II.15). This is because i) the number of states, which 
should be considered within CRM for each individual atom/ion, increases; ii) few ionization 
states of the same kind of atom/ion can exist for given plasma density and electron temperature; 
iii) the population of excited states of impurity atom/ion in edge plasma can be affected by 

charge-exchange process involving hydrogen atoms (e.g. AZ+1+H→AZ(n)+H+ , where AZ  

and AZ(n)  are impurity atoms in ionization states Z+1 and excited level of ionization state z) 
[21]; iv) the so-called dielectronic recombination process (accompanied by excitation of an ion’s 
electron and formation of a doubly excited atom/ion with subsequent emission of the photon, 

AZ+1+ e→AZ(n,n ')→AZ + !ω ) should be considered (e.g. see [38], [39] and the references 
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therein); and v) some excited quantum states of complex atoms/ions are “metastable” or just 
stable (e.g. the ro-vibrational states of hydrogenic molecules). 

To take into account such processes, one needs to modify the rate equations (II.12) 
adding some new terms (for example, quenching of metastable states on vacuum chamber walls, 
which becomes important in weakly ionized plasma (e.g. see [13]). This means that in such 
plasmas, one should consider the transport terms for the particle density not only in the ground 
state but also in the metastable states. However, in relatively high density and rather hot fusion 
plasma, an effective lifetime of the metastable states is determined largely by the interactions of 
the metastable atoms/ions with electrons and is strongly reduced in comparison to their natural 
lifetime. In addition, the natural lifetime of ionic metastable states is decreasing as Z−8  with 
increasing the ion charge Z. We also remind that some quantum states within the “thin structure” 
of the hydrogen energy levels, caused by relativistic effects, are also metastable. But due to the 
strong “mixing” of these levels in a fusion plasma environment, these metastable states play no 
significant role. As a result, in fusion research the transport of metastable states is usually 
ignored and their populations (as well as ionization/recombination balance and radiation loss) are 
considered in a quasi-equilibrium approximation (recall Eq. (II.13)) on the equal footage with 
other excited states (e.g. for details see [30] and the references therein). The results of 
comprehensive numerical modeling show that for the edge plasma conditions, even the 
metastable state 23S1  of helium, having the lifetime ~104 s, can be treated in quasi-equilibrium 
approximation [40]. The presently most advanced database providing the fusion-relevant 
impurity radiation loss, the contribution of different lines, the rate constants, etc., is the ADAS 
database [41].  The divertor modeling codes whose development had started before the ADAS 
database became the de-facto standard can use some other data sources (for example, the 
AMJUEL, HYDHEL and METHANE data sets [42] in SOLPS).  
  
II.3 Line radiation transport in edge plasma 
As we have seen in the previous sub-section, the populations of excited states are determined by 
the competition between the processes involving interactions with electrons and, playing 
important role, radiative decays (e.g. from level n to level k), which are accompanied by the 
emission of photons having the energy !ω0 ≈ ΔEnk , where ω0  is the photon frequency 
corresponding to the decay n→ k . This is the so-called “line radiation”, which dominates in 
edge plasmas. However, in our simplified analysis of the CRM for hydrogen atoms, (recall Eq. 
(II.13)), we neglected the term Sn

(rad)  describing inter-state transitions stimulated by the photons. 
These two features of our analysis could only be reconciled for the case of so-called 
“transparent” media, where the effective mean free path of a photon to absorption by a 
neutral/ion, ℓabs , is longer than the characteristic scale-length, L , (e.g. for the case of radiation 
in the divertor volume, it could be the poloidal width of divertor). An opposite case, where 
ℓabs < L , is called the “opaque” or “optically thick” one.  
 Since the photon absorption rate is proportional to the density of available absorbers, and 

absorption process in edge plasma largely has a resonant nature (recall the relation !ω0 ≈ ΔEnk
), edge plasma can be transparent for the radiation corresponding to some lines and opaque for 
the other ones (the latter case is often referred to as radiation “trapping”). Because the density of 
hydrogen atoms (hydrogen molecules are dissociated rather quickly due to electron impacts) is 
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the largest among the radiating species in the edge plasma, the line radiation related to atomic 
hydrogen is the first candidate for being trapped. Moreover, since the majority of atomic 
hydrogen is in the ground state, the most strongly “trapped” hydrogen lines are Lyα  and Lyβ , 

related, respectively, to the transitions n = 2→ k =1  and n = 3→ k =1  (we will see that the 
absorption of other lines in Lyman series is weaker due to reduction of corresponding oscillator 
strengths). It was shown (e.g. see [43], [44]) that trapping effects for Lyα  and Lyβ  lines become 

important already for current tokamaks and they are expected to be much more pronounced in 
the future tokamak reactors (e.g. ITER [45]).  
 As one could notice, we have stated that the frequency of the emitted photon ω0  is only 

