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Chapter IV. Sheath physics. 
 
One of the most distinct processes at the edge of plasma devices is a plasma flow along the 
magnetic field lines to the material surface (target) where plasma is neutralized. Since for the 
edge plasma conditions, the electron thermal speed greatly exceeds the ion one, to maintain 
ambipolarity of plasma flow (for simplicity, here we assume no electric current) such plasma 
flow is accompanied by the formation of so-called sheath region in the vicinity of the target. This 
region is characterized by a rather strong electrostatic electric field, which, usually repels most of 
free streaming electron flux and, as a result, establishes ambipolarity of plasma flow (see Fig. 
IV.1).  
 Therefore, in the absence of strong electron 
emission from the material surface, a monotonic 
electrostatic potential, ϕ(z) , is built up between the 
plasma interior and the material surface (here the z 
coordinate goes perpendicular to the surface that is 
considered to be flat). The magnitude of the sheath 
potential drop ϕsh  (see Fig. IV.1) is determined either 
from the condition of ambipolarity of the plasma flow 
or by the value of the electric current flowing through 
the plasma-surface interface. The electric field in the 
sheath causes energy exchange between electrons and 
ions and for the target potential negative with respect to 
the plasma, the energy of the ions impinging on the 
surface can significantly exceed the thermal ion energy 
at the entrance to the sheath. This effect can boost 
erosion and degradation of the plasma-facing components and cause unwanted plasma 
contamination with impurities.  

  
Fig. IV.2. (left) Direction of the magnetic field and the coordinates which will be used. (right) 
Magnetic presheath, with the width ~ ρi , and Debye sheath with the width ~ λD  for the case 

α <<1.  
The structure of the sheath depends on the angle, α , between the magnetic field, 

!
B , and 

the target (see Fig. IV.2; we notice that the direction of 
!
B  is arbitrary, whereas the “parallel” 

coordinate, ℓ , goes toward the material surface). For the case of no magnetic field or the 
magnetic field being perpendicular to the surface, the thickness of the sheath, Δzsh , is of the 

 
Fig. IV.1. Electrostatic potential ϕ(z)  

within the sheath plugs most of the free 
streaming electron flux to maintain 

ambipolar plasma flow.  
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order of the Debye length, λD = Te 4πnshe
2 , where Te  is the electron temperature, nsh  is the 

plasma density in the sheath and e is the elementary charge.  
For α ≠ π / 2  the thickness of the sheath starts to depend on the ion gyro-radius, 

ρi = Mc / eB( ) Ti M  (here Ti  is the ion temperature, c is the speed of light, B is the strength of 

the magnetic field, and M is the ion mass) and for α <<1  Δzsh ~ ρi , since in the edge plasma, 
the Debye length is usually small in comparison with ρi . In this case, one can split the sheath 
into the magnetic presheath and the Debye sheath with the thicknesses ~ ρi  and ~ λD  
respectively. 

What is important for many aspects of edge plasma physics is that for smooth transition 
of electrostatic potential from the sheath region into the plasma interior, the averaged ion 
velocity along the magnetic field lines for such plasma flow relatively far away from the surface, 
V||
(−∞) , is limited by the so-called Bohm-Chodura [1], [2] sheath criterion:  

 V||
(−∞) ≥Vcrit ,          (IV.1) 

where the critical velocity Vcrit  is determined by plasma parameters (see also [3]).  
 Interestingly, inequality (IV.1) can be obtained from an analysis of the asymptotic 
behavior of the solution of the Poisson equation with proper perturbation of the electron and ion 
density by the sheath potential at z→−∞ . To demonstrate this, we consider an idealized case 
assuming no magnetic field and monoenergetic ions streaming to the target with the velocity 
component perpendicular to the target at z→−∞    equal to V−∞ . We also assume that at 
z→−∞ , electrons with vz > 0  are described by the Maxwellian distribution function 

fe(vz > 0)∝exp(−mvz
2 / 2Te) .  

