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Chapter VII. Anomalous cross-field transport in edge plasma  

 
VII.1 Introduction 
As we discussed in Chapter VI, classical cross-field plasma transport is determined, roughly 
speaking, by two main components: charged particle motion in virtually stationary magnetic and 
electric fields and Coulomb collisions. Cross-field drift of charged particles related to 
inhomogeneity of the magnetic field, the direction of which depends on the sign of the charge, 
causes global polarization of the tokamak plasma column, accompanied by the 

!
E×
!
B  plasma 

convection, and, in addition, can result in a significant departure of the particles from their initial 
magnetic flux surfaces. On one hand, the Coulomb collisions control the electric current along 
the magnetic field lines, which balances plasma polarization due to the magnetic drift and, 
therefore, settles the intensity of the 

!
E×
!
B  plasma convection. On the other hand, the collisions 

“erase memory” of the charged particles on their “initial” magnetic flux surface and introduce a 
stochastic feature in the charged particle motion. As a result, even though the classical plasma 
energy and particle fluxes through magnetic flux surface are determined the by local plasma 
parameters and their gradients on the flux surface, the processes governing these fluxes (e.g. !
E×
!
B  plasma convection) happen on a “global” size-scale of the order of the tokamak minor 

radius a. 
 However, due to inhomogeneity of the density and temperature, the tokamak plasma, as 
we will see below, is often unstable. These instabilities result in the formation of electrostatic 
potential ϕ(!r, t)  having filamentary structure extended along the magnetic field lines over some 
distance λ||  and a relatively small characteristic cross-field size, λ⊥ << a, λ||  (for simplicity we 

neglect perturbations of the magnetic field). Therefore, as an illustration, we consider the motion 
of a charged particle in a constant magnetic field 

!
B0 = B0

!ez  and a 2D electrostatic potential, 

ϕ(x,y, t) , with a characteristic magnitude, ϕ0 , and a spatial scale length, λ⊥ , which varies on 

the time-scale τϕ ~ ω
−1 . Assume that λ⊥  is larger than the particle gyro-radius whereas ω  is 

smaller than the particle gyrofrequency. In this case, the charged particle will mostly experience !
E×
!
B  drift along the equipotentials of ϕ(x,y, t)  with a characteristic speed 

V!E×
!
B ~ cϕ0 / (λ⊥B0) . However, the equipotentials can be considered “fixed” only for the time 

t !< τϕ  and in this time, the particle would move to the distance δ ~ V!E×
!
Bτϕ  along the 

equipotentials, which we assume to be smaller than λ⊥ . If the “landscape” of the ϕ(x,y, t)  
equipotentials is completely changed by the time t !> τϕ , then the particle at t !> τϕ  will drift 

along an equipotential completely different from what it was for t !< τϕ . As a result, the distance 

δ  can be considered as a “jump” of the particle on the (x,y) plane, which occurs in random 
directions within the time ~ τϕ  and particle transport in the ϕ(x,y, t)  potential has a diffusive 

nature. Taking into account that we assumed δ !< λ⊥ , and estimating eϕ0 ~ T  (where T is the 
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plasma temperature), we find that the particle diffusion coefficient Dϕ !< DB = cT / eB0 , where 

DB  is the so-called Bohm diffusion coefficient.  
 This physical picture shows that the presence of electric field fluctuations having 
relatively small spatiotemporal scales can result in cross-field plasma transport exceeding, in 
practice, the classical one which is governed by quasi-stationary and large spatial scale 
processes.  
 However, in reality, anomalous cross-field plasma transport is much more complex. 
Nonlinear interactions of plasma fluctuations result, on the one hand, in some sort of self-
regulation and even suppression of anomalous transport. On the other hand, they can change 
transport from relatively slow diffusive to very fast convective. Today we have no full 
understanding of all processes governing anomalous plasma transport. Therefore, in what 
follows, we present just very basic ingredients and features of anomalous plasma transport, with 
the emphasis on the processes more typical for the edge plasmas. 
 In this chapter, we adopt the following notations: all parameters with “tilde” are 
considered to be perturbations small in comparison with the stationary (or quasi-stationary) 
parameters having no “tilde” sign, or resulting in such small perturbations: e.g. a perturbation of 
the plasma density !n  is much smaller than the background plasma density n  ( | !n| /n <<1);

!"V  is a 
small perturbation of the velocity, which either is small in comparison with the background 
velocity 

!
V , or produces a small variation of such plasma parameters as the pressure, density, etc. 

 
 
VII.2 Linear theory of edge plasma instabilities 
 
VII.2.1 Collisionless drift waves.   
We start our consideration with the simplest physical picture of collisionless drift waves in 
plasma embedded into a constant magnetic field, 

!
B= B!ez  (where !ez  is the unit vector in the z-

direction). These waves are characterized by the frequency, ω , which is much lower than the ion 
gyrofrequency, ΩBi , so the charged particle motion across the magnetic field is largely 

described by the 
!
E×
!
B  drift. In addition, we consider such wave vectors, 

!
k , that the phase 

velocity of the wave along the magnetic field lines, ω / k|| , satisfies the following inequalities 

VTi <ω / k|| <VTe , (VII.1) 

where k|| =
!
k ⋅
!
B/ B  is the wave vector component along the magnetic field, whereas 

VTe = Te / m  and VTi = Ti / M  are the electron and ion thermal velocities respectively. As a 
result, in this case, we largely can ignore the effects of the Landau resonances of the wave with 
both electrons and ions, which can play an important role in collisionless or weakly collisional 
plasmas. 

First, we assume that the stationary plasma density, n(x) , is inhomogeneous in the x-
direction, the electron temperature, Te , is constant and an impact of the ion temperature can be 
neglected (the “cold” ion approximation). Let us now consider the evolution of a plasma slab, 
inclined at some small angle to the direction of the magnetic field, which is shifted in the x-
direction from its original position (as shown in Fig. VII.1).  
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 Since initially the plasma density was not homogeneous in the x-direction, such a 
protrusion will cause a weak plasma inhomogeneity along both z- and y-directions. As a result, 
the electrons, which are much lighter and, therefore, much faster than the ions, will try to escape 
from the plasma density bump, leaving the bulky and slow ions alone. However, this charge 
separation along the magnetic field can only go until the electric field that emerges from such 
plasma polarization stops further electron escape, see Fig.VII.1(a). We notice that due to the 
inclination of the shifted plasma slab, the resulting electric field has a component in the y-
direction (see Fig.VII.1(b)), which will cause the 

!
E×
!
B  plasma drift in the x-direction. The 

direction of this 
!
E×
!
B  plasma drift will be different on the different slopes of the density 

protrusion: on one side it will move the plasma protrusion toward its initial position (and 
decrease the protrusion), whereas on the other one it will move the plasma out from its initial 
position (and increase the protrusion) as shown in Fig.VII.1(b). As a result, the plasma protrusion 
will be “advected” in the y-direction, exhibiting a wave-like motion. However, we note that even 
though such a wave of plasma density perturbation propagates in the y-direction, the 
displacement of the plasma density per se occurs only in the x-direction.  

 
 

 
 

Fig. VII.1. Sketch of a 3D plasma density protrusion in the x-direction resulting in plasma 
polarization caused by the electron motion along the magnetic field lines (a); Advection of the 
plasma density contours at z = z0  in the y-direction due to 

!
E×
!
B  drift in the x-direction (b). 

 
This simplest physical picture of collisionless drift waves can be easily supplemented by 

a quantitative description (e.g. see [1], [2], [3], [4]). For this, we will assume that the 
perturbations of the plasma density, !n , are small ( | !n|<< n ) and all nonlinear effects can be 
ignored. In addition, we will consider the characteristic wavelength of the perturbations much 
larger than the Debye length, and the plasma can be considered quasi-neutral, !ne ≅ !ni ≡ !n , even 
though some charge polarization effects exist. We will ignore the ion motion along the magnetic 
field lines and assume that parallel dynamics of fast electrons reaches equilibrium virtually 
instantaneously so the gradient of the electron pressure along the magnetic field is balanced by 
the electric force, which gives the Boltzmann relation for the perturbed electron density and 
electrostatic potential !ϕ :  



 

 4 

!ne
n
=
e !ϕ
Te

≡ !φ . (VII.2) 

Finally, we assume that the cross-field plasma (both electron and ion) velocity is determined by !
E×
!
B  drift:  
!
V!E×

!
B = −

c

B2
∇ϕ×

!
B( ) . (VII.3) 

Then, taking into account that for a straight constant magnetic field ∇⋅
!
V!E×

!
B = 0 , we have the 

following form of the plasma continuity equation 

 ∂n
∂t
+∇⋅

!
V!E×

!
Bn( ) ≡ ∂n

∂t
+∇n ⋅

!
V!E×

!
B = 0 .      (VII.4) 

As a result, from expressions (VII.2, VII.4) we find 
∂!n
∂t
+Udw

∂!φ
∂y

=
∂!n
∂t
+Udw

∂!n
∂y

= 0 , (VII.5)  

where 

Udw(x) = −
cTe
eB
dℓn(n)
dx

≡
cTe
eB

Λn (x) . (VII.6) 

It is easy to see that the general solution of Eq. (VII.5) can be written as !n("r, t) = f(y−Udwt)  and 
describes, in agreement with our physical picture, the wave propagating along the y coordinate 
(here f (y)  is an arbitrary function, which can also depend on both the x and z coordinates). 

We notice that 
!
Udw  equals to the electron diamagnetic velocity, 

!
Ve
dia , which occurs due 

to inhomogeneity of the electron Larmor circles and can be found from the cross-field electron 
momentum balance equation where the electron pressure gradient (the density gradient, for the 
case of constant temperature) is balanced by the Lorentz force:  

−Te
dn(x)
dx
!
ex −

eB0
c

!
Ve
dia ×
!
ez( )n(x) = 0 . (VII.7) 

However, the expression for the evolution of the perturbed plasma density (VII.5) does 
not take into account some crucially important effects. First, in the derivation of Eq. (VII.5) we 
assumed that the cross-field motion of the charged particles is only due to 

!
E×
!
B  drift, which is 

the same for both electrons and ions. However, the mass difference causes an important disparity 
in the dynamics of the electrons and ions. It results in a more complex governing equation for the 
perturbed plasma density, which becomes important for both the linear stability and nonlinear 
interactions of the drift waves.  

Secondly, and more importantly, Eq. (VI5) shows that the amplitudes of both the 
perturbed plasma density and electrostatic potential, linked to the density perturbation through 
the Boltzmann relation (VII.2), remain the same and do not grow in time. Therefore, it cannot 
describe instabilities resulting in large plasma density/potential fluctuations and strong cross-
field anomalous transport observed in experiments.  
 To address the first issue we consider the equation for the ion velocity, 

!
Vi , which follows 

from the ion momentum balance equation and in the cold ion approximation reads: 

M
d
!
Vi
dt

= −e∇ϕ+ eB
c

!
Vi ×
!ez( ) , (VII.8) 
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where M  is the ion mass and 
d
!
Vi
dt

≡
∂
!
Vi
∂t

+
!
Vi ⋅∇( )

!
Vi  (VII.9) 

is the so-called material derivative.  
 Since we consider the characteristic frequency ω <<ΩBi , the leading cross-field term 

depending on the ion velocity in Eq. (VII.8) is the last one and we can find the solution for 
!
Vi⊥  

through successive approximations in the small parameter ω /ΩBi . Keeping only two terms in 
such an expansion and allowing for a linear approximation in the amplitude of the electrostatic 
potential, from Eq. (VII.8, VII.9) we find  

!"Vi⊥ = −c
∇ "ϕ×

!ez( )
B

−
1
ΩBi

∂
∂t
c∇
"ϕ
B

(

)
*

+

,
- , (VII.10) 

where the second term is from the ion inertia term in Eq. (VII.8). 
We notice that the inertial term on the right-hand side of Eq. (VII.10) is smaller than the 

first one which is already the familiar 
!
E×
!
B  drift velocity. However, unlike the 

!
E×
!
B  drift, the 

second term is not divergence-free.  
 In the linear approximation of the parallel component of the ion velocity, 

!"Vi|| , from Eq. 

(VII.8) we have 
∂
!"Vi||
∂t

= −
e∇|| "ϕ

M
. (VII.11) 

 
Then, substituting the expressions (VII.10, VII.11)) into the ion continuity equation, we have  

∂2

∂t2
!ni
n0

−ρs
2∇⊥
2 !φ

'
(
)

*)

+
,
)

-)
−Cs

2∇||
2 !φ+Udw

∂2

∂t∂y
!φ = 0 , (VII.12) 

where Cs = Te /M  is the ion sound speed and ρs  is an effective ion Larmor radius, defined as 

ρs
2 = Te / (MΩBi

2 ) . From Eq. (VII.12), using the Boltzmann relation (VII.2) for the electron 
density and assuming the quasi-neutrality condition, we obtain the following equation for the 
evolution of a small plasma density perturbation: 

∂2

∂t2
!n −ρs

2∇⊥
2 !n{ }−Cs2∇||2 !n +Udw ∂2 !n

∂t∂y
= 0 . (VII.13) 

 As we can see, unlike Eq. (VII.5), Eq. (VII.13) does not describe the advection of the 
perturbed plasma density in the y-direction as a whole anymore, !n(t, "r ) = f(y−Udwt) . The 
reason for this is the so-called dispersion of the drift wave frequency (i.e. the dependence of the 
frequency ω  on the wave vector

!
k , ω(

!
k) ). Indeed, assuming that the wavelength in the x-

direction is much smaller than the characteristic scale length of the inhomogeneity of the plasma 
density, |dℓn(n) / dx|−1 , we can assume that Λn(x) = const.  and use the eikonal approximation 
[5] taking !n = n̂ω,

"
k exp(−iω+ i

"
k ⋅ "r ) , where n̂ω,

!
k  is the amplitude of the corresponding wave 
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packet. To simplify notations, thereafter we omit both the ”hat” and the ω  and 
!
k  indices over 

and at the Fourier harmonics. Then, from Eq. (VII.5) we find  
ω(
!
k) = Udwky ≡ω∗ .  (VII.14) 

This simple relation gives the wave group velocity, ∂ω(
!
k) / ∂

!
k = Udw

!ey , independent of 
!
k , 

which means that all spatial scale lengths will be advected in the y-direction with the same speed 
and, therefore, the spatial shape of δn  will be preserved: !n(t,"r) = f (y−Udwt) . But, Eq. (VII.13) 
yields a more complex dispersion, 

ω∗
ω
+
Cs
2k||
2

ω2
=1+ρs

2k⊥
2 , (VII.15) 

where 
!
k⊥  and k||  are the components of the wave vector perpendicular and parallel to the 

magnetic field lines. Thus, now the group velocity depends on 
!
k  and, therefore, the spatial shape 

of !n("r, t)  will change in time (e.g. in the y-direction). 

