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Chapter VI. Fluid description of edge plasma transport   
  
Tokamak edge plasma is especially difficult for modeling – it is the interface between the hot 
core plasma and relatively low-temperature divertor region where multiple impurity species and 
neutral gas dynamics are important. The presence of material surfaces, e.g. divertor plates, with 
additional surface interactions and reactions, complex magnetic field geometry, such as 
separatrix, and strong electric field and plasma flows make it even more complex. Additional 
complications are introduced by the presence of non-neutral regions (boundary sheath) near the 
plasma-wall boundaries. In general, the plasma edge is the region where multiple collision and 
atomic processes having very different characteristic times and lengths are equally important and 
need to be considered self-consistently and simultaneously with the anomalous turbulent 
transport phenomena. Clear separation of the time and length scales, e.g. between the 
equilibrium and fluctuating quantities, is often impossible in the edge region, which creates 
additional challenges.  

The plasma turbulence and anomalous transport remain the biggest challenge for the 
physics of edge plasmas. Currently, it is not feasible to simulate plasma turbulence in the edge 
and fully include all possible kinetic effects, neutrals and atomic physics, sheath, boundaries, etc.  
Such simulations are still outside the modern computer capabilities. Therefore, a number of 
simplifications and reductions of the problem are usually performed.  Presently, one can identify 
two major directions in the theoretical description and modeling of the plasma edge. In one 
approach, which is conditionally called here the first principle turbulence modeling, the focus is 
on formulating the adequate physics models, which would include relevant physics at small 
scales to describe properly instabilities, turbulence and anomalous transport (see Ch. VII for 
further discussions). The global turbulence codes are being developed, which aim to characterize 
nonlinear plasma fluctuations and transport at the edge of the magnetic confinement devices, 
including 3D effects and open magnetic field geometries [1], [2], [3], [4], [5], [6], [7], [8], [9]. 
Because of limitations noted above, such codes are often based on fluid (moment) formulation 
and neglect interactions with neutrals and many kinetic effects such as parallel transport.   

In the alternative approach (e.g. see [10], [11], and Ch. VIII), the emphasis is on the 
characterization of large spatiotemporal scale equilibria and flows of particles and energy in 
complex divertor geometries including coupling to neutrals, sheath boundaries, atomic physics, 
plasma surface interactions, etc. Such codes, conditionally called here transport codes, include 
the effects of small-scale fluctuations and anomalous transport by using mostly empirical 
anomalous transport coefficients. The exact structure of anomalous transport, i.e. the form of the 
transport matrix and thermodynamical forces responsible for anomalous transport, e. g. the pinch 
effects, the role and the form of the residual stress, etc. is the subject of intense studies and 
debates. The most common approach is to add to the classical coefficients for perpendicular 
transport some empirical anomalous values (see [10], [11], [12] and Ch. VIII). 
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In this chapter, we highlight the description of plasma dynamics based on the fluid 
(moment) approach, the main assumptions, the validity limits, and the discussion of how the 
moment approach is used in the transport codes. The strong magnetic field of fusion devices 
allows certain classification of the cross-field particle, momentum and energy fluxes, as well as 
some simplifications of the resulting equations governing these quantities. In particular, the 
collisionless cross-field fluxes play an important role in defining the electric field, the parallel 
current and the flows in edge plasmas and are currently included in the transport codes used to 
model the plasma edge [10], [11], [12]. We discuss also plasma transport driven by the 
inhomogeneity of the plasma parameters along the magnetic field, which are of particular 
importance in the SOL region where the magnetic field lines intersect material surfaces.  
 
VI.1 Hierarchy and closure of the fluid equations 
We introduce here the basic moment (fluid) equations to fix the notations and define the relevant 
variables. In the most general form, the dynamics of electrons, ions, and neutral species can be 
described with the kinetic Boltzmann equations  
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 for the distribution functions fα(
!v,!r, t)  of all species α  (characterized by the charge eα  and 

mass mα ), including the neutral particles. This would be the most comprehensive approach for 

plasma modeling. The collision integrals C(fα ,fβ)  on the right-hand side of Eq. (VI.1) must 

include all inter-particle and self-collisions as well as various atomic processes such as 
ionization, charge-exchange, and others. The electric, 

!
E , and magnetic, 

!
B , fields in Eq. (VI.1) 

need to be determined self-consistently from the Maxwell equations with the electric charges and 
current sources found from the solution of the kinetic equations (VI.1). Solving all these 
equations can only be possible numerically. However, in the near future, this is not feasible 
without a significant reduction of these equations. In general, the fluid equations themselves are 
the examples of such a reduction when the time evolution of the six-dimensional distribution 
function is replaced by a truncated set of nonlinear equations for space and time evolution of the 
moments, M̂(!r, t) , of the distribution function F(

!v,!r, t) , defined as the integrals 

M̂(!r, t) = ˆ̂M(!v)F(!v,!r, t)d!v∫ . We notice that in general case, both ˆ̂M(!v)  and M̂(!r, t)  can be 
tensors. The first moments of the distribution function F(

!v,!r, t)  are the basic fluid variables such 

as the particle density, n(
!r, t) , the average (fluid) velocity, 

!
V(!r, t) , and the pressure, p(

!r, t) , that 
have simple macroscopic meaning:   
 n(!r, t) = F(!v,!r, t)d!v∫ ,         (VI.2) 

 n(!r, t)
!
V(!r, t) = !vF(!v,!r, t)d!v∫ ,       (VI.3) 

 p(!r, t) = m
3

!v 2F(!!v ,!r, t)d!v∫ ,        (VI.4) 
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where !!v = !v−
!
V(!r, t) . As one can see from Eq. (VI.4), the pressure is expressed in terms of the 

“random” particle velocity !!v = !v−
!
V(!r, t) , which corresponds to the particle velocity in the 

reference frame of the fluid velocity 
!
V(!r, t) . We will see that this random velocity will be used 

in other moments of the distribution function. Therefore, it is useful to re-write the kinetic 
equation (VI.1) by using the variable !!v  instead of !v . After some algebra we find 
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where fα = fα(
!
"v ,!r, t) , and d(...) / dt = ∂(...) / ∂t +

!
V ⋅∇(...) . 