 Considering the case V−∞ << Te / m  and 
taking into account that at z→−∞  the plasma is 
quasi-neutral, we conclude that in order to maintain 
ambipolarity of the plasma flow to the target, the 
majority of the electrons reaching the sheath region 
must be reflected back by the electrostatic potential. 
As a result, the electron distribution function at 
z→−∞  is almost symmetric with respect to the sign 
of vz , with the only exception related to the cut-off 
of the tail of the reflected electrons (see Fig. IV.3), 
which manifests the absorption of the electrons that 
could penetrate through the potential barrier eϕw  at the target (recall Fig. IV.1).   
 From ion energy conservation and the ion continuity equation we find the following 

expression for the ion density at z→−∞ , assuming that MV−∞
2 / 2 >> e |ϕ(z)| : 

 
Fig. IV.3. Sketch of electron distribution 

function fe(vz )  at z→−∞ . 
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where nsh  is the plasma density at the entrance to the sheath (in our case at z→−∞ ). 
Neglecting the impact of the cut-off of the tail of the electron distribution function at z→−∞ , 
we can take the Boltzmann relation for the electron density, which for Te >> e |ϕ(z)|  gives: 

ne(z) = nsh 1+ eϕ(z) / Te( ) . Substituting both the ion and electron densities into the Poisson 

equation, we find 
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From Eq. (IV.3) one sees that in accordance with the expression (IV.1), a “smooth” 
(exponentially decaying at z→−∞ ) variation of the electrostatic potential is only possible for 

 V−∞ ≥Vcrit ≡Cs = Te / M .         (IV.4) 
We should notice that such a flow of monoenergetic ions through almost Maxwellian electrons 
results in the instability associated with excitation of the sound waves  (e.g. see [4], [5]). 
However, this instability has a convective nature and is stabilized by even a small broadening of 
the ion distribution function [4]. 
 Since in practice, the ion velocity distribution at z→−∞  is far from being 
monoenergetic, the simple expression (IV.1) for the Bohm-Chodura criterion should be altered to 

allow for the finite spread of the ion velocity distribution function, fi
(−∞) (!v) , at z→−∞ . For the 

case of no magnetic field, in Ref. [6] it was shown that the expression (IV.4) can be generalized 
as follows: 

  
fi
(−∞) (vz )

nshvz
2
dvz

0

∞
∫ ≤

M
Te

,       (IV.5) 

which for the case of monoenergetic ions reduces to the expression (IV.4). As we see from Eq. 
(IV.5), the integral expression on the left-hand side converges only for the case where

fi
(−∞) (vz→+0)  approaches zero fast enough.  

 The Bohm-Chodura limitation on the velocity of the plasma flow onto the material 
surface is often viewed as a result of  “pure” plasma effects, based solely on electron-ion 
coupling through the ambipolar electric field. However, this is not the case. The constraint 
similar to Eq. (IV.1) does also exist for the velocity of collisional neutral gas flowing onto an 
absorbing surface (e.g. see [7]). Another example is the constraint on the speed of the gas flow 
into a standing shock wave where such speed must be supersonic. As a matter of fact, all these 
features have deep physical meaning. Indeed, both the plasma and neutral gas flows onto 
absorbing targets resemble the gas flow into a standing shock. However, the stability of the 1D 
standing shock wave is ensured by the fact that the gas flow velocity into it is supersonic, or, in 
other words, there is no wave propagating upstream away from the shock [8]. Interestingly, in [9] 
it was demonstrated that the expression (IV.5) means that the ion sound waves cannot propagate 
in the direction away from the target. Therefore, the Bohm-Chodura constraint can be viewed as 
an extension of the Landau stability criterion, with respect to the ion sound waves, to the 
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collisionless plasma flow onto an absorbing target. 
 Although the expression (IV.5) removes the limitation of the monoenergetic ion velocity 
distribution and goes beyond the simple constant (IV.4), it still does not describe the effect of the 
magnetic field line tilting with respect to the target (see Fig. IV.2), even though this feature is 
ubiquitous in edge plasma. To address both these issues, we need to consider kinetic equations 
for ions and electrons, which in the stationary 1D limit can be written as follows: 

 
!v ⋅∇fi/e (

!v,z)± e
!v×
!
B

Mc
⋅∇!vfi/e (

!v,z) ∓ e
M
dϕ(z)
dz
!ez ⋅∇!vfi/e (

!v,z) = 0 ,   (IV.6) 

where fi/e (
!v,z)  is the ion/electron velocity distribution function and !ez  is the unit vector along 

the z-coordinate. A similar equation can be used for the electrons. Incorporating the solutions of 
the ion and electron kinetic equations into the Poisson equation, we can find all the necessary 
information. However, in practice, to find the constraint similar to Eq. (IV.4), (IV.5), we do not 
need to have the full solution of these equations. As we have found in the course of the 
derivation of Eq. (IV.4), the Bohm-Chodura constraint comes from the asymptotic behavior of 
the solution of the Poisson equation, recall Eq. (IV.3), at z→−∞  where the electrostatic 
potential is low. Therefore, instead of solving the complex nonlinear system of the kinetic and 
Poisson equations, we can consider their linearized versions. As a result, we come to the problem 
similar to that of finding the dielectric constant of the plasma, ε(ω,