 The solution of Eq. (VII.15) has two important branches. For k||
2→ 0 , Eq. (VII.15) gives 

the dispersion of the drift waves modified, in comparison with Eq. (VII.14), by the cross-field 
ion inertia: 

ω(
!
k) =

ω∗
1+ρs

2k⊥
2
>>Csk|| , (VII.16) 

whereas for k||
2→∞ , we have the ion sound waves with  

ω =
Csk||
1+ρs

2k⊥
2
>>ω∗ . (VII.17) 

We notice that the phase velocity of the ion sound waves is ~ Cs = Te /M . Therefore, 
inequalities (VII.1) for the ion sound waves only hold for Te >> Ti , which is compatible with the 
cold ion approximation we are using here. However, in the tokamak plasmas, where usually 
Te ≈ Ti , the ion sound waves are strongly damped due to the Landau resonance with ions. 

We notice that in Eq. (VII.12) we neglect the x-component of the inertial part of the 
cross-field ion velocity in the term 

!
Vi⊥ ⋅∇n  since its contribution is much smaller than that of 

the corresponding 
!
E×
!
B  drift velocity component. However, this term becomes important for the 

evolution of the amplitude of the wave packet. This effect can also be seen for the case of non-
constantΛn(x)  where the drift wave can be localized within some range along the x-coordinate.  
 
VII.2.2 Localized drift wave  
In the previous consideration of the drift waves, we used the eikonal approximation where all 
perturbations are proportional to exp(ikxx) , which is valid for |kx |>>|Λn |= const. . However, 

taking into account the x-dependence of Λn , we can also consider a drift wave where the 

perturbations are described by f̂ (x)exp(−iωt + ikyy) , where f̂ (x)  is some function localized in 

the x-direction. As an example, we consider a case of 
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n(x) = n − Δn
2
tan h x

w

#

$
%

&

'
( , (VII.18) 

where n  and Δn  are constants and w  is some scale-length. We assume that Δn << n , and using 
the Boussinesq approximation that omits the density variation in the inertial term, neglecting the 
parallel ion dynamics in Eq. (VII.13), we arrive at the following differential equation for !φ(x)  

d2 !φ

dx2
+

(ω̂∗ /ω)

cosh2(x / w)

!φ

ρs
2
= 1+ρs

2ky
2( ) !φ
ρs
2

, (VII.19)  

where ω̂∗ =
cTe
eB

Δn
2wn

. For a localized !φ(x) , ω  should be considered an effective eigenvalue of 

the solution of Eq. (VII.19). We notice that Eq. (VII.19) is similar to the Schrödinger equation 

for an electron with effective electron energy ∝−(1+ρs
2ky
2 )  in the potential well ∝−ch−2(x / w)  

[6]. Using the results of [6], after some algebra, we find that the solution of Eq. (VII.19) is 
characterized by an integer number m  ( m = 0,1, 2, ... ). For the m = 0  mode, we have the 
following frequency and the eigenfunction 

ωm=0 =
ω̂∗

1+ρs
2ky
2 +Κ−1

, !φm=0(x) = cosh
−Κ (x / w) , (VII.20) 

where Κ = (w /ρs ) 1+ρs
2ky
2 . For w >>ρs , !φm=0(x)  can be approximated as follows  

!φ0(x)∝exp −Κ(x /ρs )
2{ } , (VII.21) 

which shows that the “localization width” of the m = 0  mode is ~ ρsw << w . 
 Although the solution for a localized drift wave we consider here is somewhat idealized, 
it will allow us making some illustration of the impact of plasma flow velocity shear on drift 
wave plasma instability later. 
  
VII.2.3 Dissipative drift wave instabilities in slab geometry  
All drift wave dispersion equations we considered so far show that ω(

!
k)  is real and, therefore, 

no growth of initially small perturbations is possible. However, we will see that allowing for 
dissipative effects in the electron dynamics results in destabilization and growth of the drift wave 
amplitude. Such dissipative effects can be caused by both the Landau resonance of the wave with 
electrons (even though we assume that ω / k|| <VTe , some small, but finite effect of such a 

resonance is still present) and electron-ion collisions. 
 To allow for the impact of the Landau resonance on the drift wave (VII.16), we need to 
describe the electron dynamics kinetically. For our case it can be done by introducing the 
electron distribution function, fe(

!v,!r, t) , and employing the electron drift-kinetic equation (e.g. 
see [1], [2]), which reads:  

∂fe
∂t

+ v||
∂fe
∂z

−
c

B2
∇ϕ×

!
B( ) ⋅∇fe +

e
m
∇||ϕ

∂fe
∂v||

= 0 . (VII.22) 
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Since we consider linear perturbations, we take fe(
!
v,
!
r, t) = fe

(0)(
!
v,x)+ "fe(

!
v,
!
r, t) , where 

fe
(0)(
!
v,x)  is the initial electron distribution function and !fe(

"v, "r, t)∝ exp(−iωt + i
"
k"r )  is a small 

correction. Then from Eq. (VII.22) we find the following expression for the electron density 
perturbation, !ne = !fe(

"v,"r, t)d"v∫ : 

!ne = !ϕ −
cky
B0

∂fe
(0)

∂x
+
ek||
m

∂fe
(0)

∂v||

$

%

&
&

'

(

)
)

∫
d
"
v

ω− k||v||
. (VII.23) 

Assuming that fe
(0)(
!
v,x)  is Maxwellian, fe,M

(0) (
!
v,x) ≡ n(x) 2πVTe( )

−3
exp −v2 / 2VTe

2( ) , we find 

that Eq. (VII.23) can be re-written as 

!ne = !φ
(ω∗ − k||v||)fe,M

(0) (
"
v,x)d

"
v

ω− k||v||
∫ . (VII.24) 

From Eq. (VII.24) we see that due to inhomogeneity of the plasma density and  
!
E×
!
B  drift, the 

sign of the effective derivative of the electron distribution function at the resonance condition 
ω = k||v||  changes from being negative for the Maxwellian function to positive in Eq. (VII.24) for 
ω <ω∗ . Therefore, according to the standard interpretation of Landau mechanism of the wave 
damping/growth (e.g. recall “the bump on tail instability” caused by the Landau resonance, see 
Ref. [7]), in our case, the amplitude of the drift wave having ω <ω∗  (recall expression VII.16) 
will grow. It also tells us that the energy needed for such growth comes from the electron kinetic 
energy.  

To find a quantitative expression for the growth rate, from Eq. (VII.24) we find  

!ne
n
= !φ 1+

ω−ω∗
2k||VTe

Z ω

2k||VTe

%

&

'
'

(

)

*
*

+

,
-

.-

/

0
-

1-
, (VII.25) 

where Z(ς)  is the plasma dispersion function: 

Z(ς) = 1

π

dξexp(−ξ2)
ξ−ς−∞

∞
∫ = exp(−ς2) i π − 2 dξexp(ξ2)

0

ς
∫

'

(
))

*

+
,, .  (VII.26) 

For ω << k||VTe ,  from Eq. (VII.25) we obtain the following expression for the electron density 

perturbation 
!ne
n
=
e !ϕ
Te

1+ i π
2
ω−ω∗
k||VTe

&
'
(

)(

*
+
(

,(
, (VII.27) 

which, due to the Landau resonance, is slightly different from the Boltzmann relation we have 
used so far. Then, recalling Eq. (VII.12) and using the quasi-neutrality conditions, we arrive at 
the following dispersion equation 

ω∗
ω
+
Cs
2k||
2

ω2
=1+ρs

2k⊥
2 + i π

2
ω−ω∗
k||VTe

. (VII.28) 
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Since we assume ω << k||VTe , the last term on the right-hand side of Eq. (VII.28) is below unity, 

but this is the only term that gives a complex expression for the solution of the dispersion 
equation (VII.28). As a result, for the drift waves, this term gives 

ω =
ω∗

1+ k⊥
2ρs
2 1+ i π

2
ω∗
k||VTe

k⊥
2ρs
2 1+ k⊥

2ρs
2( )
−2⎧

⎨
⎩

⎫
⎬
⎭

, (VII.29) 

and the frequency has a positive imaginary part, Im(ω) > 0 , which implies that the amplitude of 
the perturbation, ∝exp(−iω+ i

!
k ⋅
!
r)∝exp(Im(ω)t) , will grow exponentially with time. At the 

same time, for the ion sound waves having ω >ω∗ , the last term in Eq. (VII.28) results in 
collisionless damping. 
 Next, we consider the impact of electron-ion collisions on destabilization of the drift 
waves described by Eq. (VII.14). For this purpose we will use the plasma fluid equations (e.g. 
see [8], [9], [10], [11], [12]). As we already found, the drift waves cause some perturbation of the 
electron distribution function. In terms of the fluid equations, in the presence of collisions, the 
drift waves will result in the perturbation not only of the plasma density but also of the electron 
temperature (we will still consider the cold ion approximation and ignore electron energy 
dissipation due to electron-ion collisions). Then, from the electron fluid momentum and energy 
equations, omitting rather cumbersome algebra, we find (e.g. see [13]) 

!ne
n
=
e !ϕ
Te

(ω∗ + iν||)(3ω / 2+ iκν||)+ i(1+αT)ω∗ν||
(ω+ iν||)(3ω / 2+ iκν||)+ i(1+αT)ων||

'
(
)

*)

+
,
)

-)
, (VII.30) 

where ν|| = k||
2(Te / mνei )  plays the role of the inverse characteristic time of electron diffusion on 

the spatial scale ~ k||
−1 , νei  is the electron-ion collision frequency, κ =1.61  and  αT = 0.71 . We 

notice that the terms proportional to κ  and 1+αT  come, respectively, from the contribution of 
the electron temperature perturbation to heat conduction and from the momentum balance 
equations along the magnetic field lines where αT  describes the electron thermal force effect.  

For the case ν|| >>ω∗ , when the electron density perturbation can be described with the 

Boltzmann relation, from Eq. (VII.30) we have 
!ne
n
= !φ 1+ i

ω−ω∗
ν||

1+
1+αT
κ

(

)
**

+

,
--

.
/
0

10

2
3
0

40
. (VII.31) 

As one can see, similarly to the collisionless Landau dissipation (VII.27), the imaginary part of 
the expression (VII.31) is also proportional to the difference ω−ω∗ , which results in instability 
for the case of the drift wave:  

ω ≈
ω∗

1+ρs
2k⊥
2
1+ i

ω∗
ν||
ρs
2k⊥
2 1+ρs

2k⊥
2( )
−2
1+
1+αT
κ

*

+
,,

-

.
//

0
1
2

32

4
5
2

62
. (VII.32)  

where the frequency, similar to Eq.(VII.29), has a positive imaginary part proportional to ρs
2k⊥
2 . 

We notice that from Eq. (VII.32) one can see that the omission of the electron temperature 
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variation (which formally corresponds to the case of κ→∞ ) would only give an order of unity 
correction for the growth rate. 
 But, we should keep in mind that the applicability of the fluid equations for the study of 
the dissipation effects caused by electron-ion collisions on the stability of the drift waves 
requires a relatively slow spatiotemporal variation of plasma parameters: 
k||VTe / νei ≡ k||λCe <<1  and ω / νei <<1, where λCe  is the electron mean free path. Therefore, 

the inequality ν|| >>ω∗  that we used to derive Eq. (VII.31) requires the following conditions: 

ω / νei << k||VTe / νei( )
2
<<1. For a more general case, the contributions of both the Landau 

resonance and electron-ion collisions to the growth-rate can be comparable even for ω / νei <1  
[13].  
 For ν||→ 0 , which corresponds to slow relaxation of the electron density perturbation 
along the magnetic field lines, from Eq. (VII.30) we have 

!ne
n
= !φ

ω∗
ω
+
iν||
ω
1−

ω∗
ω

&

'
((

)

*
++

,
-
.

/.

0
1
.

2.
. (VII.33) 

Then, neglecting in Eq.(VII.12) the ion dynamics along the magnetic field, from the quasi-
neutrality conditions we find the following dispersion equation 

ρs
2k⊥
2 +
iν||
ω
1−

ω∗
ω

'

(
))

*

+
,,= 0 , (VII.34) 

which for ν||→ 0 , has an unstable solution with  

ω = (1+ i) ν||ω∗
2ρs
2k⊥
2 . (VII.35) 

The fact that ω(ν||→ 0)→ 0  is 

not surprising if we recall that the wave 
is driven by the electric field, which is 
due to plasma polarization related to 
electron mobility along the magnetic 
field lines (see Fig. VII.1) and such 
mobility is strongly suppressed for the 
case of ν||→ 0 . 

The basic features of both the 
collisionless and collisional drift waves 
in a non-tokamak environment were 
extensively studied in the 1960th-1970th 
(e.g. see Ref. [14], [15], [16], [17], [18] 
and the references therein). Due to 
relatively quiescent and controllable 
plasmas in the devices used in these 
studies (in many cases these were the Q-
machines, with the straight magnetic 
field lines where the plasma was created by the ionization of cesium or potassium atoms at the 

 
Fig. VII.2. Comparison of experimental data (dots) 

and theoretical calculations (solid curves) for 
collisional drift wave frequency (left) and growth 

rate (right) for different azimuthal wave numbers m.  
Reproduced with permission from [19], © AIP 

Publishing 1970.  
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surface of a hot plate) a reasonable agreement was found between the theoretical expectations 
and the experimental data for the case of low wave amplitudes, where the linear wave theory is 
valid. For example, in Fig. VII.2 one can see a good agreement between the experimental data 
and theoretical calculations for the collisional drift wave frequency and growth rate for different 
azimuthal wavenumbers m. The situation with experimental studies of the drift waves in toroidal 
devices, where the plasma waves can be simultaneously driven by different mechanisms, is not 
so obvious and largely only qualitative agreement between the results of the drift wave theory 
and the experimental observations is reported (e.g. see [20], [4], [21], [22] and the references 
therein).  
 