The evolution equations for the fluid variables are obtained in a standard way [13] by 

taking the moments of  Eq. (VI.5) with appropriate weights, 1, m!!v , and m !v 2 / 2 , which leads to 
the sequence of the equations 
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where the terms  Cn , 
!
CV , and Cp  are the respective moments of the collision operators 

resulting in the sources and sinks of the particle density, momentum and energy, which need to 
be specified for each species, and  
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!v m
2

∫ !v 2f (!!v ,!r, t)d!!v ,        (VI.9) 
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where 
!
I  is the identity tensor. As we see from Eqs. (VI.8), (VI.9), vector 

!q(!r, t)  and tensor 
!
Π("r, t)  describe, correspondingly, the particle energy and momentum fluxes in the moving 
frame. Hereafter we omit for simplicity the indices α,β, ...  defining different species. 
 To “close” the system of equations (VI.5)-(VI.7), we need to express 

!q  and 
!
Π  (as well 

as the moments of the collision operator Cn , 
!
CV , and Cp ) in terms of the density, average 

velocity and pressure. Within the fluid description, this is only possible by assuming that the 
Coulomb collisions of charged particles of the same species are fast enough, so that the 
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distribution function f (
!
!v ,!r, t)  is close to the Maxwellian with the temperature T  (which can be 

different for the species with a large mass difference). Quantitatively, this feature should be 
related to the smallness of some parameter(-s).  For the case with no magnetic field, such small 
parameters, ε <<1 , are λC / L  and ω / νC , where νC  is the frequency of the Coulomb collisions 

of species α , λC = T / m / νC  is the mean free path between such collisions, L is the spatial 

scale of the inhomogeneity of the plasma parameters and ω  is the characteristic frequency of 
their temporal variation. However, the dynamics of plasma embedded in a strong magnetic field 
with ΩB >> νC , where ΩB = eB / mc  is the cyclotron frequency, becomes very anisotropic. As a 

result, the small parameters allowing for the spatial inhomogeneity of magnetized plasma 

parameters within the fluid approximation become (e.g. see [13]) λC / L||  and λCρ / L⊥ , 

where ρ = T / m /ΩB  is the particle Larmor radius whereas L||  and L⊥  correspond to the 

plasma parameter inhomogeneity along and across the magnetic field (we assume here that L⊥  

defines the inhomogeneity of both the plasma parameters and the magnetic field). We notice that 
for ρ / L⊥ <<1 , the cross-field plasma dynamics is reasonably well described by fluid type 

equations even for collisionless plasmas (e.g. see [14]).  
In what follows we will assume that ε <<1 and f (!!v ,

!
r, t) ≅ FMax (n,T,

!
!v ,
!
r, t) . In this case, 

there are two major approaches to utilize this small parameter in the derivation of 
!q , 
!
Π , and the 

moments of the collision operator Cn , 
!
CV , and Cp . Both of them are based on the 

representation of the distribution function in the moving frame as  
f (
!
!v ,
!
r, t) = FMax (n,T,

!
!v ,
!
r, t) 1+Φ(

!
!v ,
!
r, t)( ) , (VI.11) 

where FMax (n,T,
!
!v ,
!
r, t)  is the dynamic Maxwellian distribution function whereas Φ  is small, 

|Φ |<<1 , and, in addition, does not contribute to the particle density, average velocity and 
pressure (temperature, T = p / n ). In both approaches, the expression (VI.11) is substituted in Eq. 
(VI.5). However, the further steps in “closing” the equations (VI.6)-(VI.8) are different. 

In the Chapman-Enskog approach [15] (adopted for “simple”, one ion species plasma by 
Braginskii [13]), in zero-order approximation in small parameter ε , an impact of Φ  on particle 
transport is completely ignored and the evolution of n(!r, t) , 

!
V(!r, t) , and p(!r, t)  is described by 

Eqs. (VI.6)-(VI.8) with no 
!q , 
!
Π , and the moments of the collision operator. This allows 

expressing the zero-order time derivative of n(!r, t) , 
!
V(!r, t) , and T(!r, t)  in terms of their spatial 

derivatives. Then, in the first-order approximation, Φ  is only retained in the largest terms 
describing gyro-rotation and collision operators (linearized over Φ ), whereas all other terms are 
expressed via the spatial derivatives of n(

!r, t) , 
!
V(!r, t) , and T(

!r, t) . Finally, this 
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nonhomogeneous linear integrodifferential equation for Φ  is solved by representing Φ  in the 
series of tensorial expansion  

Φ =Φ0 +Φi "vi +Φik "vi "vk −
"v 2

3
δik

%

&
'
'

(

)
*
*+ ... ,       (VI.12) 

whereas the coefficients of this expansion are written as infinite series 
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where Lj
(α) (x)  are the generalized Laguerre (or Sonin-Laguerre) polynomials and vT

2 = 2T / m  

(e.g. see [16], [13], [17] and the references therein). We notice that all the terms in the expansion 
(VI.12)-(VI.15) are orthogonal to each other (with the weight function proportional to 
FMax (n,T,

!
!v ,
!
r, t) ). Moreover, taking into account such orthogonality, we find that Φ  does not 

contribute to n(
!r, t)  and T(

!r, t)  whereas implementing Eq. (VI.12) into Eq. (VI.9), (VI.10) it is 
easy to show that the components of the energy flux qi  and tensor Πik  can be expressed through 

the vector ai
(1)  and tensor aik

(0) : 

qi(
!r, t) = !vi∫

m
2

!v 2L1
(3/2) !v 2 / vT

2( )f (!!v ,!r, t)d!!v = − 25
pT
m
ai
(1) , (VI.16) 

and 

 Πik =
pT
m
aik
(0) . (VI.17) 