approximately equal to ΔEkn / ! . The reason for this is the so-called line “broadening”, which 
results in the fact that emitted photons have some frequency distribution, described by the “line 
shape” function, a(ω)  (localized around ω0  and having characteristic width Δω <<ω0 ), such 

that a(ω)dω∫ =1. There are few reasons for line broadening in edge plasma. First, there is a 
“natural” broadening of the line, Γ , caused by the finite time of the radiation emission, which 
corresponds to the decay rate of the excited state determined by the Einstein coefficients (II.2). 
However, in practice Δω  is, in most cases, much larger than Γ . In edge plasma both Δω  and the 
shape of the function a(ω)  are largely determined by i) Doppler broadening related to the shift 
of the frequency of the radiation emitted by moving particles, so that ΔωD ~ ω0(Vth / c) , where 

Vth  is the particle thermal speed; ii) Stark broadening due to the micro-electric fields 

Emicro ~ ene
2/3 , causing a change in the energy of the quantum states and yielding, for a 

hydrogen atom,ΔωS ~ (! / mee)Emicro ; iii) Zeeman effect that results, in the presence of a large 
magnetic field, in splitting the quantum states; and, finally, iv) the so-called motional Stark 
effects related to the effective electric field,EB ~ (VN / c)B . (e. g. see [46], [47], and the 
references therein). 
 For the case where the line width is only determined by the decay rate, the effective cross-
section of absorption of a resonant photon, σabs(ω0) , is proportional to the square of the photon 

wavelength, i.e. σabs(ω0) ~ (c /ω0)
2 . We note that for the edge plasma conditions, 

ω0 >>ωpe ≡ 4πnee
2 / me , where ωpe  is the Langmuir frequency, so one can neglect plasma 

effects in the dispersion of the line radiation and take ω0 = k0c , where k0  is the photon 
wavenumber. However, broadening of the line, such that Δω >> Γ , results in a strong reduction 
of σabs(ω0) , which now becomes ~ (c /ω0)

2(Γ / Δω) . For example, for the case where the 
Doppler effect dominates the line broadening, the characteristic absorption length of the line 
corresponding to the transition between the n-th excited state and the ground one in a hydrogen 
atom, ℓabs ~ 1/ σabs(ω0)[H] , can be found from the following expression [20] 
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 ℓabs = π3/2 c /ω1n( )2 n2An→1H / ΔωD( )[H]%
&
'

(
)
*

−1
,       (II.22) 

where ω1n = ΔE1n / !  , ΔωD =ω1n (2T[H] / Mnucl )
1/2 / c , and T[H]  is the temperature of the 

hydrogen atoms. For [H]=1014cm−3  and T[H] = 3 eV , which are rather typical for dense 

divertor plasma, from Eq. (II.22) we find the absorption lengths of Lyα  ~0.2 cm and Lyβ  ~2 

cm, which is shorter than the characteristic scale-length of the variation of the neutral gas density 
and one can expect trapping of both Lyα  and Lyβ  radiation.  

The radiation trapping alters the partition of 
radiation in different line series (e.g. Lyman 
and Balmer series). For example, in a 
transparent plasma, the partition of Lyβ  

(transition ) and Hα  (transition ) 
intensities depends only on the corresponding 
spontaneous emission coefficients and their 
ratio should remain constant.  However, if 
Lyβ  is trapped (Hα  is not trapped in the 

edge plasma due to a very small ratio 
[Hn=2] / [H] ), this partition will change, 
which exhibits a clear signature of the 
radiation trapping effects. Such a change in 
Lyβ  and Hα  partition was, in particular, 

observed in experiments on Alcator-C-Mod 
tokamak [48] and can be seen in Fig. II.4a, 

where the Lyβ  intensity decreases with increasing Dα  intensity ( Dα  is the line 3→ 2  in 

deuterium). We note that the increase of Dα  intensity at the same plasma temperature implies 
the increase of the atomic hydrogen density. In addition, in Fig. II.4b we see that the intensity of 
Lyα  decreases also with increasing Dα  intensity, implying Lyα  radiation trapping. These 
results are consistent with the expression (II.22), which predicts that the trapping effects become 
more pronounced with increasing hydrogen density.  
 So far, in this subsection, we did not distinguish between the hydrogen isotopes. However, 
in practice, the expression (II.1) has some correction ~ me / Mnucl  caused by the finite electron 

to the nucleus, Mnucl , mass ratio. It causes the isotope-dependent shift, 

Δωnucl ≈ ω0(me / Mnucl ) ~ 3×10
−4ω0 , of the resonance frequencies ω0 . But, for typical neutral 

hydrogen temperature ~ few eV we have ΔωD ~ 3×10
−5ω0 << Δωnucl . This implies small 

overlapping of corresponding line shapes a(ω)  of different isotopes and weak interference of 
their line radiation transport. However, at high plasma density, Stark broadening could exceed 
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Fig. II.4. The dependences of the Lyβ  