VII.2.4 Destabilizing effect of ion temperature gradient 
However, it appears that the presence of a cross-field ion temperature gradient can result in 
plasma instability with no dissipation effects. In this case, another kind of drift wave, the so-
called ion temperature gradient (ITG) drift mode [23] can become unstable. 

As an example, we consider plasma with homogeneous both density and electron 
temperature embedded into a constant magnetic field 

!
B0 = B0

!ez  but having the ion temperature 

depending on the x-coordinate, ∂Ti / ∂x ≠ 0 .  

Then, the ion 
!
E×
!
B  drift will result in a perturbation of the ion temperature, !Ti , similar 

to that of the plasma density described by Eq. (VII.4): 
∂
∂t

!Ti
Ti

"

#
$$

%

&
''+Udw,i

∂!φ
∂y

= 0 , (VII.36) 

where  

Udw,i = −
cTe
eB0

dℓn(Ti )
dx

. (VII.37) 

For the case of k|| ≠ 0 , the perturbation of the ion temperature !Ti  results in the 

perturbation of the plasma pressure along the magnetic field lines, which is somewhat similar to 
the plasma density inhomogeneity along the magnetic field shown in Fig. VII.1.  

Standard wisdom would suggest that the perturbation of plasma pressure should result in 
some sort of a “sound” wave, similar to the ion sound waves, Eq. (VII.17), with ω ~ Cpk|| , where 

Cp  is the plasma sound speed. Although this option exists, we consider a very different regime 

of the ion dynamics, which will finally bring us to the unstable ITG mode. Following Eq. (VII.1) 
we assume that ω >>VTik||

. We will see that such inequality becomes possible because in 

inhomogeneous plasma, among different characteristic frequencies of the waves there are drift 
frequencies such as ω∗ = Udwky  (Eq. (VII.12)) and, as we will see,  

ω∗,i = Udw,iky , (VII.38) 

which do not depend on k|| .  

Then, the ion dynamics can be considered as a motion under a “fast” (ω >>VTik||
) 

applied force caused by the ion temperature perturbation. As a result of such forced ion motion, 
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the perturbations of both the plasma density and electrostatic potential will be relatively small 
but vital for the instability: 

e !ϕ
Ti
~
!ni
n
<<
!Ti
Ti

. (VII.39)  

We assume here that Te ~ Ti . Then, from ion momentum balance along the magnetic field and 
the continuity equations we have 

M
Ti

∂2

∂t2
!ni
n

"

#
$$

%

&
''=∇||

2 !Ti
Ti

"

#
$$

%

&
'' , (VII.40) 

which demonstrates that for ω >>VTik||
, 

!ϕ
Ti
~
!ni
n
=
VTi
k||

ω

#

$

%
%

&

'

(
(

2
!Ti
Ti
<<
!Ti
Ti

, (VII.41) 

and justifies the inequalities (VII.39). 
As a result, using the Boltzmann relation for the electron density perturbation and re-writing all 
our expressions in the Fourier representation, from Eq. (VII.36, VII.40) we find 

ω3 =ω∗,ik||
2V
Ti
2 . (VII.42) 

This third-order equation for ω  has one real and two complex conjugate solutions, which 
ensures the existence of the solution with the positive imaginary part of ω , which implies the 
instability of this ITG mode.  
 We notice that in our derivation, among other assumptions we presumed that ω >>VTik||

, 

which, as one can see from Eq. (VII.39), is satisfied for relatively small k|| : ω∗,i >>VTik||
, so 

that the growth rate of the instability described by Eq. (VII.42) is significantly below ω∗,i . 

 
VII.2.5 Plasma instabilities driven by toroidal effects 
So far we considered plasma in a straight constant magnetic field. However, in a tokamak, the 
magnetic field 

!
B  has a helical structure winding around toroidally symmetric magnetic flux 

surfaces (see Fig. I.1). As a result, any charged particle having a reasonably small Larmor radius 
will experience cross-

!
B  drift motion associated with both the curvature of the magnetic field 

lines and the gradient of the magnetic field strength.  
In a tokamak having a large aspect ratio (the ratio of major to minor tokamak radii), both 

these drifts are largely determined by the toroidal magnetic field, 
!
Btor , and the velocities of 

these drifts are directed along the major tokamak axis. For this case, the average magnetic field-
related drift velocity of an ensemble of the particles having a charge q and a Maxwellian 
distribution function with the temperature Tq  can be written as  

!
VB,q = 2

cTq
qB

(!eR ×
!
b)

R
.  (VII.43) 
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Here we use cylindrical coordinates (Z,R,φ)  
where the Z coordinate goes along the major 
tokamak axis, whereas !eR  is the unit vector 
along the R coordinate, 

!
b =
!
B / B , and 

assume Btor ∝1/ R .  

We notice that the direction of 
!
VB  depends 

on the sign of the charge so that the electrons 
and ions drift in opposite directions. As a 
result, a radial protrusion of the plasma 
parameters can cause plasma polarization not 
only due to the electron motion along the 
magnetic field as shown in Fig. VII.1, but 
also due to the magnetic field-related drifts of 
the electrons and ions. As a result of such 
plasma polarization, new types of instabilities 
become possible. 

As an example, in Fig. VII.3 we show magnetic drift-related polarization of a plasma 
pressure protrusion which, unlike those in Fig. VII.1, is not inclined to the direction of the 
magnetic field lines. As one can see, in this particular case, a dipole-like polarization of the 
plasma pressure protrusion due to the magnetic drift and associated 

!
E×
!
B  plasma drift can result 

in further radial advection of the protrusion.  
However, we notice that the drift velocities Eq. (VII.40) appear only in the motion of test 

particles. Within the fluid picture of the plasma dynamics, these velocities are “hidden” in the 

diamagnetic velocities of plasma components, 
!
Ve/i
dia , which, in the presence of toroidal effects, 

can result in non-divergence-free perturbations of the electron/ion fluxes. Indeed, the cross-field 

diamagnetic flux, 
!
jq
dia , of an ensemble of particles with charge q and pressure Pq  is 

!
jq
dia =

c
q

!
B×∇Pq
B2

. (VII.44) 

Then, assuming B∝1/ R , from Eq. (VII.44) we find 

∇⋅
!
jq
dia = −

2c
qB

!
b ⋅ !eR ×∇Pq( )

R
. (VII.45) 

A similar result can be found from the divergence of the flux n q
!
VB,q . 

Another implication of the spatial variation of the magnetic field is that the 
!
E×
!
B  drift velocity 

is also no longer divergence-free even for the potential electric field 
!
E = −∇ϕ . Indeed, assuming 

that B∝1/ R , for this case from Eq. (VII.3) we find  

∇⋅
!
V!E×

!
B =

2c
B

!
b ⋅ ∇ℓn(B)×∇ϕ( ) = − 2cB

!
b ⋅ !eR ×∇ϕ( )

R
. (VII.46) 

Although in large aspect ratio (R >> a ) tokamaks |VB,q|  is relatively small 

 
Fig. VII.3.  The magnetic drift-related 

polarization of plasma pressure protrusion and 
associated 

!
E×
!
B  plasma drift that can result in 

further radial advection of the protrusion. 
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|VB,q|∝
1
R
<<|Udw|, |Udw,i|∝

1
a

, (VII.47) 

the cross-field drift velocity 
!
VB  can cause plasma polarization (recall Fig. VII.2), which, as we 

will see, results in a new class of plasma instabilities. In what follows, along with the frequencies 
ω∗  and ω∗,q , we will use frequencies ωB,q =

!
VB,q ⋅

!
k , which, according to Eq. (VII.47), have 

the following ordering 
|ωB,q |<<ω∗,ω∗,q . (VII.48) 

As an example, we consider the impact of a weakly toroidal magnetic field on the ITG 
mode. We introduce a local coordinate system (x,y,z), where x, y, and z are in the radial, 
poloidal, and 

!
B  directions respectively and, as we did before, take constant plasma density and 

electron temperature and assume that the ion temperature is varying in the “radial” direction: 
∂Ti / ∂x ≠ 0 .  
 We recall that for the case of a constant magnetic field, the only reason for establishing 
the perturbations of the plasma density and corresponding electrostatic potential was the ion 
motion along the magnetic field caused by the ion temperature (pressure) perturbation. However, 
in the presence of toroidal effects, perturbation of the ion temperature (pressure) results in a 
finite divergence of the diamagnetic ion flux (VII.45) and, therefore, in the ion density 
perturbation. To emphasize the toroidal effects, we completely neglect here the impact of the ion 
dynamics along the magnetic field lines and the effects of the ion inertia. We will be interested in 
plasma fluctuations with the frequency ω  such that  

|ωB,q |<ω <ω∗,ω∗,q . (VII.49) 

Then we will see that in our case, the ion temperature has the largest relative perturbation and, 
similarly to Eq. (VII.41), !Ti / Ti >> !φ ~ !ni / n0  (we assume here Ti ~ Te ). As a result, the ion 
temperature perturbation can still be described by Eq. (VII.36), which gives  

!Ti
Ti
=
ωdw,i
ω
!φ .  (VII.50)  

 
Finding !ni  we can allow for the ion temperature perturbation in the ion diamagnetic flux 

(VII.44) only and neglect the compressibility of the 
!
E×
!
B  drift flow since !Ti / Ti >> !φ . So we 

have 
!ni
n0

=
ωB,i
ω

!Ti
Ti

.  (VII.51) 

Assuming the Boltzmann relation for the electron density perturbation and electrostatic potential 
together with the plasma quasi-neutrality from Eq. (VII.50, VII.51), we find 

ω2 =ω∗,iωB,i ≡ 2
Ti
Te

cTe
eB0

$

%
&&

'

(
))

2 ky
2

R
dℓn(Ti )
dx

, (VII.52) 

which satisfies the inequality (VII.49) and all other assumptions made in the course of our 
derivation of Eq. (VII.52) and shows the instability of the toroidal ITG for ∂Ti / ∂x < 0 .  
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However, we notice that x is the local coordinate 
and for the “standard” temperature distribution over 
the minor radius, ∂Ti / ∂x < 0  region corresponds to 
the outboard side of the torus (or to the so-called 
“bad” curvature region), whereas at the inboard 
side (where the curvature is “good”) ∂Ti / ∂x > 0  
and the mode is neutrally stable (within our 
simplified treatment). 
 Eq. (VII.52) gives the growth rate of the 
ITG instability in the eikonal approximation. More 
complex numerical simulations go beyond the 
eikonal approximation and treat the solution of the 
corresponding differential equations as an 
eigenfunction-eigenvalue problem. As a result, 
such solutions allow visualizing the mode structure 
(somewhat similar to what we did for a nonlocal 
solution of the drift wave arriving at Eq. (VII.20, 
VII.21)). As an example, in Fig. VII.4 one can find 
the spatial structure of the eigenfunction of the 
electrostatic potential at some toroidal angle found for the ITG mode. We notice that in 
agreement with our simplified consideration, the amplitude of the electrostatic potential shows a 
strong enhancement at the outer side of the torus, where, according to Eq. (VII.52), the driving 
mechanism is localized. However, at relatively high radial gradients of the plasma parameters, 
the spatial structure of the most unstable ITG eigenmode can be very different (e.g. see [25], [26] 
and the references therein). 
 
VII.2.6 Interchange and resistive interchange modes  
Apart from the impact on the ITG instability, the magnetic drift also brings new features to the 
instability of the collisional drift waves we have considered for the case of a constant magnetic 
field (see Eq. (VII.32, VII.35)). To asses them, we will again use a local coordinate system 
(x,y,z), where x, y, and z are in the radial, poloidal, and 

!
B  directions respectively. 

 However, this time instead of finding expressions for the electron and ion density 
perturbations and then using the quasi-neutrality condition, we will employ the so-called 
vorticity equation, which is widely used, in particular, in nonlinear simulations of plasma 
turbulence. The vorticity equation actually follows from the quasi-neutrality conditions written in 
the form ∇⋅

!
J = 0 , where 

!
J  is the electric current in the plasma. In highly magnetized plasmas, 

the cross-field plasma current produced by fluctuating plasma parameters is only due to the ion 

inertia, 
!"J⊥
inert  (e.g. recall the expression (VII.10)), and diamagnetic current, 

!"J⊥
dia , associated with 

the electron/ion diamagnetic fluxes (VII.44). We notice that i) the 
!
E×
!
B  drift velocities which 

are the same for electrons and ions, do not contribute to cross-field electric current in a quasi-
neutral plasma, and ii) ∇⋅

!"J⊥
dia ≠ 0  only for the case where 

!
B  is not constant (e.g. recall 

expression (VII.45)). 
 For the case of the cold ion approximation, neglecting the variation of the magnetic field, 
from Eq. (VII.8, VII.9) we find 

 
Fig. VII.4. Contour plot of the 

eigenfunction of electrostatic potential at 
some toroidal cross-section found for ITG 
mode.  Reproduced with permission from 

[24], © AIP Publishing 2017. 
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∇⋅
!
J⊥
inert = −e∇⋅ n ∂

∂t
+
!
V!E×

!
B ⋅∇

'

(
)

*

+
,
c∇ "ϕ
BΩBi

/
0
1

21

3
4
1

51
, (VII.53) 

whereas from Eq. (VII.45) we have 

∇⋅
!
J⊥
dia = −

2c
B

!
b ⋅
!
eR ×∇"Ptot( )
R

,  (VII.54) 

where !Ptot  is the perturbation of the total plasma pressure.  
 Quite often Eq. (VII.53) is considered in the Boussinesq approximation where the 
expression (VII.53) is simplified as follows: 

∇⋅
!
J⊥
inert = −en ∂

∂t
+
!
V!E×

!
B ⋅∇

'

(
)

*

+
,
c∇2ϕ
BΩBi

/
0
1

21

3
4
1

51
. (VII.55) 

For linear theory, such approximation is equivalent to the omission of the inertial part of the 
cross-field ion velocity in the term 

!
Vi⊥ ⋅∇n  in Eq. (VII.12). Then, the linear vorticity equation 

reads 

∇⋅
!"J ≡ −en ∂

∂t
c∇2 "ϕ
BΩBi

−
2c
B

!
b ⋅
!
eR ×∇"Ptot( )
R

+∇|| ⋅
"J|| = 0 .  (VII.56) 

To simplify our algebra, we will assume that the electron temperature is constant (which gives an 
order of unity correction for the growth rate, recall Eq. (VII.32)) so that for the perturbed 
electron pressure we take !Pe = !nTe .  
Finding the parallel component of the electric current, !J|| , we will ignore the ion dynamics along 

the magnetic field lines. Then, assuming ω / νei <1 , from the parallel electron momentum 
balance equation in linear approximation we have  

∇|| ⋅
!J|| = enν|| !φ−

!n
n

&

'
(

)

*
+ . (VII.57) 

First, we consider the case of ν||→ 0 , which corresponds to reduced electron mobility along the 
magnetic field lines and in the absence of toroidal effects, results in a relatively slow instability 
(VII.35). However, toroidal effects, causing magnetic drifts, provide plasma polarization which 
is not related to electron mobility along the magnetic field lines and, therefore, is not bounded by 
the small magnitude of ν|| . Therefore, in the simplest case, we can take J|| = 0  and relax Eq. 