However, the orthogonal functions used for the decomposition of Φ(
!
"v ,!r, t)  in (VI.12)-

(VI.15) are not eigenfunctions of the linearized collision operators. Therefore, the components of 

Φi (
!r, "v 2)  contribute not only to the heat flux 

!q(!r, t)  but also to 
!
CV  which results in the so-

called thermal forces depending on ∇T  (see [13] for the discussion of the physical nature of the 
thermal force). Thus, we arrive at the sets of an infinite number of equations for the coefficients 

ai
( j)  and aik

( j) . The solutions of these equations can only be found by keeping only a finite 

number of these coefficients. But the accuracy of physically meaningful parameters ai
(1)  and 

aik
(0) , determining the energy and momentum fluxes (VI.16), (VI.17) and contributing to Cn , 

!
CV
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, and Cp  depends on the number of the terms kept in these sets of equations. In [13], [18] it was 

found that sufficient accuracy of ai
(1)  and aik

(0)  can be reached by considering only two extra 

terms in Eq. (VI.14), (VI.15) proportional, respectively, to ai
(2)  and aik

(1) , which define the 

following quantities 
!q∗(!r, t) = !

"v m
2

∫ "v 2 L2
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We notice that in strongly magnetized plasmas, sufficient accuracy of collisionless components 
of 
!q  and 

!
Π , which are associated with the drift of particles caused by inhomogeneity of the 

magnetic field, can be reached by keeping only ai
(1)  and aik

(0) . 

 Although the Chapman-Enskog approach works rather well for “simple” plasma, it 
becomes too cumbersome for multispecies plasma typical for edge plasmas. In addition, within 
the Chapman-Enskog approach, some additional effort is needed to recover the contribution of 
the heat flux 

!q  to the viscosity tensor 
!
Π , which is important for both edge plasma transport and 

turbulence studies [19], [20], [21].  
An alternative to the Chapman-Enskog method is the Grad approach [22]. In the Grad 

approach, the component of the distribution function proportional to Φ , recall Eq. (VI.11), is 
kept in both linearized collision operators and all other terms in Eq. (VI.5). Then from the 
equation (VI.5) one can obtain the hierarchy of the evolution equations for the higher-order 

moments by multiplying Eq. (VI.5) by !!v m !v 2 / 2 , m !!v !!v − !v 2
"
I / 3( ) , etc. and integrating it over 

the velocity space. Such a set of the evolution equations can be truncated at some high moment, 
thus resulting in a closed set of the fluid equations. For example, we find the following evolution 
equations for the heat 

!q  and momentum 
!
Π  fluxes neglecting all higher moments:  
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where 
!
ΩB =ΩB

!
B / B  whereas C!q  and C !Π  are the corresponding moments of the collision 

operators [22], [23], [17]. We note, however, that for the calculation of the collision-driven 
energy and momentum flux with sufficient accuracy, the evolution equation of the higher-order 

Laguerre polynomials, corresponding to !q∗(!r, t)  and 
!
Π∗("r, t) , should be considered [13].  

 
VI.2. Collisionless cross-field components of energy and momentum fluxes 

For strongly magnetized plasmas, ΩB >> νC , the leading terms in the fluid equations 

(VI.6)-(VI.8) and (VI.20), (VI.21) are those proportional to the magnetic field strength B. This 
allows solving the momentum balance equation (VI.7) for the cross-field component of 

!
V  by 

expanding 
!
V⊥  in the powers of 1/ B  and neglecting the impact of the collision operators. 

Observing Eq. (VI.7), one finds that in the first order in 1/ B , there is a contribution from both 
the electric field and the pressure gradient:  

!
V⊥
(1) =

!
VE +

!
Vp ,  (VI.22) 

 where  
!
VE = c(
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E×
!
B) / B2  and 

!
Vp = c(

!
B×∇p) / enB2  (VI.23) 

describe, respectively, the 
!
E×
!
B  and diamagnetic drift velocities. In the second order, we find 

the components of 
!
V⊥  related to inertial and collisionless viscosity polarization  

!
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and  
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VΠ =

1
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B
B
×∇⋅
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Similar expansion for !q⊥  gives the following first-order expression.    
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5
2
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eB2
(
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B×∇T) .  (VI.27) 

The first order term for collisionless (gyro-viscous) momentum flux 
!
Π  can be found 

from the cross-field components of Eq. (VI.21), which gives the following equation  
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The inversion of the operator K̂(
!
Π) gives the following expression for the gyro-viscous 

momentum flux 
!
Πg =

1
4ΩB

"
b×
!
W ⋅ (
!
I +3
"
b
"
b)− (

!
I +3
"
b
"
b) ⋅
!
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"
b{ } , (VI.29) 

where 
!
b =
!
B / B  and 
!
W = p ∇
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V+ (∇
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!q+ (∇!q)Tr{ } . (VI.30) 

The gyro-viscous momentum flux (VI.29) corresponds to the collisionless components of 
the momentum flux in [13] with additional terms due to the heat flux gradients, obtained by 

Mikhailovskii [19]. From Eqs. (VI.23) and (VI.27) it is easy to see that p∇
!
Vp ~ ∇

!q⊥
(1)  so that the 

contributions to the collisionless momentum flux (VI.29) from !q⊥
(1)  and diamagnetic velocity 

!
Vp  

are of the same order.   
However, the direct usage of the diamagnetic velocity (VI.23) and the heat flux in 

(VI.27) is not practical because the corresponding components in the balance equations (VI.6)-
(VI.8) contain large but divergence-free terms. These divergence-free terms can be removed in a 
low plasma pressure case by re-writing the corresponding terms in the continuity equation as 
∇⋅ (n

!
Vp) =∇⋅ (n

!
VD) , where 

!
VD = −

cT
e
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B×∇ 1

B2
$

%
&

'
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) , (VI.31) 

where 
!
VD  has a simple meaning of the guiding center velocity, which is different for the 

electrons, 
!
VDe , and ions, 

!
VDi . Similarly, the contribution of the divergence-free terms to the 

energy balance equation (VI.8) can be removed by noticing that  
3
2

!
Vp ⋅∇p+

5
2
p∇⋅
!
Vp +∇⋅

!q⊥
(1) =

5
2
∇⋅ (p

!
VD) . (VI.32) 

 In addition, one can also observe that the diamagnetic contributions to the convective and 
gyro-viscous terms in the momentum balance equation (VI.7) are of the same order and, 
similarly to the particle and energy balance equations, some of these terms cancel (this is the so-
called gyro-viscous cancellation of the contributions of the diamagnetic terms [24], [25], [26]). 