transmission (a) and the intensity of Lyα  (b) on 
the intensity of .  Reproduced with 

permission from [48], © AIP Publishing 1998. 
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the Doppler one and overlapping of the lines could be much stronger.  
In our estimates related to both absorption length of line radiation and interference of line 

radiation emitted by different hydrogen isotopes, we have used rather crude models where the 
details of the line shape a(ω)  were ignored. As a matter of fact, in these models, we focused on 
the transport of photons corresponding to the “center” of the line. However, for the case where 
the photons having the frequency close to the line center are trapped and, therefore, their 
transport is impaired, the main contribution to energy transport via line radiation will come from 
the “wings” of the line shape [49], [50], [12]. To include the impact of different line broadening 
mechanisms, the Voigt line shape, a( !ω) =V( !ω,σω ,γ) , which is the convolution of the Gaussian 

profile, G( !ω,σω ) = exp − !ω
2 / 2σω

2( ) / σω 2π , (accounting for Doppler broadening) and 

Lorentzian profile, L( !ω,γ) = π−1γ / ( !ω2 + γ2) , (describing, to some approximation, the Stark 
effect),  

V( !ω,σω ,γ) = G( ! $ω ,σω )L( !ω− ! $ω ,γ)d ! $ω
−∞

∞
∫ ,      (II.23) 

where !ω =ω−ω0 , whereas σω  and γ  are the characteristic widths of the Gaussian and 
Lorentzian profiles, respectively. Although the Voight approximation is often used in simplified 
models, more detail calculations show (e.g. [51], [40]) that Zeeman splitting (which is not 
included in the expression (II.23)) can play an important role in edge plasma radiation transport. 
 In order to describe properly the line radiation trapping effects on both the energy loss 
and the atomic physic processes, one needs to consider the photon kinetic equation (e.g. see [49], 
[50], [12] and the references therein). Here, just for illustration, we consider the case where the 
radiation trapping is important for a particular line corresponding to the transition in the atom 
“D” from a quantum level with high energy (“u”) to the lower one (“d”). First, we introduce the 
radiant intensity per solid angle, Iω(

!r,
!
Ω) , which depends on the spatial coordinate 

!r  and the 

photon propagation direction in the solid angle 
!
Ω . Then, assuming: i) steady-state 

approximation for Iω(
!r,
!
Ω)  and ii) that the absorption and emission line shapes are described by 

the same isotropic function a(ω) , we arrive at the following equation: 

 4π
!ω
"c ⋅∇ Iω = a(ω) Au,d[Du ]+ IωBu,d[Du ]− IωBd,u[Dd]( ) ,     (II.24) 

where [D(...) ]  are the densities of atoms in the high and low energy states; 
!c  is the photon 

velocity vector; Bd,u , Bu,d , and Au,d  are the Einstein coefficients 

 Bu,d = Au,d
4π3c2

!ω3
,   Bd,u =

gu
gd
Bu,d ,      (II.25) 

g(...)  is the statistical weight of the state (…), and Au,d  can be found from quantum mechanics 

(e.g. for hydrogen atom it is determined by Eq. (II.2)).  
The terms in the brackets on the right-hand side of Eq. (II.24) describe, respectively, 

spontaneous and induced emission of the photons and photon absorption. For edge plasmas, 
induced emission is small and can be neglected.  By integrating the photon absorption term we 
find the source for the population of the “u” quantum state caused by absorption of the radiation 
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by atoms in the “d” quantum state, Su
(rad) = (4π)−1 a(ω)Iω dωd

!
Ω∫ Bd,u[Dd] , which enters in Eq. 

(II.13) for the population of excited states. 
We note that in edge plasmas, atom densities and the line shape function depend on the 

spatial coordinate. The latter feature makes it extremely difficult to find reliable estimates of 
radiation transport [50], [12]. In addition, the radiation trapping modifies the rates of the atomic 
processes (recall Eq. (II.13) and, therefore, the population densities appearing in Eq. (II.24). 
Thus, we see that both radiation transport and the dynamics of the population of excited states of 
atomic hydrogen become coupled. Moreover, since the emission of a photon can happen in one 
region and its absorption in another one, the synergistic effects of radiation transport and atomic 
processes appear to be non-local.  

As a result, except very crude models that will be discussed later, realistic solutions of 
these complex coupled problems could only be found numerically.  

At this moment, the most advanced numerical package capable of treating both the 
atomic physics and radiation transport effects in complex edge plasma geometry is built into the 
EIRENE Monte Carlo code (e.g. see references [52], [53], [40]). Another multi-dimensional 
code which was used for the radiation transport modeling in edge plasma is Cretin [54], [51], 
[55], [56]. The results of the simulations performed with both EIRENE and Cretin show a 
reasonably good agreement. 