!
k) . Usually, it is determined 

as a function of the frequency, ω , and the wavenumber, 
!
k , which characterize the plasma wave. 

However, in our case, we are looking for the conditions of the formation of a stationary 
evanescent electrostatic potential that links the sheath region with the plasma interior. Therefore, 
we should consider the plasma dielectric constant with zero frequency and the wavenumber 
having the imaginary part ensuring that ϕ(z→−∞)→ 0 . 

 Following [4] we take fi/e (
!v,z) = fi/e

(−∞) (!v)+ fi/e
(1)(!v,z) , where fi

(1)(!v,z)  is a small 
correction. Moreover, by analogy with Eq. (IV.3), we will assume and justify a posteriori that 

ϕ(z) = ϕ0 exp(z k̂z )  and fi/e
(1)(
!
v,z) = "fi/e

(1)(
!
v)exp(z k̂z ) , where k̂z  is an adjustable parameter 

playing the role of the wavenumber of evanescent wave and which can be found from the 
solution of the Poisson equation. For “smooth” transition from the sheath to z→−∞  we need 
Re(k̂z ) > 0 .  

We notice that fi/e
(−∞) (!v) , being the solution of the stationary kinetic equation with 

ϕ(z) = 0 , should be expressed in terms of the integrals of motion, which gives: 

fi/e
(−∞) (!v) ≡ Fi/e(v||,ε⊥)  where ε⊥ =

!v⊥
2 / 2  whereas !v⊥  and v||  are the velocity components 

perpendicular and parallel to the magnetic field. Then, from [4] we have 

 k̂z
2 = −

4πe2
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where J j(x)  are the Bessel functions and ... = (...)∫ dε⊥dv|| . We notice that the normalization 

of Fi/e(v||,ε⊥)  assumes Fi/e(v||,ε⊥) = nsh .  

 First, we consider the case of the normal incidence of the magnetic field lines onto the 
target, α = π / 2 . In this case, Eq. (IV.7) is reduced to  

 k̂z
2 = −

4πe2

mi/e

1
vz

∂Fi/e
∂vzi/e

∑ .        (IV.8) 

Since we assume that the ions, striking the target, are “absorbed” by the material surface, we 
have Fi(vz )∝H(vz ) , where H(x)  is the Heaviside function, H(x > 0) =1 and H(x < 0) = 0 . For 
electrons, as we discussed above, we largely have symmetric distribution Fe(vz ) = Fe(|vz|) . As a 
result, for Maxwellian Fe(vz ) , from Eq. (IV.8) we find 

 k̂z
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1

λD
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Mnsh
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As we see, the condition Re(k̂z ) ~ λD
−1 > 0  can only be satisfied for the case where the 

generalized Bohm-Chodura criterion Eq. (IV.5) is valid. From Eq. (IV.9) one finds also that, in 

agreement with Eq. (IV.3), the characteristic scale of k̂z  is of the order of λD
−1 . 

 Next, we consider the case 
  1> α > λD /ρi  and λD /ρe >1,        (IV.10) 
where ρe  and ρi  are the electron and ion gyro-radii. For comparable electron and ion 
temperatures, which is rather typical for the plasma near the targets in high recycling conditions, 
these inequalities impose the following restriction on the angle α : 1> α > m / M . We assume 

that k̂z ~ λD
−1  and, taking into account that λD /ρe >1  and α <<1 , we conclude due to the 

conservation of both the electron adiabatic invariant v⊥
2 / B= const.  and the total electron 

energy, the electron dynamics in the sheath region is virtually adiabatic, so that 
mv||