We notice that the contribution of the diamagnetic heat flux !q⊥
(1)  to 

!
Πg  plays an important role 

in such cancelation [25]. However, in a non-uniform magnetic field (e.g. in a tokamak), the 
cancellation is not complete [26]. A somewhat similar cancelation of the collisionless terms 
occurs in the parallel momentum balance equation, which finally can be written as [27]:   
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However, note that Eq. (VI.33) contains only the first-order (in 1/ B ) collisionless cross-field 
velocities. 

Overall, the contributions of the collisionless cross-field 
!
E×
!
B  and diamagnetic particle 

and energy fluxes to the particle balance equations (VI.6)-(VI.8) can play an important role, in 
particular for the cases where anomalous cross-field plasma transport is weak (e.g. in H-mode). 

In addition to the collisionless particle, energy, and momentum fluxes, the moment 
equations used in the Grad approach contain also the terms associated with the collision 
operators (e.g. Cn , 

!
CV , Cp , etc.). These terms result in both the energy exchange and the forces 

(e.g. the thermal forces) between different species and provide collision-driven particle, energy, 
and momentum fluxes. Although the cross-field components of such fluxes are proportional to 
(ρ / L⊥)(νC /ΩB)  and in most cases can be ignored, the components along the magnetic field 

(e.g. heat flux components) can play the key roles in the balance equations (VI.6)-(VI.8). 
However, careful calculation of these fluxes within the framework of the Grad approach requires 
the implementation of the so-called 21-moment Grad approximation. 

 
VI.3. 21-moment Grad approximation 
As we have already mentioned above, for sufficient accuracy of the calculations of the energy 
and momentum fluxes 

!q(!r, t)  and 
!
Π("r, t)  as well as 

!
CV  and Cp , one needs also to consider the 

!q∗(!r, t)  and 
!
Π∗("r, t)  moments determined by the expressions (VI.18), (VI.19). This increases 

the number of independent moments that must be found. However, from the definition of 
!
Π , 

recall Eq. (VI.10), it is easy to see that Πik =Πki  and Πikδki = 0 , so 
!
Π  is determined by five 

independent moments. The same is applicable for 
!
Π∗ . Then, allowing also for n, p (or T), 

!
V , 
!q , 

and !q∗ , we find that we need to determine 21 moments. 
  To find these moments, we consider Eq. (VI.20), (VI.21), keeping only the highest order 
terms. Then, for the multi-component plasma, we come to the following equations for !qα  and 
!
Πα : 

5
2
pα
mα

∇Tα −
!qα ×

!
ΩBα = C!q

α,β

β
∑ , (VI.34) 
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!
Πα ×

"
ΩBα −

"
ΩBα ×

!
Πα( ) = pα ∇

"
Vα + (∇

"
Vα )

Tr −
2
3

!
I∇⋅
"
Vα

(

)
*

+

,
-

+
2
5
∇
"qα + (∇

"qα )
Tr −

2
3

!
I∇⋅ "qα

(

)
*

+

,
-− C !

Π
α,β

β
∑

, (VI.35) 

where C!q
α,β  depends on  

!
Vα ,
!
Vβ , !qα , !qα

∗ , !qβ , and !qβ
∗ , whereas C !

Π
α,β depends on 

!
Πα , 

!
Πα
∗ , 
!
Πβ  

and 
!
Πβ
∗ . Somewhat similar equations can be found from the evolution equations for !q∗(!r, t)  and 

!
Π∗("r, t)  with the collisional terms corresponding to C!q∗

α,β  and C !
Π∗
α,β . Having found !qα , !qα

∗ , !qβ , 

and !qβ
∗ , one can calculate 

!
CVα that, along with 

!
Πα , closes the balance equations (VI.6)-(VI.8) 

completely. 
  However, such calculations for multi-component plasma are extremely cumbersome and 
go beyond the scope of our consideration. The detail of such derivation can be found in [17]. 
Nonetheless, just for illustration, we consider here the derivation of the electron energy flux 
parallel to the magnetic field, q||e , assuming that the plasma has one kind of ions with charge Z.    

  Then from Eq.(VI.34) and similar equation for !qα
∗  we find (e.g. see [17])  

5
2
pe∇||Te = νei

3
2
pe(V||e −V||i )−α11q||e −

7
2
α12q||e

∗&

'
(

)

*
+ , (VI.36) 

0 = −15
4
pe(V||e −V||i )−α21q||e +

7
2
α22q||e

∗ . (VI.37) 

We notice that the terms on the right-side of these equations come from C!q
e,i +C!q

e,e  and 

C!q∗
e,i +C!q∗

e,e . Here νei = (4 / 3)Z 2πTe / me (e
2 / Te)

2neΛC  is the electron-ion collision frequency 

and ΛC  is the Coulomb logarithm, whereas  

α11 =
2 2
5Z

+
13
10

,   α12 = α21 =
1
7
3 2
5Z

+
69
20

"

#
$
$

%

&
'
' ,    and    α22 =

9 2
14Z

+
433
280

, (VI.38) 

are the dimensionless matrix elements of the electron-ion and electron-electron Coulomb 

collision operators with respect to q||e  and q||e
∗ .  