Modeling of the JET, Alcator-C-Mod, and ITER plasmas with EIRENE shows that 
radiation transport plays a crucial role in hydrogen ionization processes in optically thick (large 
product of the hydrogen atom density and the spatial scale length) devices. For example, while in 
JET, the radiation-stimulated ionization contributes only 10-20% to the total ionization source, in 
more optically thick Alcator-C-Mod this number increases to 30%, and in ITER, depending on 
the regime, it rises to 60-90% [40]. Unfortunately, self-consistent modeling of radiation transport 
and the atomic physics effects is very computationally expensive, so that in many cases the 
radiation trapping effects are ignored. Partly it is justified by the fact that some features 
important for the reactor design, such as the heat load on divertor targets, appear to be quite 
insensitive to the outcome of the radiation trapping effects (e.g. see [53]. However, these effects 
appear to be crucial for proper modeling of some particular phenomena observed in experiments 
(e.g. modeling of MARFE in JET tokamak where it was found that 90% of Lyα  and 70% of 

Lyβ  lines are trapped [57]) and they are also often important for interpretation of the diagnostic 

(e.g. spectroscopic) data [48].  
 
 
II.4 Application of CRM to edge plasma relevant species 
In this sub-section, we consider the results of the application of the CRM to different atomic and 
molecular species relevant to the edge plasma in magnetic fusion devices.  
 
 
II.4.1 Hydrogen  
We start with hydrogen atoms and molecules. An impact of radiation trapping on the atomic rate 
constants of hydrogen species, in general, depends on the particular distribution of the plasma 
and neutral gas parameters. However, just to taste a flavor of the radiation trapping effects, one 
can consider a model where hydrogen radiation in some particular lines is completely trapped. 
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This case corresponds to a CRM where spontaneous decay from some particular quantum states 
is turned off, which mimics quick reabsorption of the resonance photons [26].  

In Fig. II.5, one can find the dependence of both the atomic hydrogen ionization Kion
H  

and the EIR Krec
H  rate constants on the temperature for different plasma densities for the case of 

fully transparent plasma (Fig. II.5a) and suppressed spontaneous decay from the levels n ≥ 2  to 
the ground state (Fig. II.5b), which mimics the complete opacity conditions for the Lyman lines, 
obtained from the SOLPS database [42].  
 

 (a)  (b) 
Fig. II.5. Dependence of the hydrogen ionization, Kion

H , and EIR, Krec
H , rate constants on the 

electron temperature for different electron densities for the case of fully transparent plasma (Fig. 
II.5a) and suppressed spontaneous decay from the levels n ≥ 2  to the ground state (Fig. II.5b), 

which mimics the complete opacity conditions for the Lyman lines. In Fig.II.5a the charge-
exchange rate constant Kcx

(1)  is shown for different hydrogen isotopes assuming that the 
electron/ion/neutral temperatures are equal.  

 

 As one could expect, both the increase of the electron density above ~1014cm−3  and the 
suppression of the spontaneous decay of the transition 2→1 , which enhance the population of 
excited states, are boosting the ionization rate constant. In Fig. II.5a we also plot the charge-
exchange rate constants Kcx

(1)  (which will be used for our further considerations) for different 
hydrogen isotopes assuming that the electron and ion/neutral temperatures are the same. 
However, in practice, the analysis of edge plasma and neutral hydrogen transport requires more 
detailed knowledge of the elastic collisions involving the ions, atoms, and molecules of the 
hydrogenic species. The relevant cross-sections (including momentum and charge transfer) can 
be found from both semi-classical and fully quantal calculations (e.g. see [58], [59]). 
 Both the ionization and recombination rates are necessary for the evaluation of the 
plasma recycling processes. However, the ionization of neutrals, which is accompanied by 
neutral gas excitation and following radiation, results in plasma energy dissipation. Thus, as it 
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was noted in Ch. 1, to maintain plasma recycling, the recycling region must be supplied with 
power.  
 To assess the energy dissipation caused by plasma recycling, it is convenient to introduce 
the hydrogen “ionization cost” [60], Eion

H , which corresponds to plasma energy dissipation per 
an ionization event: 

 Eion
H = [Hn ] −EnKn→cont

(ion) ne + ΔEnkνn→k
(rad)

k<n
∑

&

'
(

)

*
+

n
∑
,
-
.

/.

0
1
.