(VII.56) to   

ρs
2k⊥
2 ∂
∂t
e !ϕ
Te

−
2cTe
eBR

∂
∂y
!n
n
= 0 .  (VII.58) 

The variation of plasma density can be found from the ion continuity equation. Considering the 
case ρs

2k⊥
2 <1  and recalling the inequality (VII.48), we can neglect the compressibility in both 

the inertial and 
!
E×
!
B  ion drift flows and use Eq. (VII.4) for the plasma density perturbation. As 

a result, we arrive at the following equation  
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k⊥
2 !φ−

2Te
MR

ky
2

ω2
∂ℓn(n)
∂x

!φ = 0 , (VII.59) 

which gives the growth rate of the so-called ideal interchange instability γI  (e.g. see [2]): 

ω2 = −γI
2 ≡ −

ω∗ωB,e

ρs
2k⊥
2
~
2Te
MR

dℓn(n)
dx

, (VII.60) 

which, similar to the toroidal ITG mode, can only be unstable at the outboard side of the torus.  
 The physics of the ideal interchange instability is simple: the magnetic drift causes 
polarization of a plasma protrusion similar to that shown in Fig. VII.2, which, in the absence of 
charge relaxation along the magnetic field lines, results in a continuous build-up of the electric 
field and increasing amplitude of the protrusion. We notice that the ideal interchange mode has a 
deep analogy with the Rayleigh-Taylor instability of a stratified fluid in a gravity field (e.g. see 
[27]). Indeed, considering an incompressible fluid situated in a gravity field characterized by the 
acceleration !g = g!ex  (where g > 0 ) and having the mass density ρ(x) , we can find the following 
equation describing the stream function, !ψ(x,y, t) , which defines the perturbation of the fluid 

velocity, 
!"V = !ez ×∇ "ψ ,  

d2 !ψ

dx2
− ky
2 !ψ+ 1

ρ
dρ
dx

gky
2

ω2
!ψ = 0 .  (VII.61) 

Here we adopt the Boussinesq approximation and use the Fourier expansion of !ψ  in time and y-
coordinate. Then, using the eikonal approximation in the x-direction, from Eq. (61) we obtain 

k⊥
2 !ψ− dℓn(ρ)

dx

gky
2

ω2
!ψ = 0 , (VII.62) 

 which is similar to Eq. (VII.59) so that we can see that the factor 2Te / MR  plays the role of 
effective gravitational acceleration for the plasma situated in a toroidal magnetic field.  

By specifying the plasma density (the fluid mass density) profile from Eq. (VII.61), one 
can find the localized solutions of the Rayleigh-Taylor (interchange) unstable modes. For 
example, similarly to Eq. (VII.18), we consider the case  

ρ(x) = ρ− Δρ
2
tan h x

w

$

%
&

'

(
) ,   (VII.63) 

where Δρ / ρ <<1  . Here again, we use the analogy of Eq. (VII.61) to the Schrödinger equation 

for an electron in a potential well ∝−ch−2(x / w)  [6] with the energy ∝−ky
2 , and can find the 

Rayleigh-Taylor (interchange) instability growth rate, γRTm
, versus the integer mode number m.  

For the fastest-growing mode m = 0 , we have the following dependence of γRTm=0
 and 

the corresponding eigenfunction, ψm=0(x) , on ky :  

γ
RTm=0
2 = γRT

2
RT
2 w |ky |

w |ky |+1
, ψm=0(x) = ch

−w|ky |(x / w) ,  (VII.64) 
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where 

γRT
2 =

Δρ
2ρ
g
w

.  (VII.65) 

 Although this solution for the Rayleigh-Taylor 
(interchange) instability was considered for somewhat 
idealized conditions, we will use it later to illustrate 
an impact of fluid (plasma) flow velocity shear on the 
Rayleigh-Taylor (interchange) instability. 
 Coming back to the plasma and analyzing the 
dissipation from Eq. (VII.56, VII.57) for ρs

2k⊥
2 <1  

and finite, although still rather small ν|| , ν|| <ω∗ , we 

arrive at the following modification of Eq. (VII.34): 

ω2 + γI
2 +

iν||
ρs
2k⊥
2
(ω−ω∗) = 0 . (VII.66) 

For the case of ν|| >ωB,e,ρs
2k⊥
2ω∗ , this gives the so-

called resistive interchange mode  

ω =ω∗ + i
ωB,eω∗
ν||

, (VII.67) 

which can be considered as a proxy for the “Resistive 
Ballooning Mode” (RBM) (e.g. see Refs. [28], [29], 
[30], [31], [32] and the references therein). The 
eigenmode structure of the RBM, found from 
numerical simulation for the DIII-D magnetic 
configuration, is shown in Fig. VII.5. Once again, one 
can see that the mode is largely localized at the 
outboard side of the torus (the “bad” curvature side). 

We notice that in the context of our consideration of collisional drift waves in a tokamak-
like magnetic field, the term “ideal interchange mode” may sound strange. However, as we have 
already seen (and will see later), some dispersion equations can be rather general and, in 
different limits, describe different waves (e.g. recall Eq. (VII.15) which describes both the ion 
sound and drift waves). Similarly, considering different magnitudes of ν||  (which depends not 

only on the plasma collisionality but also on the parallel wavelength), our dispersion equation 
can describe different modes ranging from an unstable drift wave for large ν||  (recall Eq. 

(VII.32)) to the “ideal interchange mode” (Eq. (VII.59)) for small ν|| . 

As we see, different modes of plasma waves, coming virtually from the same set of the 
equations, correspond to different relations of the plasma and wave parameters. In the tokamak 
environment, these modes often either co-exist or are “separated” by a relatively small variation 
of the plasma parameters. As a result, a much more sophisticated theoretical analysis and 
numerical simulations, which go well beyond our basic survey, are needed to adequately 
describe them. 

 
Fig. VII.5. Eigenmode structure of the 

RBM for the DIII-D magnetic 
configuration found from numerical 

simulation.  Reproduced with 
permission from [33], © Elsevier 2011. 
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Needless to say that in 
experiments it is often difficult to 
distinguish the impacts of different 
modes on anomalous plasma transport. 
Nonetheless, as an example, in Fig. 
VII.6, one can see how electron 
temperature variation at the edge of the 
HL-2A tokamak switches excitation of 
the ITG and resistive ballooning modes 
(here GAM stands for the Geodesic 
Acoustic Mode, which is a specific, 
toroidally symmetric mode in a tokamak, 
see [35], [36] and the references therein). 

Another example can be found in 
[22], where the resistive drift waves and 
the resistive interchange mode limit of 
the resistive drift mode (driven by 
magnetic drifts) were observed 
correspondingly at the High Field Side 
(HFS) inboard and Low Field Side (LFS) outboard sides of the Helimak toroidal device, see Fig. 
VII.7.  

 
 

Fig. VII.7. (a) Fluctuation frequency spectra at HFS (of resistive drift wave, blue curve) and LFS 
(of resistive interchange mode, red and black curves) of the Helimak device; and (b) Relative 
density fluctuation at both LFS and HFS versus the connection length along helical magnetic 
field between the end-plates. Reproduced with permission from [22], © AIP Publishing 2006.   

 
VII.2.7 Electromagnetic effects 
As we can notice, all plasma waves we have considered so far were accompanied by electric 
currents. These currents generate fluctuating electromagnetic fields, which in plasma are 
manifested as the Alfven’s waves. However, we neglected the electromagnetic effects in all 
preceding considerations. This can be justified for the case where the characteristic frequencies 
of the waves considered are much lower than the frequency of the Alfven waves or, to be more 

 
Fig.VII.6. Electron temperature variation at the edge 
of tokamak HL-2A tokamak (upper panel) switches 

back and fours the ITG and resistive ballooning 
modes (low panel).  Reproduced with permission 

from [34], © IAEA 2018. 
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precise, the frequency of the shear Alfven wave, k||VA , where VA = B / 4πMn  is the Alfven 

speed. 
As an example, we consider the impact of electromagnetic effects on the collisionless 

drift wave described by Eq. (VII.14). Recall that to avoid the Landau damping on electrons, 
deriving Eq. (VII.14) we assumed ω < k||VTe . Therefore, the inequality ω < k||VA  is 

“automatically” satisfied for the case where VTe <VA  (βe ≡ nTe / (B
2 / 4π) <m / M ), which 

gives ω < k||VTe < k||VA . However, for larger βe  (βe >m / M ), the impact of electromagnetic 

effects can be important. To address this issue, in addition to the electrostatic potential ϕ  we 
introduce a vector potential 

!
A = !ezA||(

!r, t)  and will assume that both of them are small. 

Adopting the eikonal approximation for the perturbed quantities, we find the following 
contribution from the electromagnetic term to the amplitudes of fluctuating electric and magnetic 
fields: 

!"E = iω!ez "A|| / c  and 
!"B= i

!
k× !ez( ) "A|| . In addition, we have the following expression for the 

fluctuating electric current associated with the vector potential  
!"J || =

c
4π

∇×
!"B( ) = ck⊥

2

4π
"A||
!ez .  (VII.68) 

The component of the fluctuating electric current perpendicular to 
!
B  is described by Eq. 

(VII.55). As a result, using expressions (VII.55, VII.68), from the condition ∇⋅
!"J = 0  we find the 

relation between !ϕ  and !A|| :  

ω !A|| / k||c = ω / k||VA( )2 !ϕ .  (VII.69) 
For ω < k||VTe , the electron density perturbation can be found from the stationary parallel 

electron momentum balance equation where electron temperature can be assumed constant. 
However, now we need to allow for small bending of the magnetic field lines, which is caused 
by electromagnetic effects. As a result, we have 

−
Te
e
k||
!ne
n0

+
ω∗
ω
−1

$

%
&&

'

(
))
ω !A||
c

+ k|| !ϕ = 0 .   (VII.70) 

Then, using Eq. (VII.69, VII.70), taking the ion density perturbation from Eq. (VII.11) and 
assuming the quasi-neutrality condition, we arrive at the following dispersion equation  

ω∗ /ω−1( ) 1− ω / k||VA( )2{ }−ρs2k⊥2 = 0 .  (VII.71) 

Eq. (VII.71) describes the so-called drift-Alfven wave. In particular, for the large and small 
values of the ω∗ / k||VA  ratio it gives, respectively, the drift wave (Eq. (VII.14)) and the shear 
Alfven wave: 

ω =ω∗ / (1+ρs
2k⊥
2 ), for ω∗ / k||VA <<1

ω2 = (k||VA)
2(1+ρs

2k⊥
2 ), for ω∗ / k||VA >>1

%

&
'

('
.  (VII.72) 

We notice that in our evaluation of electromagnetic effects we assumed so far that the 
magnetic field is constant and straight, 

!
B= B!ez . As a result, the non-divergence-free cross-field 
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plasma current still appears only due to ion inertia, recall Eq. (VII.55). However, in a tokamak 
magnetic configuration, we should allow for the contribution of the diamagnetic current (VII.54). 
Considering low β  plasma and being interested in the waves with the characteristic frequency 
ω !> k||VA , using Eq. (VII.12) for ion density perturbation we can neglect the ion dynamics along 

the magnetic field lines (which gives a contribution ~ β <<1 ). Then, from the vorticity equation 
(VII.56) and the electron parallel momentum balance equation (VII.64), keeping in mind the 
relation (VII.68) and the plasma quasi-neutrality condition, after some algebra, we come to the 
following dispersion equation 

1−ω∗ /ω( ) ω2 + γI2 1−ρs2k⊥2 (ω∗ /ω)( )− (k||VA)2{ }−ρs2k⊥2 (k||VA)2 = 0 . (VII.73) 

For ρs
2k⊥
2 <<1, Eq. (VII.73) is reduced to  

1−ω∗ /ω( ) ω2 + γI2 − (k||VA)2( ) = 0 ,  (VII.74) 

which describes the drift wave, ω =ω∗ , and a proxy for the ideal ballooning mode [37] with  

ω2 = −γI
2 + (k||VA)

2 .  (VII.75) 
We notice that for simplicity, we considered the case where only plasma density has a cross-field 
gradient, whereas electron temperature was assumed to be constant and the ions were “cold”. 
However, as we discussed, the mechanism of the interchange mode is related to the polarization 
of plasma protrusion due to the magnetic drifts (recall Fig. VII.2), which, according to Eq. 
(VII.54), is determined by the total plasma pressure. As a result, a more complete consideration 

shows that instead of the expression (VII.59), γI  should be defined, assuming ky
2 / k⊥

2 ≈1, as  

γI
2 ≡

2
MnR

dℓn(Ptot )
dx ,   (VII.76) 

where Ptot  is the total equilibrium plasma pressure. Then Eq. (VII.69) shows that for the “bad” 

curvature case, dPtot / dx < 0 , and large parallel wavelength, the magnetic drift of the charged 
particles can destabilize plasma perturbations. Estimating k|| ~ 1 / qR , where q  is the safety 
factor, from Eq. (VII.75, VII.76) we find that the instability starts for the so-called “MHD 
ballooning parameter” α  exceeding unity: 

α ≡ q2R dβ
dx

>1 .  (VII.77) 

The eigenfunction of the perturbed plasma pressure for the ballooning mode in ITER, 
found from the numerical simulation in [38], is shown in Fig. VII.8. 
 