 In addition, we find the following expression for the electron-ion friction force CV||α :  

CV||α
= −meneνei V||e −V||i −

3
5pe

q||e −
3
4pe

q||e
∗

%

&
''

(

)
** . (VI.39) 
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As one can see from Eq. (VI.39), the electron-ion friction force depends not only on the 
difference between the electron and ion velocities, V||e −V||i , but also on the electron temperature 

gradient ∇||Te  (this part of the friction force is called the “thermal force”). Similarly, the electron 

energy flux q||e  depends not only on the electron temperature gradient but also on the difference 

between the electron and ion velocities. After some algebra, from Eq. (VI.37)-(VI.39) we find: 

q||e = −
5
2

pe∇||Te
νei

α22
α0
2
+
3
2
pe(V||e −V||i )

α22 − (5 / 2)α12
α0
2

, (VI.40) 

where α0
2 = α11α22 +α12α21 .  

 
VI.4. The electron heat transport in a weakly collisional regime 
Both the Chapman-Enskog and Grad approaches to the derivation of the closed system of the 
fluid equations from the kinetic ones assume a rather slow spatiotemporal variation of particle 
density, average velocity and temperature. In particular, the characteristic length of spatial 
variation of these parameters, L, (in the absence of the magnetic field or in the direction parallel 
to 
!
B ) should be larger than the mean free path of the thermal particles, λC . Then, as we have 

seen above, the distribution function f (!v,!r)  can be expanded in the series of the integer powers 
of the parameter γ ≡ λC / L <1  (here for simplicity we consider a stationary process) and the 

closed system of fluid equations is derived. In most cases, only linear, ~ γ , terms are held in this 
expansion. However, such an approach poses some questions. First, a practical one: how small 
the parameter γ  should be to ensure that the linear approximation describes the transport 
properties of the gas/plasma well? And the second, somewhat more academic question: are we 

sure that the distribution function does not have some terms (e.g. ~ exp(−Cγ−r ) , where C  and r  
are some positive constants) which cannot be expanded in the series of any powers of γ , but 
which can still be important for some range of γ  (see also [28], [16], [29]). 
 We start our consideration with the simpler first issue. Historically, in plasma-related 
applications, this issue was first raised with respect to the validity range of the Spitzer-Harm 
expression [30] for the electron conductive heat flux. According to Eq. 16), the heat flux 

!q  is 
determined by the function Φi ( "v )∝γ , which can be found either from expansion (VI.14) or 

from [30], where Φi ( "v )  was obtained from the numerical solution of linearized electron kinetic 

equation. In [31], [32] it was pointed out that the integral expression (VI.16) for the heat flux 
contains high powers of the electron velocity. As a result, the main contribution to this integral 
comes from the velocities !v ~ vcond ~ 2÷3× vTe

. However, the magnitude of Φi ( "v )  increases 

with increasing !v > vTe
 (e.g. see both the expression (VI.14) and the results from [30]) and for 
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!v ~ vcond  we have Φ(vcond ) ≈10
2  [30]. Thus, the applicability of the linearized solution for 

electron heat conduction, which requires Φ(vcond ) ≡ γΦ̂(vcond ) <1 gives the limitation for the 

validity of the Spitzer-Harm expression for the electron conductive heat flux: γ !<10−2 . Such a 
severe limitation can be understood by recalling that the Coulomb mean-free path, λv , of a 

particle with velocity v scales as λv = λT × (v / vTe )
4 . Therefore, the linear approximation for 

the electron conductive heat flux, which assumes that the electron distribution function is close 
to the Maxwellian, can only be valid if the electrons with velocities !v ~ vcond > vTe

 are 

collisional, λvcond / L
!<1 , which, finally, results in γ !<10−2 . 

 However, in the edge plasmas, the 

inequality γ !<10−2  usually does not hold and 
the classical expression for the electron heat 
flux is not applicable. A similar problem often 
occurs in the plasmas related to inertial 
confinement experiments (e.g. see [32]). For 

the case of γ >10−2 , the electron distribution 
function starts to deviate significantly from 
the Maxwellian distribution at !v ~ vcond . To 

describe this “nonlocal” effect for heat 
conduction along the magnetic field (in the z-
direction), the expansion of the distribution 
function in the powers of the parameter γ  
becomes impractical and an integral 
expression for the heat flux  

 q(z) = − K(z, "z )
∂Te
∂ "z
d "x∫ , (VI.41) 

can be considered with different kernels 
K(z, !z )  which were suggested over the years 
(e.g. see [33], [34], [35], [36]). A comparison 
of the outcomes of these nonlocal models with the results of numerical simulations of the decay 
of a small amplitude, harmonic electron temperature perturbation is shown in Fig. (VI.1). 
However, in spite of the reasonable agreement of the results coming from some non-local models 
based on the integral expression (VI.41) and numerical simulations, in the edge fluid plasma 
transport codes, a much simpler approach is usually employed. It is based on the so-called “flux 
limiting” expression for the heat flux suggested in [38]. This expression simply majorizes the 

 
Fig. VI.1. Ratio of the effective, κeff , to the 

Spitzer-Härm, κSH , electron heat 
conductivities as a function of kλT , where k  

is the wavenumber of the initial electron 
temperature perturbation. The filled circles are 
the results of numerical simulations [37], the 
curves A, K, and L are from the references 

[34], [35], and [33].  Reproduced with 
permission from [35], © AIP Publishing 1993. 
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Spitzer-Härm heat flux, qSH(z) , by the fraction, frFS ≈ 0.2−0.4 , of the free streaming electron 

heat flux, qFS(z) = n(z)Te(z){2Te(z) / πm}
1/2 , so that  

q(x) =
qSH(z)frFSqFS(z)
| qSH(z) |+frFSqFS(z)

. (VI.42) 