2.
[H]neKion

H( )
−1

,   (II.26) 

 
where the population of excited states is taken 
from the CRM. It is obvious that Eion

H  
depends on the electron temperature and 
density and is significantly altered by the 
radiation trapping effects. As an example, the 
dependence of Eion

H  on Te  for different 
electron densities is shown in Fig. II.6 for the 
cases of transparent plasma and suppressed 
spontaneous decay from the levels n ≥ 2  to 
the ground state (Fig. II.6b), which 
corresponds to the complete opacity 
conditions for Lyman lines radiation. 
As we see from Fig.II.6, Eion

H  is around 30 eV 
and even higher for the transparent and not so 
dense ( ne <10

14cm−3 ) plasma, which 
significantly exceeds the hydrogen ionization 
potential IH =13.6 eV  since the excitation 
rate constants exceed the ionization ones. 
However, Eion

H  falls with increasing electron 

density above ~1014cm−3  to the values close to IH =13.6 eV  due to the contribution of the 
multi-step processes to ionization even for transparent plasma. This effect becomes more 
pronounced for the plasma opaque for the Lyman radiation. 
  So far, we discussed atomic processes related to atomic hydrogen. However, molecular 
hydrogen, having rich internal structure due to the presence of the rovibrational quantum states, 
can play an important role in high-density, low-temperature edge plasma phenomena. At low, 
~few eV, electron temperatures, plasma cooling due to excitation of electronic states of neutrals 
and ions becomes less efficient because of the reduction of corresponding rate constants. At the 
same time, the cross-section of electron impact excitation of the vibrational states of molecular 
hydrogen, which goes through the metastable ion H2

(−)  having relatively a low energy threshold 
[12], [17], [18], still remains large (see Fig.II.7). As a result, the effective “cooling” rate 
constant, !Kcool = ΔEKΔE , (where ΔE is the electron energy loss due to excitation to some 

 
Fig. II.6. Dependence of hydrogen ionization 

cost Eion
H  on electron temperature for different 

plasma densities for the case of fully 
transparent plasma and suppressed 

spontaneous decay from the levels n ≥ 2  to the 
ground state, which mimics completely opaque 

condition for Lyman lines. 
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quantum state and KΔE  is the corresponding rate constant) for the excitation of the first 

vibrational level of H2 , !Kcool
vibr , at small, ~1 eV, electron temperatures exceeds the cooling rate 

constant for the excitation of quantum state n=2 for atomic hydrogen, !Kcool
1→2 , (see Fig. II.8).  

 The vibrational states of a Hydrogen molecule in the background electronic state are 
virtually stable. Therefore, their incorporation into the CRM model (e.g. see [31]), which 
assumes that the population of all excited states is settled (due to spontaneous decay) on the time 
scale much shorter than the transport time scale, cannot be justified. As a result, the population 
of the vibrational states should be described with dynamic equations accounting for both 
molecular transport and electron impact excitation/deexcitation. 
 

 

 

 
Fig. II.7. Experimental cross-section for the 

electron impact vibrational excitation of 
molecular hydrogen. Reproduced with 
permission from [61], © Elsevier 2002. 

Fig. II.8. Cooling rate constants for the 
excitation of the first vibrational level of H2  

and quantum state n=2 for atomic hydrogen as 
functions of Te . 

 
 The cross-sections of vibrational excitation v→ v '  by electron impact, σv→v ' , decreases 
with the increasing difference | v− v ' |  [12] [62], [63] so that in practice, the main contribution to 
the population of the vibrational states of H2  by electron impact is from excitation to the 
neighboring vibrational state v→ v±1 . In low temperature, weakly ionized plasma, an 
important role in the vibrational kinetics play the so-called vibrational-vibrational (V-V) 
exchange ( H2(v)+H2(v ')→H2(v+1)+H2(v '−1) ) and vibrational-translational (V-T) 

relaxation (H2(v)+M→H2(v ' < v)+M ) processes where M is some atom/molecule (e.g. see 
[12], [64] and the references therein). Since the Massey parameter (e.g. see [12]) for the 
vibrational de-excitation caused by collisions with neutrals in low-temperature plasmas is large, 
the V-T relaxation is usually slow and the V-V exchange dominates. In this case, the distribution 
of molecules over vibrational states tends towards the Treanor function [65], which is 

264 M.J. Brunger, S.J. Buckman / Physics Reports 357 (2002) 215–458

Fig. 21. Integral cross-section for rovibrational excitation (!=0–1) of H2 from threshold to 7 eV. (◦) Ehrhardt
et al.; (4) Linder and Schmidt; (△) Nishimura et al.; (•) Brunger et al.; (—) Morrison et al.; (– –) England
et al.; (- - -) Rescigno et al.; (- - -) Schmidt et al.

The new experimental and theoretical values would seem to favour a vibrational excita-
tion cross-section which is higher than that provided by the swarm analysis of Crompton and
colleagues (e.g. [50]). However the reasons for this discrepancy, which has been extensively
studied over the past ten years, still remain elusive.