2 / 2− eϕ = const.  [10]. Therefore, similar to our previous cases, neglecting the small tail cut-

off, we can assume an almost symmetric electron distribution function Fe(v||) = Fe(|v|||) . We also 

assume complete “absorption” of the ions on the target, which gives Fi(v||)∝H(v||) . Then, 

taking into account inequalities (IV.10) and recalling that J j
2(ς)j=−∞

∞∑ =1  for arg | ς |< π , from 

Eq. (IV.7) we find that it can be reduced to 

 k̂z
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1

λD
2
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Te
Mnsh
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nsh

Fi
v||
2

≤
M
Te

,     (IV.11) 

which justifies our assumption k̂z ~ λD
−1 . For the case of monoenergetic ion distribution function 

along the magnetic field, the expression (IV.11) is reduced to the Chodura inequality (IV.1) [2]. 
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 Once the ion flux onto the target is defined by fi
(−∞) (!v) , the potential drop between the 

plasma away from the target and the target can be found by equilibrating the electric currents in 
plasma and through the sheath. For the case of ambipolar plasma flow assuming that the ion flow 
to the target along the magnetic field is ≈ nshCs , ignoring other effects that could alter the ion 
flux to the target (e.g. drifts), and adopting the Maxwellian electron distribution function, we find 
~ eϕsh ≈ ΛshTe , where Λsh ~ ℓn(M / m) ~ 3÷ 4  [3]. 

In [5] the constrains (IV.5) and (IV.11) were criticized, in particular, from the point of 

view of “unphysical” vz
−2  ( v||

−2 ) moment of the ion distribution function and the omission of the 

impact of the collision operator for small vz  ( v|| ) in the course of the derivation of Eq. (IV.5), 

(IV.11) from the corresponding Vlasov equations. A replacement of Eq. (IV.5) based on positive 
powers of the velocity moments of the distribution function, which do not diverge at v=0, was 
suggested (see [5] for details). But in [11] it was argued that the inequality (IV.5) holds also in 
the presence of collisions provided that Eq. (IV.5) is applied at the entrance to the sheath and the 
sheath is considered in the limit of λD→ 0 . Although this discussion is important from an 
academic point of view, for the practical application of the Bohm constraint as the boundary 
condition for edge plasma flow to the target it becomes rather meaningless. This is because in the 
most relevant, from the point of view of the reduction of the power loading of the target, high 
recycling regimes of divertor operation, strong plasma-neutral interactions become ubiquitous. 
As a result, in this case, all the models suggest virtually the same constraint on the plasma flow 
velocity vz ≈ Cs  (for the case of normal incidence of the magnetic field lines onto the target) 

with some correction for the finite ion temperature. The difference between various models is 
within the error bar imposed by the boundary conditions used for the ion and electron heat fluxes 
to the target, the calculation of which should invoke spatial variation of both the electrostatic 
potential and the electron and ion distribution functions at the entrance to the sheath (e.g. see 
[12]). 
 In our considerations, we assume that the electron distribution function along the 
magnetic field lines for v|| > 0  (in the direction towards the target) is Maxwellian, whereas for 

v|| < 0  the tail of the distribution function is cut at velocities below − eϕsh / m . For the case of 

the ambipolar plasma flow, ϕsh  can be found by equilibrating the electron and ion fluxes.  
However, such approximation is only applicable for the case where electron collisionality in the 
SOL plasma is relatively high and the tail can be replenished by Coulomb collisions before the 
electrons reach the target. In the opposite case, depletion of the tail of the electron distribution 
function can drive the whistler waves, which are capable of scattering the electrons and 
effectively populating the “gap” in the electron distribution function (see [13] and the references 
therein). However, in practice, in the SOL plasmas, the electrons with the energies 
~ eϕsh ≈ ΛshTe  are weakly collisional, which makes it difficult to make quantitative estimates of 
the shape of the tail of the electron distribution function and of the subsequent impact of 
developing of the whistler wave instability. Usually, in edge plasma transport codes it is assumed 
that electrons impinging onto the target have the Maxwellian distribution.  
 So far we assumed that the plasma flowing onto the target is completely collisionless 
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within some proximity to the target. In practice, this is not the case and collisions are always 
present. In particular, in the detached divertor regime, the neutral density becomes high and ion-
neutral collisions result in a very short ion-neutral collision mean free path, λi−N .  However, in 
a ballpark, they do not change one of the key conclusions of the sheath physics: for the case of 
λi−N > λD , the plasma flow velocity at the distance ~ λi−N  from the target should about Cs  
(see [3] for details).  
 As an illustration, we consider an ambipolar flow of weakly ionized plasma on a material 
surface. We assume a constant electron temperature Te , Boltzmann electrons, no plasma sink or 
source, and no magnetic field. Then, the plasma flow is governed by the following equations  