As we see, such expression describes the reduction of q(x)  in comparison with qSH(z) . For a 

monotonic temperature profile Te(z) , which is the case for both the inertial fusion applications 

and the edge plasmas, this reduction has clear physical meaning in the high-temperature region, 

where, at γ >10−2 , the tail of the electron distribution function is depleted because of the 
runaway of the weakly collisional electrons into the low-temperature region. However, in the 
low-temperature region, these suprathermal electrons result in the increase of q(x)  beyond 

qSH(z) , but such an effect is not is captured by Eq. (VI.42). Nonetheless, expression (VI.42) and 

similar ones for ion heat conduction and viscosity along the magnetic field are often used in edge 
plasma transport codes. 
 We notice that integral expressions for the heat flux, resembling Eq. (VI.41), were 
suggested to emulate the effects of the Landau resonances in fluid turbulence codes (e.g. see [39] 
and the references therein). 
 Next, we discuss the issue of non-expandable terms in the distribution function and their 
potential impact on the electron heat flux. It is unlikely that this issue has a universal answer 
valid for any setting of the electron density and temperature profiles. Therefore, following [40], 
we consider plasma parameter profiles which resemble those typical for the SOL plasma in the 
high recycling conditions. In [40] it was shown that neglecting the electron-ion energy exchange, 
the stationary electron kinetic equation allowing for both electron-electron, Cee(fe,fe ) , and 

electron-ion scattering, Cei(fe ) , as well as for the electric field,E(z) , effects:  

vz
∂fe(
!v,z)
∂z

−
eE(z)
m

∂fe(
!v,z)

∂vz
=Cee(fe,fe )+Cei(fe ) , (VI.43) 

allows the solution in the self-similar variable !w = !v m / 2T(z)!" #$
1/2  by using the ansatz 

fe(
!v,z) = NF( !w) / Tα(z) , (VI.44) 

(where T(z)  is the effective electron temperature, α  is an adjustable parameter, and N is the 
normalization constant) providing that the T(z)  satisfies the equation  

γ =
λ
L
∝T(α−1/2)dT / dz = const.    (VI.45) 

We notice that Eq. (VI.45), gives the following relations for the electron density, 

n(z)∝T(3/2−α) (z) , and the electron energy flux, q(z)∝T(3−α) (z) . Although for α ≠ 3  q(z)  is 
not a constant, the relative magnitude of the corresponding energy source/sink, 
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| dq(z) / dx | (nTνee )
−1 ≈ (3−α)γ , is small for γ <1 . As a result, to maintain energy balance, a 

relatively small energy source/sink localized at the electron energy ~ T  can be added into Eq. 
(VI.43), which does not alter the kinetics of the energetic electrons we are mostly concerned 
about. Interestingly, the case α = 3  corresponds to the electron temperature profile describing a 

constant electron heat flux for the Spitzer-Härm electron heat conduction coefficient ∝T5/2 . 
For γ <<1  the equation for F( !w)  was solved in [40] analytically by considering different 

ranges of the dimensionless velocity w and then matching the corresponding solutions 
(something similar was done in [41], [42] for the problem of runaway electrons). It was found 
that the distribution function F( !w)  can be represented as a series in the integer powers of γ  
(which is the basic assumption in both the Chapman-Enskog and Grad approaches) for 

w2 !< γ−1/3  only, whereas for w2 !> γ−1/2 , F( !w)  is described by the following “unexpandable” 
expression 

F(
!
w)∝exp −(2 / 3)γ−1/2{ } F̂(ϑ)

w2α
, (VI.46) 

where F̂(ϑ)  is a function of the angle ϑ  between the coordinate axis z and the vector !w  (only 
the terms of the highest order in the small parameter γ  are left in Eq. (VI.46)). Recalling that the 
main contribution to the electron conductive heat flux is due to electrons with the normalized 

electron velocity v / VTe( )cond = wcond ≈ 2÷3 , we find that the condition wcond
2 !< γ−1/3  results 

virtually in the same limitation for γ  as it was found in [31], [32]: γ !<10−2 . Numerical solutions 
of the electron kinetic equation in self-similar variables [43] confirm the analytic results of [40]. 
From Eq. (VI.46) we see that the expression for the electron heat flux written in the self-similar 

variable w, q = mwz∫ w2F(w)d !w , diverges at large w for α ≤ 3 . However, for α = 3  this 

divergence is logarithmically weak and can be moderated by assuming that in practice, the 
maximum electron energy is always limited by some value.  

Thus, from the analysis of both the Spitzer-Härm solution of the electron kinetic equation 
and the solution of the electron kinetic equation in a self-similar variable, we find that 
applicability of both the Spitzer-Härm expression for electron heat conduction and the solution 
of kinetic electron equation in the form of expansion of the electron distribution function in 

integer powers of γ  are limited by relatively small γ : γ !<10−2 .  
 
VI.5. Fluid description of neutrals in edge plasmas 
In edge plasmas, neutral particles (mainly atomic and molecular hydrogen) and their interactions 
with plasma electrons and ions play a very important role in the physics of high recycling 
regimes (see Ch. IX) and, in some cases, in edge plasma turbulence (see Ch. VII). Even though 
the most accurate description of neutral transport and neutral-plasma interactions, which can 
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include many different atomic physics effects, is usually done with Monte-Carlo codes (see Ch. 
VIII), simplified fluid neutral (largely considering atomic hydrogen only) models were 
developed over the years and used in both analytic considerations and numerical simulations of 
both edge plasma transport and turbulence (e.g. see Refs. [44], [45], [46], [47], [48], [49], [50], 
[51], [52], and the references therein.  
 However, fluid neutral models developed for edge plasma studies differ significantly 
from the plasma fluid models. This difference is related to the fact that the neutral density, N, in 
the edge plasma is usually considerably lower than the plasma one, n, (unless we are dealing 
with a deeply detached divertor regime in fusion reactors such as ITER). As a result, the neutral-
neutral collisions are much less frequent than the collisions of neutrals with plasma particles and 
virtually not important.  