 VII.2.8 Effect of “open” magnetic field lines 
Here we consider how a contact of the plasma with material surfaces (e.g. limiters, divertor 
targets) in the SOL region can affect plasma stability. As we found, plasma instabilities, this way 
or another, result in a fluctuating electric current along the magnetic field lines. The volumetric 
resistive effects associated with this current can cause dissipative plasma instabilities (e.g. recall 
Eq. (VII.32)). However, in Ch. IV it was shown that the plasma current into a material surface 
(which we will, for simplicity, assume perfectly conducting) is related to some variation of the 
electrostatic potential through the sheath, ϕsh , bridging the material surface and the plasma. 
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Then the expression for the low magnitude of 

electric current perturbation to the target, !J||
tar , can be 

found by linearizing the expression (IV.18), which, 
ignoring electron emission from the surface and 
assuming a normal incidence of the magnetic field onto 
the target, gives (see also [39], [40]): 

!J||
tar = enshCs(Te)

e !ϕsh
Te
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&&

'

(
))J||
tar

,  (VII.78) 

where Λsh = eϕsh / Te . 
 The “boundary” condition Eq. (VII.78) can result 
in a new type of instability and alter some modes we 
have considered so far. First, we consider an impact of 
this boundary condition on the interchange mode 
described by Eq. (VII.59, VII.60). For simplicity, we 
analyze the SOL plasma at the outer side of the torus for 
a double null magnetic configuration (see Fig. I.6a). We 
take the cold ion approximation and assume that the 
background electron temperature is homogeneous and 
rather high so that the plasma can be considered 
collisionless. For such a case, both the electrostatic 
potential and plasma density are virtually constant along 
the magnetic field lines. We will also ignore the 
toroidality-induced compressibility effects and take 
!Te = 0 . Finally, we consider the case with no 

unperturbed plasma current to the material surface. As a result, from Eq. (VII.78) we have  

!J||
surf = enshCs(Te)

e !ϕsh
Te

.  (VII.79) 

Then, integrating Eq. (VII.56) along the magnetic field lines and approximating them as straight 
lines along the major tokamak axis, using Eq. (VII.5) for the density evolution and the boundary 
condition (VII.79), we find [41] 

ω+
γI
2

ω
+

2i
ρs
2k⊥
2
Cs
Lcl

= 0 .  (VII.80) 

Here Lcl  is the “connection length” – the length between the divertor plates along the magnetic 
field line. Comparing Eq. (VII.60) and (VII.80) we see that the boundary condition (VII.79) 
plays the role of effective “sheath resistivity”, which exceeds the volumetric resistivity caused by 
the Coulomb collisions for  

λCe
Lcl
!> m
M

.  (VII.81) 

 
Fig. VII.8. The eigenfunction of 

perturbed plasma pressure for the 
ballooning mode in ITER.  

Reproduced with permission from 
[38], © IAEA 2011. 
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Apart from the modification of existing instabilities, the boundary condition (VII.78) can 
result in a new type of instability. In particular, it appears that the interplay of the radial gradient 
of electron temperature in the SOL and the sheath boundary conditions can drive instability that 
is not related to the interchange drive considered in Eq. (VII.80) [42]. The reason for such 
instability is the phase shift between the volumetric and surface dynamics of the electrostatic 
potential. To demonstrate the underlying physics of this instability, we take the cold ion 
approximation, assume that the background plasma density is homogeneous and the electron 
temperature is rather high so that the plasma can be considered collisionless and the electrostatic 
potential and electron temperature along the magnetic field lines are virtually constant. Then, 
integrating Eq. (VII.56) along the magnetic field lines (approximating them as straight lines 
along the major tokamak axis) and ignoring toroidality effects we find  

−iωρs
2k⊥
2 e !ϕ
Te

+ 2
Cs
Lcl

e !ϕ
Te

−
1
2
+Λsh

'

(
)

*

+
,
!Te
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-
.
/

0/

1
2
/

3/
= 0 .  (VII.82) 

Finding the electron temperature perturbation !Te  from the equation similar to Eq. (VII.36), we 
find the following dispersion equation 

ω+
2i

ρs
2k⊥
2
Cs
Lcl

1− 1
2
+Λsh

⎛

⎝
⎜

⎞

⎠
⎟
ω∗,e
ω

⎧
⎨
⎩

⎫
⎬
⎭
= 0 ,  (VII.83) 

where  

ω∗,e = −
cTe
eB0

dℓn(Te)
dx

ky .  (VII.84) 

One can see that the growth rate of the instability described by Eq. (VII.83) can be of the order 
of ω∗,e . 

So far we consider the plasma waves and instabilities related to plasma polarization 
caused by the electron dynamics along the magnetic field and the cross-field magnetic drift of 
the charged particles. However, plasma polarization can also be related to the interplay of the 
electric current along the magnetic field lines and cross-field inhomogeneity of the plasma 
conductivity (e.g. see [43], [Furth63]). Indeed, for the case where the plasma current flows only 
along the magnetic field lines, it should be maintained constant. However, displacement of some 
plasma slab inclined to the magnetic field lines, similar to that shown in Fig. (VII.9), causes a 
perturbation of the plasma conductivity along the magnetic field lines. Therefore, to keep the 
electric current constant, some additional electric field appears inside the slab, caused by charge 
accumulation at the boundaries of the slab. But due to the inclination of the slab, a cross-field 
electric field and corresponding 

!
E×
!
B  plasma drift emerge, which can displace this fluid element 

even more.  
 Indeed, from the conservation of parallel current, j= σ(x)E = const. , where σ(x)  is the 
plasma conductivity and E is the electric field, we find   

E dσ(x)
dx
!x+ ikzσ !ϕ = 0 .  (VII.85) 

Here !x  is the displacement and !ϕ  the perturbation of the electrostatic potential. However, on the 
other hand, we have 

Vx ≡
d!x
dt
= −

c
B0

∇ !ϕ×
"ez .  (VII.86) 



 

 24 

As a result, from Eq. (VII.85, VII.86) we find 
d!x
dt
=
ky
kz
cE
B0
dℓn(σ)
dx

!x ,  (VII.87) 

and for the proper sign of the ky / kz  ratio (which defines the inclination angle of the slab with 

respect to the direction of the magnetic field), we have the so-called current-convective 
instability with a characteristic growth rate  

γ =
cE
B0

dℓn(σ)
dx

ky
kz

.   (VII.88) 

 We should recall that the electric 

conductivity of plasma is σ∝Te
3/2 , therefore 

the perturbation of conductivity, which drives 
the current-convective instability, is associated 
with inhomogeneity of the electron temperature 
along the magnetic field lines. However, 
electron temperature perturbations along the 
magnetic field can be washed away by very 
fast parallel electron heat conduction, 
κe ∝Te

5/2 , and no instability will be possible. 
However, recently it was shown [44] that in 
asymmetric “detached divertor” regimes, 
where the plasma temperature in the inner 
divertor falls to ~eV range but the outer 
divertor is still relatively hot, Thot ~ 10 eV ), current-convective instability can be very “active” 
and important in plasma transport in the inner divertor. There are two reasons for this: i) the 
electron thermal conductivity effects are suppressed in the inner divertor and ii) the asymmetry 
of the electron temperatures in the inner and outer divertors results in onset of a large 
electrostatic potential drop, U ~ few×Thot , through the inner divertor leg, which boosts the 
growth rate of the current-convective instability there, see Eq. (VII.88). 
 
VII.2.9 Impact of magnetic shear 
So far, considering the slab approximation of a magnetic confinement device, we assumed that 
all magnetic field lines are parallel to each other. However, in practice, this is not the case and 
the direction of the vector 

!
b =
!
B/ B  rotates around the minor radius 

!r  with increasing r, similar 
to that shown for the slab geometry in Fig. VII.10a where the x-coordinate plays the role of the 
minor radius. Therefore, if we specify the poloidal (y-direction) component of the wavenumber (
ky ), the effective parallel component of the wave vector will depend on the minor radius. One 
can see this from Fig. VII.10b, where the blue and orange stripes along the toroidal (z-
coordinate) correspond to different phases of the perturbed plasma parameters with given ky  
and the vector 

!
b  is shown for different radial (x-coordinate) locations. 

 
Fig. VII.9. Plasma polarization due to electric 

current along the magnetic field and cross-
field inhomogeneity of plasma conductivity. 
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 In simplified analytic consideration of the magnetic shear effects, the following model for 
the magnetic field it is often used: 

!
B= B !ez +

!ey
x
Ls

⎛

⎝
⎜

⎞

⎠
⎟ ,  (VII.89) 

where Ls  determines the “strength” of the magnetic shear and the second term describes 
the “rotation” of the direction of the magnetic field lines with varying “radial” coordinate.  

As a result of the magnetic 
shear, the wavenumber k||  along the 
magnetic field lines varies within the 
eigenfunction of a particular mode of 
the wave packet. Therefore, growth of 
the waves, the dispersion of which 
depends strongly on the magnitude of 
k||  (e.g. the drift waves, recall Eq. 
(VII.15, VII.28)), can be significantly 
restricted (e.g. see [45], [46], [47], 
[48], and the references therein). In 
addition, the magnetic shear can also 
shrink the radial extent of the mode 
eigenfunction, which can imply the reduction of the contribution of this mode to anomalous 
transport (e.g. see [28], [49], [50], and the references therein). 

As an example, in Fig. VII.11 one can see that the increasing magnetic shear (decreasing 
Ls ) results in the reduction of the relative amplitude of plasma density fluctuations caused by 
the excitation of collisionless drift waves. 
 However, the simple model of the 
magnetic field (VII.83) can more or less 
adequately describe the effect of the magnetic 
shear for the case where the shear is not varying 
much on a magnetic flux surface. This is not the 
case for the magnetic flux surfaces close to the 
separatrix which contains at least one X-point 
where the magnitude of the poloidal magnetic 
field, Bp , is zero. In the vicinity of the X-point, 
the magnitude of the poloidal magnetic field is 
proportional to the distance from the X-point, 
ℓX  (for the case of the first-order X-point), so 
Bp(ℓX)∝ ℓX . We notice that the similarity of 
such dependence of Bp(ℓX)  with the model 
(VII.89) is illusory. The z-direction in Eq. 
(VII.83) is the direction of the total magnetic 
field at some effective “magnetic flux surface” 
corresponding to x = 0 , whereas for the case of the magnetic field in the vicinity of the X-point, 
we are dealing with the “exact” poloidal and toroidal magnetic fields.  

 
 

Fig. VII.10. Schematic view of the variation of the 
vector 

!
b  (a) and effective k||  (b) along “radial” 

direction x.  

 
Fig. VII.11. Magnetic shear suppression of 
plasma density fluctuations, caused by the 

excitation of collisionless drift waves.  
Reproduced with permission from [46], ©  

American Physical Society 1970. 
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Such a structure of the magnetic field near the X-point results in a very strong magnetic 
shear localized there. One can see this by considering how the poloidal projection of a magnetic 
flux tube cross-section evolves along the tube, Fig. VII.12. The magnetic flux in the tube is 
mainly determined by the large toroidal magnetic field that does not vary much, so we can 
consider the area of the poloidal cross-section of the tube to be almost constant if the pitch angle 
of the magnetic field line Bp / B<<1 , which is always the case near the X-point. Assume that 

the magnetic flux tube has a circular poloidal cross-section closer to the mid-plane (see the 
contour (1) in Fig. VII.12). The shape of this cross-section evolves along the tube, becoming a 
thin oval close to the X-point (contours 2 and 3) since the magnetic surfaces that determine the 
radial extent of the cross-section diverge there. The variation of the poloidal width of the tube 
cross-section, δℓp , can be estimated taking into account that Bp(ℓX)∝ ℓX  [51]: 

δℓp
δℓp(0)

≈
ℓX
ℓX(0)

.  (VII.90) 

where ℓX(0)  and ℓX  are the initial and current distances from the X-point, ℓX(0)>> ℓX  (the 
position 0 corresponds to the location farther from the X-point. So for the magnetic flux coming 
close to the X-point, we have δℓp << δℓp(0) . 

In practice, the effect of “poloidal 
compression” of the flux tubes can be so strong that 
even flux tubes originated in the midplane at a 
distance ~centimeter from the separatrix and having a 
~centimeter cross-field radius, are squeezed 
poloidally to the scale below the ion gyro-radius in 
the vicinity of the X-point [51]. Similarly, any wavy 
structure originated at the midplane and having a long 
wavelength parallel to the magnetic field will 
experience a strong reduction of the effective poloidal 
wavelength in the vicinity of the X-point, which will 
result in strong dissipation effects and effectively stop 
the wave penetration through the X-point region from 
the midplane into the divertor region and vice versa 
[51], [52] [53]. Therefore, turbulent processes in the 
divertor region and SOL become disconnected. 
However, strong dissipative effects near the X-point 
can play a role somewhat similar to volumetric dissipation and result in a new type of 
instabilities (e.g. see [54], [55] and the references therein). 

The evidence of turbulence disconnection between the divertor region and SOL was 
found in the tokamak experiments [56], where no correlation between midplane and divertor 
fluctuations was observed for a rather high poloidal mode number. The poloidal correlation 
length found in these experiments (see Fig. VII.13) was in agreement with the mapping of the 
magnetic flux tubes.  However, the perturbations with a low poloidal wavenumber at the outer 
midplane can “survive” the fierce squashing of the magnetic flux tube in the vicinity of the X-
point and show a strong correlation between the fluctuation measurements in the midplane and in 
the divertor volume [57]. Further experimental details of the X-point effects on plasma 
turbulence can be found in [58], [59]. 