 Mj2
d(ni

−1)
dx

= −e dϕ
dx
ni +Mνj ,        (IV.12) 

 −
d2ϕ

dx2
= 4πe ni − ne( ) ,         (IV.13) 

where j= const.  is the plasma particle flux, ν = const.  is the ion-neutral collision frequency, 

ne = ne
w exp(eϕ / Te)  is the electron density, and ne

w  is the electron density at the target where, 
for convenience, unlike Fig. IV.1, we take zero electrostatic potential. To maintain ambipolarity 

of the plasma flow we adopt the following boundary condition at the target: j=βne
w(Te / m)

1/2 , 
where β ~1 . 

We notice that Eq. (IV.12) describes two regimes of the ion flow: i) dynamic ion 
acceleration, corresponding to the case where the terms on the left-hand side and the first term on 
the right-hand side dominate (this case describes standard acceleration of ions in a collisionless 
sheath); and ii) diffusive ion flow corresponding to the case where the terms on the left-hand side 
are small. In the latter case, assuming plasma quasi-neutrality from Eq. (IV.12) and the 
Boltzmann relation, we find  
 ne ≅ ni ∝−x , and ϕ∝ ℓn(−x) .       (IV.14) 
 It is more convenient to switch in Eq. (IV.12), (IV.13) from the variable ϕ  and 

coordinate x to the variable f (φ) = ni(φ) / ne
w exp(φ)  and the coordinate 

η= (m / M)1/2β−1exp(φ)  (we notice that η≥ ηmin ≡ (m / M)
1/2β−1 ). As a result, from Eq. 

(IV.12), (IV.13) we find 

  −
1
2
d
dη

fη− (fη)−1− f −2df / dη( )
−2
= P f −1( ) ,     (IV.15) 

where P = 4πe2 j / MCsν
2 . To shed the light on the physical meaning of the parameter P, let us 

calculate the ratio of the ion-neutral collision mean-free path, λiN , and local Debye length, λD . 

After simple algebra we find ξ ≡ λiN / λD = f
−1 P / η . We will see below that at f (η ~1) ~1, 

the ion velocity is close to the sound speed. As a result, we find ξ ≈ P . So at P >>1, Λ  is large 
and ions in the vicinity of the target are moving virtually in dynamic regime. In what follows we 
will assume P >>1. 
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 When the plasma is close to quasi-neutrality ( f ≅1 ), from Eq. (IV.15) we find the 
following correction (~ P−1 <<1) to f: 

 f ≈ f∞(η) ≡1+η(η
2 +1) / P(η2 −1)3 .       (IV.16) 

From the Poisson equation, it is easy to show that the expression (IV.16) gives correct 
asymptotic dependence ϕ∝ ℓn(−x)  for quasi-neutral plasma (recall Eq. (IV.14)). However, at 
η→1  function f∞(η)  diverges.  

 
On the other hand, the dynamic regime of 

the ion flow is described by the expression in the 
brackets on the left-hand side and in dynamics 
regime, it should be close to zero. This can only be 
for the case where the right-hand side of Eq. 
(IV.15) is large for f !>1, which holds for P >>1. 
Then, from the equation 
fη− (fη)−1− f −2df / dη= 0 , we find 

f = η−1 1− 2ℓn(η){ }
−1/2

 where, keeping in mind 

the expression (IV.16), we take the boundary 
condition f (η=1) =1 . However, this boundary 
condition implies that the ion velocity reaches Cs  
at the entrance to the domain with the dynamic 
acceleration of ions (the Debye sheath). Once 
f (η)  is known, the spatial dependence ϕ(x)  can be deduced from the Poisson equation. 
Keeping in mind our assessment of the physical meaning of P, from the Poisson equation we find 
that the spatial domain occupied by quasi-diffusive, quasi-dynamic ion transport corresponding 
to f ~ 1  is about few λiN  from the target. On the other hand, the dynamic acceleration of ions 
occurs at the scale ~ λD << λiN  just in front of the material surface. 