At a relatively small plasma temperature, T, the charge-exchange collisions of atomic 
hydrogen with protons prevail over electron impact ionization of atomic hydrogen (see Ch. II). 
But, in contrast to the like-like (e.g. ion-ion) collisions, such charge-exchange collisions do not 
result in the “Maxwellization” of the atomic hydrogen velocity distribution function, fa (

!v) . 

Instead, they “drive” fa (
!v)  toward similarity to ion (proton) distribution function, fi (

!v) : 

fa (
!v)∝ fi (

!v) . One can easily see this from the charge-exchange collision operator 

Cai
CX = σCX(|

!v− !#v |) | !v− !#v | fi (
!v)fa (

!
#v )− fi (

!
#v )fa (
!v)( )d!#v∫ , (VI.47) 

where σCX(|
!v− !#v |)  is the charge-exchange cross-section, which in the energy range below 10 

eV can be considered constant ≈ 7×10−15cm2 .  
When the mean free path of the neutrals with respect to the charge-exchange collisions, 

λCX ≈1/ nσCX , is shorter than the characteristic scale length, Li , of the variation of the ion 

distribution function, one can take in a “zero-order” approximation, fa (
!v) = (N / n)fi (

!v)  and 

consider the mixture of the neutral atoms and plasma as a “fluid”. Assuming that the ion-ion 
collisions “establish” the ion velocity distribution function close to a shifted Maxwellian, this 
becomes the starting point for the consideration of the impact of neutrals on the transport 
coefficients of such a fluid (e.g. see [50] for details). Since in practice λCX  is significantly 

larger than the ion gyro-radius, the impact of neutrals on some cross-field transport coefficients 
can be very significant even for the case where N < n . Indeed, from simple arguments, we have 

the following expression for the neutral diffusion coefficient: DN ≈ (T / M)1/2λCX , where M is 

the mass of a hydrogen atom (e.g. see [50]). Then, the relative contribution, D̂N , of neutrals to 

the overall cross-field transport coefficients, such as viscosity and heat conduction, can be 
estimated as 

D̂N ≈
N
n
DN
Danom

, (VI.48) 
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where Danom  is the anomalous cross-field plasma transport coefficient. For Danom ≈104cm2 / s

, T ~10 eV , and n ~1014cm−3  we find that D̂N !>1  for N / n !>10−3 . Note that the ratio of the 

neutral to plasma densities for low-temperature, high recycling divertor plasma can be ~10−1 . 
However, we should keep in mind that the impact of neutrals on cross-field plasma diffusion is 
not described by Eq. (VI.48) since the effective displacement of the ion in the course of the 
elastic collision process is of the order of the ion gyro-radius. Nonetheless, the contributions of 
the neutrals to the momentum and heat transport can be very important for dumping the plasma 
flows (including the shear flow, which is an important ingredient in anomalous plasma transport, 
see Ch. VII) and for cooling the divertor plasma to sub-eV temperature, promoting plasma 
recombination effects important in the divertor plasma detachment process (see Ch. IX).  
 To avoid the unphysical contribution of neutrals in the edge plasma regions where 
λCX !> Li , the neutral diffusive fluxes are majorized by corresponding free streaming 

expressions similar to Eq. (VI.42). Unfortunately, fluid description of the hydrogen molecules, 
which have a mean free path for the collisions with hydrogen ions much longer than that of the 
hydrogen atoms, strictly speaking, cannot be used for the plasma parameters of interest. In 
addition, vibrational excitation of molecules can play an important role in both plasma energy 
dissipation at low (~1 eV) temperatures and in plasma recombination processes (see Ch. II). The 
incorporation of vibrational excitation of molecules in fluid models would significantly 
complicate them. 
 
VI.6. Anomalous effects in edge plasma transport equations  
Here we overview the basic structure of the transport equations used in edge plasma simulations.  
We should note that existing formulations of the transport equations often differ in various 
details and effects included (e.g. see [10], [11], [12]). Here we only describe the most essential 
elements and comment on various additional effects. Technically, either electron or ion 
continuity equations can be used to describe the evolution of the plasma density. Most often, the 
ion continuity equation is used. Keeping only the first-order terms in the ion velocity and adding 
an ad hoc anomalous density transport, one has  

∂n
∂t
+∇|| nV||( )+∇⋅ n

!
VE( )+∇⋅ (n

!
VDi)+∇⋅ (

!
Γan ) =Sn , (VI.49) 

where n is the plasma density and 
!
Γan  is the anomalous plasma density flux. In the ion 

continuity equation, we have neglected the second-order drift terms, such as the inertial and 
viscous drifts described by Eq. (VI.24). This approximation is based on the assumption that the 
first-order electric and diamagnetic drifts, as in Eq. (VI.23), are dominant. Note that some 
formulations include these higher-order drifts into the density evolution equation [10], [11].  

The anomalous density flux in (VI.49) is usually defined by correlations between the 
density and the lowest order particle velocity due to the 

!
E×
!
B  drift, 

!
Γan = "n

!"VE , where !n  and 
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!"VE  are the turbulence-driven fluctuating plasma density and velocity, and ...  means statistical 

averaging. It is assumed here that the density fluctuation is small, | !n |<< n . This flux should be 
determined from the first-principle turbulence simulations. In transport codes, the anomalous 
density flux is parameterized by an empirical anomalous diffusion coefficient. In addition, 
besides the purely diffusive term, in some models the anomalous particle flux 

!
Γan  includes the 

pinch (thermo-diffusion) terms that depend on temperature gradients (e.g. [10]): !
Γan = −D⊥∇⊥n−D⊥Ten∇⊥ℓn(Te)−D⊥Tin∇⊥ℓn(Ti) , (VI.50) 

 where D⊥ , D⊥Te
, and D⊥Ti

 are the anomalous “diffusivities”. 