 
Fig. VII.12. Poloidal projection of 
magnetic flux tube, having circular 
cross-section at the “mid-plane”, in 

different toroidal locations. 
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 We notice that strong 
squeezing of the magnetic flux 
tube caused by the X-point 
effects poses a substantial 
challenge to both theoretical 
and numerical studies of these 
effects. First of all, for the 
case where the effective 
poloidal wavelength in the 
vicinity of the X-point 
becomes comparable to or 
even smaller than the ion 
gyro-radius ρi , neither fluid 
nor gyro-kinetic models of 
plasma dynamics become 
applicable, whereas full 3D3V 
(three-dimensional in both the coordinate and velocity space) kinetic description of plasma 
turbulence is not feasible. In addition, the small spatial scale that has to be resolved near the X-
point brings another complication for numerical modeling of the X-point effects. As a result, the 
applicability and validity of modern numerical studies of the X-point effects on the edge plasma 
instabilities and, in particular, turbulence are somewhat questionable. In analytic theory, the X-
point effects are often described with some effective boundary conditions for the “standard” 
differential equations for the edge plasma waves at the “entrance” to the X-point region (see 
[53], [54], [55], and the references therein). These boundary conditions assume that X-point 
dissipation results in a fast decrease of the electrostatic potential in the direction of the X-point, 
which is usually described as an evanescent wave. However, even in this case, the models used 
for such effective closures only cover extreme cases where the poloidal scale of the electrostatic 
potential in the wave is either still larger than ρi  or much smaller than that.  
VII.2.10 Impact of plasma “macro- and mesoscale” 
flows 
So far, we considered the waves and instabilities in 
plasma at rest. However, quite often some specific, 
macro- and mesoscale, plasma flows can develop. 
Such flows can emerge due to different nonlinear 
inherent processes associated with plasma turbulence 
or can be driven by outside effects such as, for 
example, injection of neutral beams used for plasma 
heating. In tokamaks, flows having very low effective 
poloidal wave numbers virtually do not contribute to 
anomalous cross-field plasma transport since such 
flows mostly have only poloidal and/or toroidal 
components of the plasma velocity. However, the 
characteristic radial scale length of such flows can be 
rather small (see Fig. VII.14). As a result, the poloidal 
component of the plasma flow velocity may have a large radial shear, !V0 , which can drastically 

 
Fig. VII.13. Poloidal correlation length of blobs (coherent 

filamentary structures) in outer and inner divertor legs as the 
functions of the distance to divertor targets is in agreement 

with the mapping of the magnetic flux tubes.  Reproduced with 
permission from [56], © IAEA 2018. 

 
Fig. VII.14. Schematic view of a 

poloidal sheared flow of plasma (red 
lines) with a small radial scale length 

in a tokamak. 
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modify both development of the plasma instabilities and anomalous plasma transport (e.g. see 
Refs. [60], [4] and the references therein).  
 Although both poloidal and toroidal flows can be important, here, for simplicity, we will 
discuss mostly pure poloidal plasma flows driven by the radial electric field. 
 Very often an impact of the velocity shear is illustrated as continuous stretching in time 
of plasma turbulent eddies – the contours of equipotential ϕ(!r, t) , see Fig. VII.15.  

It is also often presumed that the 
plasma instability is quenched when | !V0|  
becomes larger than the growth rate of the 
instability, γinst , in the absence of the 
velocity shear (e.g. see [61], [4]). However, 
in practice, the situation is more complex 
and in general case, the velocity shear can 
even increase the growth rate of plasma 
instability. 

Just for an illustration we consider 
the Rayleigh-Taylor instability of a 
stratified fluid in a gravity field and take into account the impact of the velocity shear (e.g. see 
[27], [62], [63] [64], [65], [67] and the references therein). Recall that the Rayleigh-Taylor 
instability can be considered as a proxy for the interchange plasma instability. We take the 
unperturbed fluid velocity as 

!
V0(
!
r) =V0(x)

!
ey and assume that gravitational acceleration is in the 

x-direction. Then, in the Boussinesq approximation, small perturbations of the fluid velocity 
stream function !ψ(x,y, t)  are described by the following partial differential equation 

L̂RT& !V ( !ψ) = Ω̂ Ω̂∇2 !ψ− ∂
!ψ
∂y
d2V0
dx2

'
(
)

*)

+
,
)

-)
+
1
ρ
dρ
dx

∂2 !ψ

∂y2
= 0 , (VII.91)  

where L̂RT& !V (...)  is an operator describing the linear phase of the evolution of the stratified 
fluid velocity perturbation in the presence of gravity and unperturbed horizontal fluid flow, and 
Ω̂(...) ≡ ∂(...) / ∂t −V0(x)∂(...) / ∂y . Looking for the solution of Eq. (VII.91) in the form of a 
combination of the eigenfunctions, !ψ(x,y, t) = !ψ(x)exp(−iωt + ikyy) , from Eq. (VII.91) we 

arrive at the following generalized version of Eq. (VII.61): 

d2 !ψ

dx2
− ky
2 !ψ+ 1

ρ
dρ
dx

gky
2

!ω2
!ψ− d

2 !ω

dx2
!ψ
!ω
= 0 ,  (VII.92) 

where !ω =ω− kyV0(x) . This equation is usually solved as an eigenfunction-eigenvalue problem, 
where the role of the eigenvalues goes to ω . We notice that the last term in Eq. (VII.92) can 
drive the Kelvin-Helmholtz [27] and facilitate the Rayleigh-Taylor [67] instabilities.  

Assuming that in the fluid at rest, the Rayleigh-Taylor instability develops, the impact of 
the velocity shear can be characterized by the effective Richardson number which in our case we 
define as Ri = g |dℓn(ρ) / dx| ( "V0)

−2 . The case where a stratified fluid is bounded by two 

 
Fig. VII.15. Stretching of turbulent eddy caused 

by the plasma velocity shear. 
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horizontal walls separated by a distance h  was considered in [62] in the Boussinesq 
approximation.   

It was assumed that dℓn(ρ) / dx  
and !V0  are constants and zero perturbed 
fluid velocity at the walls was used as the 
boundary conditions. It was shown that 
for such settings, no unstable 
eigenfunction-eigenvalue solutions of Eq. 
(VII.92) exist for Ri < Ricrit ≈1÷ 2 , 
where Ricrit  depends on |ky| h  and 

stabilization of smaller ky  requires a 

somewhat lower Ricrit . Thus, these 
findings are consistent with the simplified 
physical picture of the impact of shear 
stabilization on the instability described 
by the inequality | !V0|!> γinst . However, 
the results of the numerical solution of 
Eq. (VII.92), shown in Fig. VII.16, for 
the case of the density profile given by 
Eq. (VII.63), constant !V0 , and the m = 0  mode, portray a different picture. 

They demonstrate that for |ky| w >1 , where 

γRTm=0
≈ γRT , stabilization occurs at 

Ri0 ≡ (γRT / ʹV0)
2 >1 , whereas for small 

|ky| w  
unstable solutions of Eq. (VII.92) 

persist even though in this case 
γRTm=0

< | "V0|  [66]. Similar results were 

obtained in Ref. [67] for a density profile 
somewhat different from (VII.63). The 
same trend of the impact of the poloidal 
velocity shear on the growth rate of the 
resistive interchange modes was found in 
[69], [68]. 

Such resilience of the Rayleigh-
Taylor and interchange instabilities to 

velocity shear stabilization at small |ky| w
can be understood from the following 
consideration. We notice that the case of 
|ky| w→ 0  corresponds to the 

 
Fig. VII.16. Impact of !V0  on the growth rate of the 
Rayleigh-Taylor instability for different κ̂ =|ky| w  

found numerically for the density profile given by 
Eq. (VII.63).  Reproduced with permission from 

[66], © AIP Publishing 2020.  

 
Fig. VII.17. Impact of the velocity shear on the 

eddies corresponding to the eigenfunction found 
from numerical simulation of Eq. (VII.92) for 

κ̂ = 2  and Ri0
−1 = 0  (left) and Ri0

−1 = 6.25  (right).  
Reproduced with permission from [66], © AIP 

Publishing 2020. 
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eigenfunction that extends along the x-coordinate to the distance ~|ky|
−1  (see Eq. (VII.64)) 

which is much larger than the width of the density “step” w in Eq. (VII.63).  
Therefore, the mode does not “feel” the 

details of the density variation, but only the size of 
the density “step”. Thus, the case of |ky| w→ 0  

can be considered by adopting the exact step-
function of the density profile, 
ρ(x) = ρ−Δρ θ(x)−1/ 2{ } , where θ(x)  is the 

Heaviside function: θ(x < 0) = 0 , θ(x > 0) =1 . 
Then, from Eq. (VII.92) we have 
!ψ(| x |> 0) = exp(− | kyx |)  and integrating Eq. 

(VII.92) around x = 0 , we find that the growth rate 
is γ

RTm=0
2 = γRT

2
RT
2 |ky| w  and the velocity shear does 

not change it. The eddies corresponding to the 
eigenfunctions found from the numerical solution 
of Eq. (VII.92) are shown in Fig. VII.17. As one 
can see, in accordance with some expectations 
(recall Fig. VII.15), the velocity shear indeed 
causes some stretching of the eddies. We notice that at large velocity shear, | !V0| κ̂ >1 , the 
localized solution of the RT instability cease to exist (see [66] for details). 

However, we should keep in mind that even though we use a slab model of the Rayleigh-
Taylor as a proxy for the curvature-driven instabilities in a tokamak, in practice this model does 
not allow for many important effects including both the poloidal and toroidal periodicities of the 
tokamak geometry, the centrifugal and Coriolis forces, electromagnetic and other effects. As a 
result, theoretical assessment of the role of the plasma flows, both poloidal and toroidal, on 
different instabilities becomes more complex (e.g. see [70], [71], [72], [73], [74], [75], [76], [77] 
and the references therein).  

 
Fig. VII.19. Eigenfunctions of the electrostatic potential of toroidal ITG modes in a tokamak 

with increasing shear of the plasma flow, γE ∝ #V0 , [78]. V. I. Dagnelie, private communication, 
2020. 

 
Fig. VII.18. The growth rate of the ITG 
instability versus plasma flow shear rate 
γE ∝ #V0  for different values of magnetic 
shear ŝ .  Reproduced with permission 

from [77], © AIP Publishing 2012. 
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Nonetheless, it appears that the plasma flow shear is very efficient in reducing the growth 
rate of some plasma instabilities related to the impact of effective “gravity” associated with the 
magnetic drifts (e.g. see Fig. VII. 18).  

In addition to the impact on the growth rate of the instabilities, both the poloidal and 
toroidal velocity shear can significantly alter the eigenfunctions of the modes (see Fig. VII.19, 
VII.20), which also affects anomalous transport of plasma. 

   
Fig. VII.20. Eigenfunctions structure of the ideal ballooning mode in a tokamak with no toroidal 

velocity shear (eft); medium shear dΩ /dq  (middle) and high shear (right), were Ω  and q  are 
the toroidal angular velocity of the plasma and the safety factor. Reproduced with permission 

from [74], ©  American Physical Society 2004. 
 However, we should notice that many studies of linear plasma instabilities rely on 
treating the corresponding partial differential equations, which describe different instabilities, as 
the eigenfunction-eigenvalue problems (e.g. recall our derivation of the expressions (VII.20) and 
(VII.64)). Yet, the general solution of these differential equations can be represented as a 
combination of eigenmodes only for the case where the operators defining these equations are 
Hermitian. And this is usually not the case when the unperturbed flow velocity is included. For 
example, the operator L̂RT& !V (...)  is not Hermitian for a finite fluid velocity. As a result, in the 
non-Hermitian case, the combination of the eigenmodes (even if they exist) cannot describe the 
entire linear evolution of fluid parameter perturbations (e.g. see [79], [80] and the references 
therein). In some, although rather limited cases (in particular, constant velocity shear), this issue 
can be overcome in analytic or quasi-analytic considerations by implying the so-called non-
modal approach, where after some transformation of the variables, including usage of the 
variable ζ = y−V'0 xt  describing effective squashing of a fluid element by the sheared flow, the 
problem of interest can be solved as an initial value problem. Usually the perturbations described 
by non-modal approach could increase with time only as tp , where p  is some constant. 
Therefore they become important for the case where the localized modes either stable or cease to 
exist. For further discussion of this approach see [81], [79], [65], [82] and the references therein.  

Whereas the “rule of thumb” of velocity shear stabilization, | !V0|!> γinst , works, in a 
ballpark, for the plasma instabilities related to effective “gravity” associated with the magnetic 
drifts (e.g. toroidal ITG, ballooning instability), it appears that the shear of poloidal plasma 
velocity makes a very mild impact on the resistive drift wave instability. By adding a poloidal 
plasma flow with a constant velocity shear, so that !ω(x) =ω− #V0 kyx , from Eq. (VII.12), 

(VII.31), assuming that !φ(x,y, t) = !φ(x)exp(−iωt + ikyy) , in the Boussinesq approximation and 
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for the plasma density profile (VII.18), which gives ω∗(x) = ω̂∗ cosh
−2(x / w) , we obtain the 

following equation 

ρs
2 d2 !φ

dx2
− 1+ ky

2ρs
2 −

ω∗(x)
!ω(x)

+ i
!ω(x)−ω∗(x)

ν||

'

(
)
)

*

+
,
,
!φ = 0 ,  (VII.93) 

where for simplicity we omit the unimportant here parallel electron heat conduction and thermal 
force effects. 
 Some particular results found from the numerical solution of Eq. (VII.93), which show 
the impact of !V0  on the growth rate, are demonstrated in Fig. VII.21. As one can see, unlike the 

Rayleigh-Taylor instability (recall Fig. VII.16), there is a very mild impact of !V0  on the growth 

rate of the dissipative drift wave instability, even though | !V0 |>> γinst . However, similar to the 

RT mode, at relatively large velocity shear, | !V0 |> | !V0 | loc , no localized solution of the resistive 
drift wave was found [66]. All of these observations have a rather simple explanation.  