3.1.5. Electronic excitation
At the time of the Trajmar review, there were only fragmentary measurements of absolute

cross-sections for the electronic excitation of molecular hydrogen by electron impact. Some
of these were actual measurements of scattered electron intensities whilst most consisted of
measurements of optical excitation functions. The main drawback of the latter technique is the,
at times, unknown role that cascade contributions from higher lying states can make to the
intensity of a given optical line. These early measurements have been described and tabulated
by Trajmar et al. and we shall not discuss them further here.
Since the early 1980s there has been, relatively speaking, a marked increase in the number of

measurements of cross-sections for the electron impact excitation of H2. Hall and Andric [159]
measured near threshold DCS for the b3!+u state, Khakoo and Trajmar [145] measured DCS for
the a3!+g ; B1!+u ; c3"u, and C1"u states, Nishimura and Danjo [160] measured the DCS for the
excitation of the b3!+u state as did Khakoo et al. [161] and Khakoo and Segura [162]. Finally,
the total excitation cross-section for the c3"u state was measured by Mason and Newell [163].
In the experiments of Khakoo and collaborators, the spectral deconvolution techniques, which
were outlined in Section 2.7 were used to great advantage to unravel the complex excitation
spectrum.
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characterized by an overpopulation of highly excited states in comparison to the Boltzmann 
distribution. However, electron impact dissociation of H2(v) , which increases with increasing v, 
along with other chemical reactions involving vibrationally excited molecules, occurring in edge 
plasmas, deplete the population of excited vibrational states with relatively high v.  
 Among the chemical reactions involving vibrationally excited molecules in the edge 
plasmas, the most important for our further consideration are the dissociative attachment (DA): 
 H2(v)+ e→H− +H ,         (II.27) 
 and ion conversion (IC): 
 H2(v)+H

+→H2
+ +H .        (II.28) 

Both of these processes are endothermic and, 
therefore, the cross-sections and the rate 
constants of both of these processes are very 
sensitive to the molecule vibrational excitation 
[66], [59]. In particular, the IC cross-section with 
the vibrational excitation above some threshold
v ≥ vth ∝ !M

1/2 , vth = 4  for H2 , is by order of 
magnitude higher than that for v = 3 , which is 
below the threshold (see Fig. II.9). Whereas DA 
plays a crucial role in the generation of intense, 
high, ~ 1 MeV, energy hydrogen neutral beams 
suitable for plasma heating in magnetic fusion 
reactors (e.g. see [64], [67] and the references 
therein), the IC following by the dissociative 
recombination (DR) 
 H2

+ + e→H+H ,         (II.29) 
turns out to be a significant plasma recombination sink in high density, low temperature,  H 
divertor plasmas. However, in D (and T) divertor plasma, effective recombination through the 
DA channel followed by mutual neutralization of negative and positive hydrogen ions, 
 H− +H+→H+H ,         (II.30) 
becomes more important [68] 
We note that the products of the reactions (II.29) and (II.30) are in excited quantum states (from 
n=2 to n=4) and their further fate can be described by proper modification of the CRM.  
 The sequence of reactions (II.27)−(II.30) is known in magnetic fusion community as the 
Molecular Assisted Recombination (MAR) (e.g. see [69], [28], [70], [71],  [68]).  
 Original estimates for the MAR rate [69], [28] performed for H2molecules demonstrated 
that MAR can be significantly faster than the EIR channel (see Fig. II.5) at temperatures ~few 
eV, where the EIR rate constant is small, and contribute significantly to the overall plasma 
recombination rate. However, unlike the EIR rate, which is not sensitive to the particular 
hydrogen isotope, the MAR rate is. This is because i) the vibrational excitation cross-section of a 
hydrogen molecule by electron impact decreases with an increase of the reduced mass !M , 
σv→v '( !M)∝ !M

−|v−v '|/2  [62]; and ii) the vibrational level corresponding to endothermic reactions 

 
Fig. II.9.  The dependence of the IC cross-

section on the center of mass energy of 
colliding particles (in eV) for different 

vibrational quantum numbers (labeled with 
numbers in the figure) of H2 . Reproduced 

with permission from [59], © American 
Physical Society 1999. 
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(II.27), (II.28) vth ∝ !M
1/2  is increasing with the increase of !M . Therefore, heavy isotopologues 

of a hydrogen molecule should encounter more interactions with electrons to reach vth . As a 
result, one could expect a weaker effect of MAR for the case of tritium and deuterium plasmas in 
comparison with the hydrogen one. However, we notice that the overall contribution of MAR to 
plasma recombination depends on both spatial distribution of the plasma parameters and 
transport of molecules in low-temperature divertors and, therefore, is machine sensitive. The 
current version of MAR built into neutral the transport code EIRENE, which is used, in 
particular, for the simulations of edge plasma in ITER, assumes the CRM for the population of 
the vibrational states of hydrogen molecules (e.g. see [68] and the references therein). 
 In fusion-related experiments, the MAR effects were identified in the experiments on 
Alcator C-Mod [48] and linear divertor simulators [72], [73], [74]. Recent experimental data 
from TCV tokamak show that in detached divertor regime MAR can account for up to 40% of 
the overall plasma recombination sink [75]. 
 