 The electrostatic potential ϕ , governing the electric field effects, is determined from 

conservation of the electric current 
!
J :∇⋅

!
J = 0 . This equation can be written as the evolution of 

the generalized vorticity  

ϖ =
mi
B

∇⊥ ⋅ (n∇⊥ϕ)+
∇⊥
2 pi
Ze

&

'

(
(

)

*

+
+
. (VI.51) 

Since the contributions of the large 
!
E×
!
B  drift terms of electrons and ions cancel, the second-

order drift terms are usually added, which gives: 
∂ϖ
∂t

+
!
VE ⋅∇ϖ+∇⋅

!
Γ
n
ϖ

&

'
(

)

*
+=

"
B ⋅∇J|| +∇⊥ ⋅ µ⊥i∇⊥ϖ( )+∇|| µ||i∇||ϖ( )+ 1e∇⋅ n

!
VDi −

!
VDe( ){ }

, (VI.52) 

where µ⊥i  and µ||i  are the anomalous viscosity coefficients and  

J|| = σ|| −∇||ϕ+
∇||pe
en

+
αT
e
∇||Te

⎛

⎝
⎜

⎞

⎠
⎟ , (VI.53) 

is the parallel electric current, σ||  is the plasma conductivity along the magnetic field and αT  is 

the thermal force coefficient that depends on the effective ion charge Zeff  (for Zeff =1 , 

αT = 0.71 ). We omitted collisional viscosity in Eq. (VI.52) and did not include the turbulent 

Reynolds stress effects of the negative viscosity type, nor consider any effects of turbulent 
residual stresses that may result in the generation of sheared flow velocity (see Ch. VI).   
 The equation for plasma momentum balance can be obtained as a sum of the 
corresponding ion and electron equations  

∂ nV||( )
∂t

+∇⋅ nV||
!
b+ n

!
VE + 2n

!
VDi +

!
Γan( )V||{ }− nV||

!
VE ⋅ ℓn(B) =

−
∇||(pe + pi )

min
+∇⊥ ⋅ µ⊥i∇⊥V||( )+∇|| ⋅ µ||i∇||V||( )+SiN

, (VI.54) 
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where  SiN  describes the impact of the plasma-neutral interactions and includes both the ion-
neutral elastic collisions and neutral ionization. The anomalous terms in the momentum 
conservation originate from several terms involving averaging of the plasma density, parallel 
velocity, and the 

!
E×
!
B  drift fluctuations, and may also involve pressure fluctuations, e.g. see Eq 

(VI.33). Eq. (VI.54) includes also the collisionless first order ExB and diamagnetic fluxes shown 
in Eq. (VI.33). 
 Overall, turbulent transport is parameterized by anomalous density transport and 
anomalous viscosity. The turbulent momentum transport may also involve the pinch and 
“residual” terms, which do not depend on the velocity gradients and velocity but are rather 
driven by gradients of other plasma parameters.   

Alternatively, only the ion momentum balance equation can be considered (see [10], 
[11]) although for this case, one should also solve the vorticity equation (VI.52) to find the 
electrostatic potential.   
 The electron and ion energy balance equations are most commonly written as 

3
2
∂(nTi )
∂t

+∇⋅
3
2
nTi
!
VE +

5
2
nTi
!
VDi +

3
2
nTiV||

!
b+ 5
2

!
ΓanTi +

!qan
(i)%

&
'

(

)
*

+ nTi∇||V|| − 2nTi
!
VE ⋅ ℓn(B) =Spi

, (VI.55) 

3
2
∂(nTe)
∂t

+∇⋅
3
2
nTe
!
VE +

5
2
nTe
!
VDe +

3
2
nTe V|| −

J||
en

%

&
'
'

(

)
*
*
!
b+ 5
2

!
ΓanTe +

!qan
(e)

,
-
.

/.

0
1
.

2.

+ nTe∇|| V|| −
J||
en

%

&
'
'

(

)
*
*− 2nTe

!
VE ⋅ ℓn(B) =Spe

, (VI.56) 

where !qan
(e,i) = −nχ⊥

(e,i)∇⊥T(e,i)  describe anomalous electron and ion heat conduction determined 

by the anomalous heat diffusivities, χ⊥
(e,i) ; Spe  and Spi  are the electron and ion energy 

sinks/source terms describing the Joule heating, electron-ion energy exchange, ion and electron 
interactions with neutrals, etc. 
 Strictly speaking, equations (VI.49)-(VI.56) should be accompanied by corresponding 
equations for the impurities, which are ubiquitous in edge plasmas. However, the impurity 
equations are very cumbersome (e.g. see [17]) and their consideration goes beyond the scope of 
this chapter. 

We note, however, that in many cases, the analysis of the experimental data suggests that 
the anomalous convective cross-field energy transport should enter with the coefficient 3/2 rather 
than with 5/2 as it is written in Eq (VI.55) and (VI.56). Such a conclusion is also supported by 
some theoretical arguments valid for the case where the plasma parameters can be separated into 
the mean and the small, turbulence-driven fluctuating parts (see [53], [54]) when the anomalous 
particle and heat fluxes can be defined as 

!
Γan = "n

!"VE  and !qan = (3 / 2)n "T
!"VE . In this case, 

one more term, −2 T
!
Γan + (2 / 3)

!qan{ }⋅ ℓn(B) , should be added on the left-hand side of the 

pressure balance equation Eq. (VI.55), (VI.56). 
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Conclusions for Chapter VI 
As of today, modeling of edge plasma transport, which incorporates the particle, momentum, and 
energy fluxes, the atomic physics, the plasma-wall interactions, etc., relies on fluid plasma 
models. Although such models have some issues with their applicability (e.g. an impact of 
nonlocal effects on electron heat transport) and use a crude and, actually, ad hoc description of 
anomalous cross-field transport, they reproduce many features observed in experiments (see Ch. 
VIII, IX).  
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