First, we discuss the key 
difference between the RT/interchange 
modes and drift waves. The Rayleigh-
Taylor instability is associated with the 
dynamics of density protrusions, which 
can be directly altered by the sheared 
flow. Similarly, the interchange plasma 
instability is associated with the dynamics 
of plasma density perturbations with 
embedded electric charges originated 
from almost “irreversible” cross-field 
magnetic drift effects. Spatial distribution 
of these charges produces 

!
E×
!
B  drifts, 

which, finally, drive the instability. 
Similar processes are relevant to all 
plasma instabilities driven by magnetic 
drift effects (e.g. the toroidal ITG and 
ballooning modes). Therefore, advection 
of plasma density perturbations with 
imbedded electric charges by the sheared 
plasma flow inevitably alters such 
instabilities (e.g. see Fig. VII.16, VII.18). 
For the case of drift waves, the situation is 
very different. In this case, the electric 
field and related 

!
E×
!
B  drifts are due to the largely “reversible” response of the fast parallel 

electron dynamics on plasma density perturbations. Even though the advection of plasma density 
perturbations by the sheared flow changes the “landscape” of density perturbations, the 
distribution of the electric charges has virtually no “memory” and, therefore, the sheared flow 
makes a very mild impact on the growth rate of the drift wave instabilities. We notice that the 
manifestation of the different impact of the velocity shear on the drift wave- and the magnetic 

 
Fig. VII. 21. Growth rate and the !V0 / γ   ratio of the 

dissipative drift wave instability found from the 
numerical solution of Eq. (VII.93), as a function of 
!V0 . Other parameters used in these simulations are: 

kyρs = 0.5 , w /ρs = 30 , and ν|| / ω̂∗ = 50 .  

Reproduced with permission from [66], © AIP 
Publishing 2020. 
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drift-driven plasma instabilities can be also seen in the dependence of the corresponding 
eigenfunctions. For example, comparing the impact of the velocity shear on the eddies related to 
the eigenfunctions of the RT (Fig. VII.17) and the drift wave (Fig. VII.22) instabilities, one can 
see that unlike the RT instability, the eddies corresponding to the drift wave instability are not 
stretched by the sheared flow at all. However, the number of eddies is reduced and their center is 
shifted along x-coordinate. 

Nonetheless, even though the impact of the velocity shear on the growth rate of the 
resistive drift wave instability is mild, a significant reduction of the radial extent of the drift 
wave eddy, caused by the velocity shear, can also result in a reduction of anomalous cross-field 
transport. 

Next, we discuss the absence of 
solutions of Eq. (VII.93) at a rather large 
velocity shear, | !V0 |> | !V0 | loc . We can interpret 
this effect within the eikonal approximation, 
where the wave packet can be considered as 
an effective “particle”, dynamic of which is 
described with the “Hamiltonian” 

ω(kx ,x) =ω∗(x)(1+ kx
2ρs
2 + ky

2ρs
2)−1+ %V0 kyx  

and the canonical variables x and kx . To have 
a localized solution of the wave packet, the 
motion of the “particle” should be bounded by 
two turning points corresponding to kx = 0 . 

To make it happen, the function ω(kx = 0,x)  
must have at least one extremum. For the case 
where ω∗(x) = ω̂∗ cosh

−2(x / w) , it is easy to 
show that this is only possible for  

| !V0 |< | !V0 | loc≈
4

33/2
ω̂∗ / (wky)

1+ρs
2ky
2

. (VII.94) 

Beyond this limit, no localized 
solution of Eq. (VII.93) exists. Estimate 
(VII.94) is in a reasonable agreement with the 
results of numerical simulations (e.g. see Fig. 
VII.22). We notice that in [83], the evolution of a drift wave packet was considered for the case 
of ω∗(x) = const.  but a more complex structure of the velocity shear. 
 Unfortunately, in the tokamak experiments, it is virtually impossible to distinguish the 
impact of the plasma flow on different modes. Therefore, experimental confirmation of the 
impact of the velocity shear on the plasma instabilities is usually deduced from the reduction of 
anomalous plasma transport. In some experiments, the external biasing of the plasma interior 
imposes the velocity shear [84], [85]. Arguably, such experiments provide the most “clean” 
experimental data on the impact of the velocity shear on the suppression of plasma turbulence. 
From Fig. VII.23 one can see, in particular, that strong shear of the radial electric field for the 

 
Fig. VII.22. Eddies corresponding to the 

eigenfunctions found from numerical solutions of 
Eq. (VII.93) for !V0 = 0  (left) and 

| !V0 |/ | !V0 | loc= 0.8  (right). Other parameters used 
in these simulations are: kyρs = 0.5 , w /ρs = 30 , 

and ν|| / ω̂∗ = 50 .  Reproduced with permission 

from [66], © AIP Publishing 2020. 
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“H-mode” case strongly suppresses the radial plasma particle flux. 
Overall, it is widely accepted that shear of plasma flow results in a strong reduction of 

turbulent plasma transport and, in particular, is a key ingredient of establishing the high 
confinement regime (H-mode) (e.g. see [86], [87] [88], [60], [89], [90], [91] and the references 
therein). 
 So far we consider an impact of the so-called Zonal Flow (ZF) on plasma instabilities. ZF 
is a quasi-stationary plasma flow (sketched in Fig. VII.8), which can be driven, for example, by 
plasma biasing. However, in tokamaks, the sheared poloidal plasma flow can also be related to 
intrinsic low frequency (~10 kHz) toroidally symmetric plasma oscillations (recall Fig. VII.6): 
the Geodesic Acoustic Mode (GAM), see [35], [36] and the references therein. The physics of 
the GAM is rather simple: the compressibility of the toroidally symmetric 

!
E×
!
B  plasma flow 

causes a poloidaly asymmetric plasma pressure perturbation, !P , and the corresponding 
diamagnetic current across magnetic flux surfaces, 

!"J∝
!
B× "P . This current is not divergence-free 

due to toroidal effects. It reverses the sign of the electric field and, finally, results in plasma 
oscillations, GAM. For a relatively large safety factor q, which is typical for the edge plasma, the 
plasma dynamics along the magnetic field lines can be ignored and, in the simplest case, the 
expression for the GAM frequency reads: 

ωGAM
2 = 2γP0 /ρ0R

2 ,  (VII.95) 

where P0  and ρ0  are the unperturbed plasma pressure and density, R is the tokamak major 
radius and γ  is the ratio of the specific heats.  

  
Fig. VII.23. Experimental data from the TEXTOR tokamak obtained with the external plasma 
biasing. On the left: The profiles of the radial electric field for different cases: “L-mode”, “H-

mode”, and “L to H transition”; On the right: the radial plasma fluxes for “L-mode”, “H-mode”, 
just before the L to H (“L>>H”) and H to L (“H>>L”) transitions. Reproduced with permission 

from [84], © IAEA 2010. 
 
 
VII.3 Nonlinear effects and anomalous transport 
In the previous section, we considered some plasma instabilities which can be important for 
plasma transport at the edge and in the SOL of a tokamak. We also considered possible 
stabilizing effects, which are the magnetic and velocity shear. However, in some cases, strong 
magnetic shear (e.g. in the vicinity of the X-point) can facilitate instabilities. In this section, we 
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discuss some features of anomalous plasma transport associated with these instabilities as well as 
the available stabilizing effects.  
 To be more precise, we will not discuss any particular scaling of anomalous cross-field 
transport coefficients in the edge plasmas (e.g. see [92]). Instead, we consider the main features 
governing anomalous transport in the edge plasma. The reason for this can be explained as 
follows. First, the most common approach to estimating analytically the impact of a particular 
unstable mode on anomalous transport is based on a local (at a given flux surface) diffusive 
approximation where the transport coefficients (say, the particle diffusion coefficient, D) are 
described by the expression 

D ≈ γk⊥
−2 ,  (VII.96) 

where γ  and k⊥  are the characteristic growth rate and cross-field wave number of the mode 
(e.g. see [92], [93] and the references therein). However, as we found in the previous section, in 
edge plasma different modes can be unstable simultaneously and it is virtually impossible to find 
their contribution to the anomalous cross-field transport coefficients, which depend not only on 
plasma parameters and their radial derivatives but also on the shear of plasma flow velocity. We 
will see that sheared plasma flow can be generated by plasma turbulence itself (e.g. see [94], 
[60], [90], [91] and the references therein). Moreover, the interplay of the sheared plasma flow 
generation by turbulence and the impact of such a flow on the turbulence itself can result in time-
depended fluctuations of the amplitudes of plasma turbulence and shear of plasma flow velocity 
[95]. In addition, experiments show that a large contribution of edge plasma transport is from 
radial advection (predominantly, at the outboard side of the torus) of coherent filamentary 
structures with plasma density and temperature higher than those in the ambient plasma, the so-
called “blobs” (see Fig.VII.24, [98], [100] and the references therein). It is widely accepted that 
blobs are propelled by 

!
E×
!
B  drift due to plasma polarization caused by magnetic drifts (the so-

called ballooning effect) [101], [102].  

 
Fig. VII.24. Motion of a blob, seen as the bright spot, in the C-Mod tokamak [96] observed with 
the Gas-Puff Imaging (GPI) diagnostic [97]. The GPI is based on a higher radiation intensity of 

neutral hydrogen in the regions with enhanced plasma density and temperature. J. P. Terry, 
private communication, 2018. 

 We notice that such “blobby” anomalous cross-field plasma advection cannot be 
described a priory by a local theory describing the plasma parameters at a particular flux surface. 
As a result of such plasma advection on the outboard side of the torus, plasma turbulent transport 
and plasma parameters at the edge become strongly dependent on the magnetic configuration and 
for the case of double null configuration (which effectively disconnects the inboard and outboard 
sides of the torus due to the X-point effects), plasma transport and the magnitude of the turbulent 
fluctuations on the inboard side becomes much weaker than on the outboard one (see Fig. 
VII.25). 
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 Finally, it was found experimentally that the SOL midplane width, and, therefore, 
midplane plasma transport, can also strongly depend on divertor conditions and for the detached 
divertor case, the width is about two times larger than for the attached one (see Fig. VII.26). We 
note that so far there is no clear theoretical explanation of such an effect, although there is an 
indication that neutrals, density of which strongly increases in the detached divertor regime, can 
play some role in the modification [105] and even enhancement of plasma transport, in 
particular, due to reduction of the shear of the plasma flow [106]. 

Thus, taking into account so many different factors which can alter anomalous edge 
plasma transport, we can conclude that the only plausible way to estimate anomalous transport 
with some confidence is to use 3D edge plasma turbulent codes such as BOUT++ [107], XGC1 
[108], GENE [109], Gkeyll [110], JOREK [111] and some others. These codes are based on 
different plasma models (e.g. BOUT++ and JOREK codes are based, respectively, on the fluid 
and MHD plasma equations, whereas XGC1, GENE and Gkeyll are gyrokinetic codes which, 
however, also have some differences). 
 As a result, their 
application limits are different 
(for example, JOREK is usually 
used to simulate ELM, whereas 
the others are usually used for 
the simulation of edge plasma 
turbulence). We will discuss 
some results coming from these 
codes later. However, we notice 
that the codes used for the 
simulation of edge plasma 
turbulence, in most cases cannot 
describe edge plasma transport 
on the relevant time scale, due to 
both the lack of some important 
physics needed for such a 
description and the limitation of 
current computational resources. 
Therefore, they often use the 
plasma parameter profiles taken 
either from experimental data or from the results of simulation of the edge plasma parameters 
with 2D edge plasma transport codes such as SOLPS or UEDGE.  
 Now we consider the main features, outlined above, which govern anomalous transport in 
the edge plasma.  
 
VII.3.1 Generation of sheared plasma flow via plasma turbulence 
As we found in the previous section, in strongly magnetized plasma, the unstable modes are 
characterized by a strong anisotropy, which is characterized by the inequality |k|| |<<|

!
k⊥ | .  

Therefore, within some limitations, the interaction of the plasma waves and plasma turbulence 
can, in general, be considered two-dimensional (2D). This feature makes the dynamics of 
magnetized plasma somewhat similar to that of geophysical fluids [112]. However, it is known 
since a long time ago that the main features of the turbulence in 2D fluids (including the 

 
Fig. VII.25. Distribution of plasma pressure and fluctuation 
level at the inner and outer midplanes of the SOL for upper- 

and low-single null (USN, LSN) and double-null (DN) 
magnetic configurations.  Reproduced with permission from 

[103], © IAEA 2004. 
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magnetized plasma) are very different from the predictions following from such a cornerstone of 
three-dimensional (3D) fluid turbulence as the Kolmogorov turbulence model. The main reason 
for this is that in addition to the energy, in 2D fluids there is an extra invariant, enstrophy (e.g. 
see [113], [114], [115]), which prevents the energy cascade to and the energy dissipation at small 
scales, which happens in the Kolmogorov 3D turbulence model.  
  As an illustration, we consider the so-
called Charney-Hasegawa-Mima (CHM) 
model [116], [115], which is the simplest 
nonlinear model describing both the 
atmospheric Rossby and the magnetized 
plasma drift wave dynamics. We consider 
plasma embedded into a straight constant 
magnetic field (in the z-direction) and having 
constant electron temperature and cold ions. 
We will assume that the perturbation of the 
electron density, !ne , obey the Boltzmann 
relation which we will approximate as 
follows 
!ne = n(x){exp( !φ)−1}≈ n(x) !φ ,          (VII.97) 
where n(x)  is the unperturbed plasma density depending on the “radial” coordinate x. The ion 
velocity can be found from Eq. (VII.8), (VII.9). Keeping nonlinear terms, we find 

!
Vi =

!
V!E×

!
B −

∂
∂t
+
!
V!E×

!
B ⋅∇

&

'
(

)

*
+
cTe∇⊥ "φ
BΩBi

,      (VII.98) 

where 
!
V!E×

!
B = (cTe / eB)

!ez ×∇"φ . Substituting the expression (VII.98) into ion the continuity 
equation and assuming quasi-neutrality, we arrive at the CHM equation 

∂
∂t
+
!
V!E×

!
B ⋅∇

%

&
'

(

)
* "φ−ρs

2∇⊥
2 "φ( )− cTeeB

dℓn{n(x)}
dx

"
ey ⋅∇#φ = 0 ,  (VII.99) 

which in the linear case gives the drift wave frequency (VII.16).  
 Similar to the 2D Euler equation [114], the CHM equation has two exactly conserved 
integrals: energy, E, and enstrophy, En, which can be expressed in the continuum and spectral 
forms as follows: 

E = (ρs∇⊥ !φ)
2 + !φ2{ }d"r⊥∫ ≡ (1+ρs

2k⊥
2 ) | !φ"k⊥

|2{ }d
"
k⊥∫ ,  (VII.100) 

En = (ρs
2∇⊥
2 !φ)2 + (ρs∇⊥ !φ)

2{ }d"r⊥∫ ≡ (1+ρs
2k⊥
2 )ρs

2k⊥
2 | !φ"k⊥

|2{ }d
"
k⊥∫ . (VII.101) 

From Eq. (VII.100), (VII.101) it follows that unlike the Kolmogorov model of 3D fluid 
turbulence, to conserve both integrals in the CHM model, the energy must be cascaded to large 
spatial scales (small |

!
k⊥| ) whereas the enstrophy to the small ones (large |

!
k⊥| ). Thus, we see 

that the generation of large-scale structures from small-scale fluctuations is inherent for 2D 
turbulence. However, these conservation laws tell us nothing about the generation of the zonal 
flows, which can suppress the plasma instabilities. Generally speaking, these large-scale 
structures can be large-scale convective cells facilitating anomalous cross-field plasma transport 
[117]. For this reason, the topic of zonal flow generation from drift wave turbulence have 

 
Fig. VII. 26. Outer SOL electron temperature 

decay length for the attached and detached 
outer divertor conditions.  Reproduced with 

permission from [104], © IOP Publishing 2015. 