II.4.2 Impurities  
The energy loss due to impurity radiation plays an important role in many phenomena observed 
in the edge plasma, e.g. MARFE (which stands for the Multifaceted Asymmetric Radiation From 
the Edge) and divertor plasma detachment (see Chapter IX). Therefore, the data obtained with 
the CRM discussed above are widely used in both simplified estimates and comprehensive 
numerical simulations. Due to the relatively low density of impurity in the edge plasma in the 
“standard” regime of operation, trapping of impurity line radiation is not important. However, in 
some particular cases, where the generation of a dense cloud of impurities takes place (e.g. 
disruptions, injection of large dust grains into edge plasma, etc.), trapping of impurity line 
radiation becomes important (e.g. see [76], [77]).  

 (a)  (b) 
Fig. II.10. Dependence of the ionization (a) and cooling rate (b) constants for Be atom and first 

few Be ions on electron temperature for two different electron densities ne =10
12cm−3  and 

ne =10
14cm−3 , obtained from the ADAS database. 	
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 (a)  (b) 
Fig. II.11. Dependence of the ionization (a) and cooling rate (b) constants for N atom and first 

few N ions on electron temperature for two different electron densities ne =10
12cm−3  and 

ne =10
14cm−3 , obtained from the ADAS database. 	

 

 (a)  (b) 
Fig. II.12. Dependence of the ionization (a) and cooling rate (b) constants for Ne atom and first 

few Ne ions on electron temperature for two different electron densities ne =10
12cm−3  and 

ne =10
14cm−3 , obtained from the ADAS database. 	

 Today, the main source of fusion-relevant atomic data including impurity, which is 
widely used in magnetic and astrophysical communities for both diagnostic purposes and 
numerical simulations, is the ADAS database [41], [30], which provides the rate constants for 
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different atomic processes, radiation energy loss by different charge states of many impurities, 
the contribution to the radiation loss of different lines, etc. 
 In this sub-section, we present particular examples of impurity charge state distribution 
and corresponding radiation energy loss and discuss some simplified models for the impurity 
radiation loss used in the literature.  
In Figs. II.10-II.13 we show the dependence of the ionization and cooling rate constants for Be, 
N, Ne, and Ar on electron temperature for different electron densities, obtained from the ADAS 
database. These figures include neutrals and few first ionization states of corresponding 
impurities. As one can see from Figs.(II.10)-(II.13), the dependence of the ionization rate 
constant for impurity ions on electron density is not as strong as for atomic hydrogen (recall Fig. 
II.5), which indicates a weaker impact of the excited states of impurity ions due to the lower 
values of relevant spontaneous decay-time [30]. 

 (a)  (b) 
Fig. II.13. Dependence of the ionization (a) and cooling rate (b) constants for Ar atom and first 

few Ar ions on electron temperature, obtained from the ADAS database.  
Such ionization, cooling, and recombination (not shown here) rate constants for 

impurities along with impurity transport models are used in edge plasma codes to assess an 
impact of impurity on plasma energy dissipation. However, these codes are very complex and to 
make an approximate evaluation of impurity radiation loss, some more tractable models are often 
used. 
 Recalling the CRM (e.g. for atomic hydrogen described by Eq. (II.12)-(II.13)), we find 
that the major simplification of the description of the population of excited states comes from the 
fact that the characteristic time for establishing the quasi-stationary population of excited states 
is shorter than the characteristic transport time. In this case, the population of excited states can 
be expressed in terms of the local density of atomic hydrogen Eq. (II.13), assuming that the 
nonlocal effects of radiation transport are not important. The same approximation is built into the 
description of excited states for every ionization state of impurity, but not for the distribution of 
the impurity ions over ionization states. The reason for this is that the characteristic equilibration 

time scale of the distribution of impurity over ionization states, τimp
Z , could be comparable with 



 25 

or even longer than the characteristic impurity transport time scale, τimp
transp . If we assume that 

τimp
transp  does not depend on the impurity charge state, we can write the following approximate 

balance equation for the impurity density in the Z-th ionization state nZ  (Z >1 ) for stationary 
plasma parameters [78]: 

1
ne

dξZ
dt

= − Kion
Z +Krec

Z( )ξZ +KionZ−1ξZ−1+KrecZ+1ξZ+1− ξZ neτimptransp( )
−1
= 0 , (II.31) 

where Kion
Z  and Krec

Z  are the corresponding ionization and recombination rate constants, 

whereas ξZ = nZ / nimp  and nimp = nZZ∑  are the partition of impurity density over ionization 

states and the total impurity density. Naturally, Kion
Z  = 0 for the highest charge state and 

Krec
Z  = 0 for the neutrals. In order to sustain the total impurity density, the transport term in Eq. 