Numerical solution of Eq. (IV.15) shows good agreement with the results of the analytic 
analysis presented here (see Fig. IV.4). As we see from Fig. IV.4, there is a continuous transition 
of f (η)  and, therefore, ϕ(x)  from the ion diffusion-limited to the ion dynamic-limited regimes.  

We notice that our fluid equation-based consideration, predicting that the ion flow 
velocity becomes ~ Cs  at the entrance to the Debye sheath agrees, in a ballpark, with the 
solution of the one-dimensional kinetic equation from [14], [15] where the ion-neutral collisions 
were described via the charge exchange process whereas the electrons were assumed to follow 
the Boltzmann relation with a constant temperature. The ion distribution, fi (ε̂i )  (where 

ε̂i =Mv
2 / 2Te ), at the entrance to the sheath, found from the corresponding kinetic equation, is 

shown in Fig. IV.5. We notice that at small ε̂i  we have fi (ε̂i )∝ε̂i , so there is no divergence in 
Eq. (IV.5) [14]. 

Since in the edge plasma of fusion devices, rather strong ion-neutral collisions in the 
vicinity of the divertor target are ubiquitous, these results justify the widely used boundary 

 
Fig. IV.4. Comparison of numerical 
solutions of Eq. (IV.15) for different 

parameters P  with the asymptotic analytic 
solution corresponding to P→∞ . 
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condition for the plasma flow velocity, V|| ≈ Cs  at the target, which, otherwise, is ill-defined by 

the inequalities (IV.4), (IV.11). 
So far we assumed that the 

only electric field present in our 
analysis of the Bohm-Chodura 
constraint of the plasma flow onto 
the target is due to the sheath 
effects. However, in the edge 
plasmas of fusion devices, a cross-
field electric field parallel to the 
target, 

!
Ep , can also be present (e.g. 

due to the electric currents or 
electron temperature variation along 
the target, etc.). As we will see, the 
impact of this electric field can 
significantly alter the Bohm-
Chodura constraint. For the case 
where one can ignore the spatio-
temporal variation of both the 
magnetic field and 

!
Ep , the impact 

of 
!
Ep  on the Bohm-Chodura 

constraint can be easily found by a transition to the moving frame [16]. Indeed, considering the 
sheath in a slab approximation (see Fig. IV.2, where 

!
Ep  is in x-direction), we can recall that the 

transition from the laboratory frame to the frame moving with nonrelativistic velocity 
!
Vf  results 

in the following transformation of the electric field: 
!
!Ep =
!
Ep + (

!
Vf ×

!
B) / c  (where 

!
!Ep  is the 

electric field in the moving frame), whereas the magnetic field in the moving frame remains 
virtually equal to the magnetic field in the laboratory frame. Since we assume that both the 
magnetic field and 

!
Ep  are constants, with a proper choice of 

!
Vf  we can have 

!
!Ep = 0 . As a 

result, in the moving frame we can use the standard Bohm-Chodura constraint (e.g. given, in the 
simplest case, by Eq. (IV.4), !V|| >Cs ). Then, making the backward transformation into the 

laboratory frame, we find the impact of 
!
Ep  on the Bohm-Chodura constraint: 

 
!
V−∞ = #V||

!
B / B+ c

!
Ep ×

!
B⊥( )B⊥−2 ,       (IV.17)   

where 
!
B⊥  is the component of the magnetic field perpendicular to the target.  

 The sheath properties impose important boundary conditions for such quantities as the 
plasma flow velocity to the target, the electric current from the plasma to the material surface 
and the electron and ion heat fluxes to the target (e.g. see [3], [17], [18], [12] and the references 
therein). These boundary conditions are used as the closures for the differential fluid plasma 
equations at the target in 2D fluid plasma transport codes such as SOLPS and UEDGE.  

 
Fig. IV.5. Ion distribution function found from the 

solution of one-dimensional kinetic equation accounting 
for ion-neutral charge exchange process and assuming 

Boltzmann electrons with constant temperature Te .  
Reproduced with permission from [15], © AIP 

Publishing 2006. 
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 For example, in the simplest case of normal incidence of the magnetic field onto the 

surface, the electric current flowing through the plasma to the target, jz
tar , has the following 

relation to the electrostatic potential drop ϕsh : 

 jz
tar = ensh V−∞ − (1− γsee ) Te / 2πmexp(−eϕsh / Te)( ) ,    (IV.18) 

where γsee <1  is the effective coefficient of secondary electron emission that includes also 

thermionic electron emission. Taking V−∞ = Te / M , from Eq. (IV.18) it follows that for 

ambipolar plasma flow to the target and γsee <<1  we have e |ϕsh |~ ℓn(M / m)Te .  