(II.31) for neutrals (Z = 0 ) is replaced with the corresponding source term. Note that writing 
ionization balance for the impurity ions this way, we imply that the transport processes simply 
remove the charged particles, replacing them by neutrals. Although in practice impurity transport 
is much more complex, such an approach gives a simple and useful estimate for the impurity 
radiation loss. By solving the algebraic equations (II.31) and neglecting three-body 
recombination of the impurity ions (which is only important at low temperatures where the 

impurity radiation loss is insignificant) we find that ξz  only depends on ne , Te , and neτimp
transp . 

As a result, we can write the following expression for the volumetric plasma energy loss due to 

impurity radiation, Wimp
rad : 

Wimp
rad = nenimp !Kcool

Z ξZ ne,Te,neτimp
transp( )Z∑ ≡ nenimp !Limp ne,Te,neτimp

transp( ) . (II.32) 

Taking τimp
transp→∞  and neglecting dependence of !Limp  on electron density, we come to the so-

called “coronal approximation” for the impurity radiation loss, !Limp ≡ Limp(Te) , which is often 

used in analytic and semi-analytic models. The function Limp(Te)  is shown in Fig. II.14 for 

most common impurities in fusion plasmas. 

 The finite τimp
transp  implies the volumetric source of impurity, Simp = nimp / τimp

transp . By 

combining Wimp
rad  and Simp , it is useful to introduce an effective neutral impurity “ionization 

cost”, Eion
imp :  

 Eion
imp =Wimp

rad / Simp = neτimp
transp !Limp ne,Te,neτimp

transp( ) ,    (II.33) 

which is just an analog of the hydrogen ionization cost.  
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In Fig. II.15 one can find the dependencies of Wimp
rad  (a) and Eion

imp  (b) for N on electron 

temperature for the electron density ne =10
14cm−3 and different values of neτimp

transp  calculated 

with the ADAS database. Similar dependencies, but for Ne, are shown in Fig. II.16. As one can 
see from Figs. (II.15) and (II.16), in both cases Eion

imp  ~ few keV if the impurity ion confinement 

is good ( neτimp
transp ~1010s ⋅cm−3 ). The estimate Eion

imp ~ few keV  is consistent with the 

experimental and simulation results from Refs. [80], [81], where the so-called impurity 
“radiation potential” (having the physical meaning somewhat similar to Eion

imp ) was introduced. 
According to [80], the 
“radiation potential” for 
carbon is about 3 keV at 
Te ~ 20 eV  and falls to ~ 

1 keV at Te ~ 60 eV , 
showing the trend 
consistent with Fig. II.15. 
Comparing 
Eion
imp ~ few keV  and 

Eion
H ~ 30 eV , we can 

conclude that impurity 
starts to dominate the 
energy loss from edge 
plasma when the impurity 
fraction in the total flux 
of neutrals into the plasma from the PFCs exceeds ~1%. 

The equations (II.31) can be extended by incorporation of charge-exchange between the 
impurity ion and hydrogen atom Az+1+H→AZ(n)+H+  (e.g. see [82]), which introduces in 
the function !Limp  one more free parameter, the ratio [H] / ne . This effect could also increase the 

impurity radiation loss at high electron temperatures [82], [20]. However, neutral hydrogen is not 
abundant at high temperatures.  
 
Conclusions for Ch. II 
In conclusion to this chapter, it would be fair to say that our knowledge of atomic processes in 
the edge plasma is reasonable with respect to both understanding of the main physical processes 
and completeness of the data needed to model and diagnose the most critical processes in the 
edge plasma of fusion devices. It is not surprising because our studies in this area are based on 
the century-old effort of a few generations of scientists. Nonetheless, some additional data would 
be needed for the case where the transport processes in edge plasma should be described 
kinetically. However, incorporation of plasma kinetic processes and radiation transport effects 
into edge plasma modeling tools is beyond current computer capabilities. We notice also that the 
addition of the radiation-induced transitions between different quantum states (e.g. for hydrogen 

 
Fig. II.14. Cooling rates Limp(Te)  for different impurities 

calculated in “coronal approximation”. Reproduced with permission 
from [79], © IAEA 1999.  
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atoms) for opaque regimes, relevant for detached divertor plasmas in fusion reactors such as 
ITER, make the simulations of the edge plasma parameters very “expensive” computationally. 
Therefore, there are only a few cases where such effects were accounted for. 
 

 (a)   (b) 

Fig. II.15. Dependence of Wimp
rad  (a) and Eion

imp  (b) for N on electron temperature for the electron 

density ne =10
14cm−3 and different values of neτimp

transp  for 1010, 109, and 108 s cm-3, calculated 

with the ADAS database.  
 

 (a)  (b) 

Fig. II.16. Dependence of Wimp
rad  (a) and Eion

imp  (b) for Ne on electron temperature for the electron 

density ne =10
14cm−3 and different values of neτimp

transp  for 1010, 109, and 108 s cm-3, calculated 

with the ADAS database.  
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