 For the electron and ion heat fluxes to the material surface, one can find qz
(e) = γe jz

(e)Te  

and qz
(i) = γi jz

(i)Ti , where jz
(e)  and jz

(i)  are correspondingly the electron and ion particle fluxes to 
the target, whereas γe  and γi  are the so-called heat transmission coefficients, which in general 
case of tilted magnetic field depend on the ion distribution function Fi(v||,ε⊥) , secondary 

electron emission, drifts, and potential drop ϕsh . However, the expressions for the fluid closures 
at the target (including those for the electron and ion heat fluxes) become much more 
cumbersome if we include grazing magnetic field, particle drifts and time dependence of the 
plasma parameters related, for example, to the SOL plasma turbulence. A discussion of these 
issues goes beyond the scope of this chapter. More details can be found in [19], [18], [12] and 
the references therein.  

 As it is indicated in Eq. (IV.18), the secondary 
electron emission can significantly alter the magnitude of 
ϕsh . Moreover, closer consideration shows that for 

1> γsee ≥ γsee
(crit) , the structure of the sheath becomes non-

monotonic. This is the so-called space-charge-limited 
(SCL) sheath (see Fig. IV.6) where to maintain the 
ambipolarity of plasma flow, a part of the emitted 
electrons are reflected back to the target by the hump of 
the electrostatic potential [20]. In Ref. [21] it was 
suggested that the secondary electron emission could be 
used for cooling the edge plasma in magnetic 
confinement devices. In [22] it was shown that the 
secondary electron emission can result in “focusing” the 
heat flux and the formation of the “hot spots” on the 
plasma-facing components.    However, in [23] it was 
argued that for the case of a strongly emitting surface, the 
so-called “inverse sheath” (IS) (see Fig. IV.6) could be 
formed. In this case, the positive (with respect to the 
plasma) potential at the target prevents ions from reaching the target and ambipolarity is 
maintained by equilibrating the fluxes of the plasma and emitted electrons. Moreover, further 
studies show that in the presence of cold neutrals, both the ionization and charge exchange 
processes within the hump of the electrostatic potential of the SCL sheath make the SCL sheath 

 
Fig. IV.6. Electrostatic potential 
profiles for: a standard sheath, 

γsee <<1, (black), the SCL sheath for 

1> γsee ≥ γsee
(crit)  (blue), and “inverse 

sheath”, γsee >>1, (red). 
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“unstable” and it evolves into IS [24]. The authors of [25] speculated that the IS can promote 
divertor detachment.  

However, a more thorough investigation of the effect of the IS on divertor detachment 
with a 2D code UEDGE has shown that the IS per se does virtually not alter the SOL plasma 
parameters and does not advance divertor detachment  [26]. However, since the IS conditions 
inhibit the ion flux to the target, the IS regime could be beneficial from the point of view of the 
strong reduction of the first wall erosion.  

The formation of the IS could also explain 
some, otherwise puzzling experimental data on 
positive plasma floating potential with respect to 
strongly electron-emitting objects observed in [27] 
and [28], e.g. see Fig. IV.7.  

 
Conclusions for Chapter IV 
In conclusion of this chapter, we note that the sheath 
plays quite a unique role in the edge plasma physics. 
Even though it occupies a tiny region close to the 
plasma-facing components, the sheath can make a 
large impact on the erosion of plasma-facing 
components. It imposes some constraints on the 
plasma flow to the material surfaces and sets the 
boundary conditions for both kinetic and fluid-based 
plasma codes, which are used to study different 
phenomena in the edge plasma, ranging from 
plasma transport and going to edge plasma turbulence. Finally, as we will see in Chapter VII, the 
effective boundary conditions at the sheath can result in specific sheath driven instabilities of the 
edge plasma, which might alter cross-field plasma transport and, therefore, the heat and particle 
fluxes on the plasma-facing components. 
 
 
 
  

 
Fig. IV.7. Floating potential of the probe 

versus the laser heating power that is used 
to facilitate thermionic emission from the 
probe. Reproduced with permission from 

[27], © John Wiley and Sons 2011. 
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