 

 38 

received so much attention from both theory (e.g. see [94], [118], [60], [119] and the references 
therein) and experiment (e.g. see reviews [90], [91]).  
 Just to give an idea of theoretical approaches used in these studies, we will follow [94] 
and consider the CHM equation modified by the presence of a weak zonal flow. For this purpose, 
we separate the perturbation of the electrostatic potential into two parts: 
!φ(
"
r, t) = !φdw(

"
r⊥,z, t)+ !φzf (x, t) , where !φdw(

"r⊥,z, t)  and !φzf (x, t)  describe respectively the drift 

waves and zonal flow. Such a separation is needed because the z-dependence of !φdw  justifies the 

Boltzmann relation for the perturbed plasma density and !φdw , even though the CHM equation 

per se contains no direct z-dependence. This is to the contrary to !φzf (x, t) , which has no z-
dependence and, therefore, does not enter into the Boltzmann relation, although it contributes to 
the 
!
E×
!
B  plasma flow. Keeping this in mind and using only !φdw  in Eq. (VII.97) but total !φ  in 

Eq. (VII.98), we arrive at the following modified Hasegawa-Mima equation [94], [118]:  
∂
∂t
!φdw −ρs

2∇⊥
2 !φ( )+ "Vzf + "Vdw( ) ⋅∇ !φdw −ρs2∇⊥2 !φ( )− cTeeB

dℓn{n(x)}
dx

"
ey ⋅∇!φ = 0 , (VII.102) 

where 
!
Vzf = (cTe / eB)

!ez ×∇"φzf  and 
!
Vdw = (cTe / eB)

!ez ×∇"φdw .   
For the case where one drift wave with the 

amplitude !φdw
(1) , wavenumber 

!
k(1)  and frequency given 

by expression (VII.16) dominates, Eq. (VII.102) 
describes modulation, or in a more general case, 
parametric instability of this wave, which describes the 
excitation of !φzf . The growth rate of such instability, 

γzf , for the case where kzfρs <<1  (here kzf  is the x-
component of the wavenumber of the zonal flow) we 
have [94], [118]:  
 

γzf =
cTe
eB

|!φdw
(1) | kzf ky

(1)

1+ k1
2ρs
2

1+ρs
2 (ky

(1) )2 −3(kx
(1) )2( ) ,   

(VII.103) 
which, in particular, shows that for the case of 

k1
2ρs
2 <<1 , the drift wave is always unstable and 

generates a zonal flow. Analysis of the dynamics of 
uncorrelated drift wave packets performed in [94] also 
demonstrates the possibility of the generation of zonal 
flows. In [120] it was shown that in addition to the exact 
integrals of the CHM equation (the energy and the 
enstrophy) there is also a third “approximate” integral, I, which, however, becomes exact for the 
case of the resonant triad interactions (see also [121] and the references therein). This integral 
can only be expressed in a spectral form: 

 
Fig. VII.27. Ion heat diffusivity (top) 
and the shearing rate of zonal flow 

(bottom) found from numerical 
simulation of ITG turbulence in 
ITER as the function of time and 

normalized poloidal magnetic flux.  
Reproduced with permission from 

[122], © IOP Publishing 2013. 
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I =
η(
!
k⊥)
ky

1+ρs
2k⊥
2( )
2
| "φ!k⊥

|2 d
!
k⊥∫ ,  (VII.104) 

where !φ"k⊥
is the Fourier component of drift wave fluctuations and  
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It was shown that even approximate conservation of I ensures that the energy of the 
turbulence described by the CHM equation is transferred to a very anisotropic zonal flow with 
kx >> ky  [120].  

We notice that GAM, which in the edge plasma can be as efficient for the damping of 
plasma turbulence as the zonal flows, can also be excited by nonlinear processes associated with 
plasma turbulence [36]. The turbulence-induced generation of a zonal flow it now routinely 
observed in large-scale 3D plasma turbulence simulations (e.g. see [60] and the references 
therein).  

As an example, in Fig. VII.27 one can see the ion heat diffusivity and the shearing rate of 
the zonal flow found from the numerical simulation of ITG turbulence in ITER. One can clearly 
see both the variation of the sign of the shearing rate along with the normalized poloidal 
magnetic flux and the reduction of the ion heat diffusivity for the case of a fully developed zonal 
flow at a later time. 

 There is also a significant body of experimental 
data supporting the generation of both zonal flows and 
GAM due to nonlinear processes associated with plasma 
turbulence (e.g. see [90], [91] and the references 
therein). As an example, in Fig. VII.28 one can see 
summed cross- and auto-bicoherences, b̂2(f ,fGAM − f ) , 
of the electric field fluctuations measured by a probe 
array at the edge of the HL-2A tokamak. Very distinct 
peaks at the frequency fGAM ≈ 7kHz , exhibited by all 
three curves, demonstrate a strong coupling of GAM to 
the broadband plasma turbulence. 

Finally, Fig. (VII.14) shows that the zonal flow 
goes over the entire poloidal circuit. However, recent 
experimental data [124] suggest that this might be not 
always the case and the co- and counter-wise streams 

can gradually close on each other forming, as a result, a poloidally extended convective cell at 
the outer side of the torus, which, nonetheless, can still be rather efficient in turbulence 
suppression at the outer side of the torus. 
 
VII.3.2 “Blobs”  
Meso-scale plasma structures which are now called blobs were occasionally observed 
experimentally for a long time as, in particular, large spikes of the ion saturation current 
collected by electrostatic probes at the edge of tokamaks (e.g. see [125] and Fig. VII.29).  

 
Fig. VII.28. The summed cross- and 
auto-bicoherences of electric field 

fluctuations measured by probe array 
at the edge of HL-2A tokamak.  

Reproduced with permission from 
[123], © IOP Publishing 2008. 
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However, only after a very large plasma particle flux to the main chamber wall was 
discovered in the C-Mod tokamak [127] and it became clear that such a flux is incompatible with 
the diffusive nature of plasma transport [127], [101], the physics of blobs became one of the 
central topics of the edge plasma studies.  
 

 
Fig. VII.29. Time dependence of the ion saturation current on the probe situated in the SOL of 

the DIII-D tokamak. Reproduced with permission from [126], © AIP Publishing 2001.  
As of today, the blobs are observed in virtually all magnetic fusion devices including 

both tokamaks and stellarators [128], [129] [130], [131] and there is vast amount of literature 
dedicated to different experimental and theoretical aspects of blobby transport (e.g. see review 
papers [128], [98], [100]). As a matter of fact, the physical reason for the radial advection of 
blobs (which are the filamentary structures extended along the magnetic field, see Fig. VII.29) is 
simple [102].  

Consider an isolated plasma filament situated in 
a vacuum (or in very low density plasma) sketched in 
Fig. VII.30. Then magnetic drifts of the electrons and 
ions will result in the polarization of the filament and the  
formation of a 
vertical (along 
the major 
tokamak axis) 
electric field 
(for simplicity, 
we ignore the 
effect of the 

magnetic 
shear). Such an 
electric field 

will cause outward advection of the filament (see Fig. 
VII.24) due to 

!
E×
!
B  drift.  

Therefore, in tokamaks, blobs are mainly 
observed at the outer side of the tours. The strength of 
the vertical electric field is altered by the parallel 
electric current. Different theoretical models for such a 
current, giving different scalings for the blob speed, 
were used over the years including the sheath- and X-
point-limited current, and the “inhibited” current (see 
the review papers [98], [100] for details).  
 In the latter case, the blobs can reach the highest speed, which, according to the 
numerical simulations [132], for nb >> na can be estimated as 

 
Fig. VII.30. Schematic view of the 

filament’s polarization and advection 
due to magnetic and 

!
E×
!
B  drifts. 

Reproduced with permission from 
[102], © Elsevier 2001. 

 
Fig. VII.31. Visible light image of 

blob filaments from MAST tokamak.  
Reproduced with permission from 

[135], © IAEA 2007. 
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Umax ≈ 2(Te +Ti) / M (nb / na )(δb / R) , where nb  and na  are plasma density in the blob and 

in the ambient plasma, δb  is the initial cross-field size of the blob.  
For typical tokamak edge plasma 

parameters we find Umax ~1km / s , which is, 
in a ballpark, consistent with the experimental 
observations (e.g. see [126], [133]). For 
sheath-limited parallel electric current, the 

scaling for the blob velocity reads Ub ∝δb
−2  

[102]. The available experimental data seem 
to support both these scaling [134].  The 
filamentary structure of the blob was 
confirmed by direct observations with fast 
cameras (e.g. see Ref. [135], [137], [138]). As 
an example, in Fig. VII.31 one can see a 
snapshot made in an L-mode discharge in the MAST tokamak, which reveals multiple 
filamentary structures.  

We notice that blobs are seen in both the L- and H-modes (e.g. see [137]) (in between 
ELMs) and in both cases, the blobs dominate far SOL plasma transport [126]. However, recent 
experimental data show that blobs exist not only at the outer boundary of tokamaks but also in 
the divertor volume [58] although the impact of these blobs on plasma transport is not yet clear.   

Numerical simulations show that the 
shape of the blobs, in the course of their radial 
advection, can be significantly deformed due to 
effects associated with the Rayleigh-Taylor and 
Kelvin-Helmholtz instabilities [98]. Also, 2D and 
3D simulations demonstrate that blobs can be 
effectively disintegrated by sheared background 
plasma flow [138] and the onset of the resistive 
drift wave instability [139].  

Usually, blobby transport is enhanced 
when the plasma density approaches the density 
limit. One of the typical manifestations of such 
enhancement is the formation of the so-called 
“shoulder” on averaged plasma density profile in 
the far SOL region (see Fig. VII.32).  

Modeling of edge plasma transport with turbulence codes also shows both blob formation 
and advection. As an example, in Fig. VII.33 one can see the snapshots of the distribution of 
edge plasma parameters, having clear features of blobs, found with the gyrokinetic code XGC1 
[141] (white dashed line is the effective separatrix). 

Although the dynamics of individual blobs in the SOL is understood rather well, the 
formation mechanism of large density blobs, in particular, those which are observed inside the 
separatrix, recall Fig. (VII.24), is not clear. In [142] it was shown that the 1D version of the 
modified Hasegawa-Mima equation allows the solution in the form of a train of plasma density 
“blobs” propagating in poloidal direction, which resembles the experimental data, see Fig. 

 
Fig. VII.32. Formation of the “shoulder” on 
averaged plasma density in the SOL at high 

plasma density.  Reproduced with permission 
from [140], © IAEA 2017. 

 
Fig.VII.33. Snapshots of plasma parameters 
at the outer midplane found from numerical 
simulations.  Reproduced with permission 

from [141], © AIP Publishing 2019. 
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(VII.34), on the dynamics of nonlinear drift waves [15]. However, as of today, there is no direct 
experimental confirmation that plasma density blobs can be formed in the course of nonlinear 
evolution of drift waves. 

We notice that strong blobby transport 
poses a serious problem for the application of 
2D edge plasma transport codes like SOLPS or 
UEDGE for interpretation of the experimental 
data [99]. The issue is that these codes deal 
with average plasma parameters and their 
results are compared with average 
experimental data on plasma density, 
temperature, etc. However, for strongly 
nonlinear functions such as the dependence of 
the rate constants of atomic processes on electron temperature, K(Te) , we have 

K(Te) ≠K Te( ) , where ...  means time averaging. As a result, strong intermittent 

fluctuations of the plasma parameters, associated with blobs, will inevitably cause a departure of 
the averaged experimental data from the simulation results. 

 
VII.3.3 3D edge plasma turbulence modeling 
Today quite a few codes of different sophistication are available for edge plasma turbulence 
simulation: BOUT++ [149], XGC1 [108], TOKAM3X [143], GBS [144], GDB [32], GRILLIX 
[145], Gkeyll [110], and some others.  

These codes are used for both 
modeling some particular experiments and for 
studying the general characteristics and 
dependences of edge plasma turbulence. For 
example, in Fig. (VII.35) one can see a very 
good agreement of experimental data on the 
parallel Mach number of the plasma flow in 
the SOL of the COMPASS tokamak with the 
results of the modeling of the impact of 
plasma turbulence and macroscopic 

!
E×
!
B  

drifts on parallel plasma flows, performed 
with the TOKAM3X fluid turbulence code 
[143]. Another example of a comparison of 
modeling results and experimental data is 
shown in Fig. (VII.36). Here one can see the 
probability density function for the density 
fluctuations from the Helimak toroidal device 
and the results of the numerical simulations 
performed with the Gkeyll gyrokinetic code.  

Even though all the curves in Fig. (VII.36) exhibit non-Gaussian features (typical for 
blobby transport), the simulations do not reproduce the long tail of the density fluctuations 
observed in the experiment.  Another important area of the application of 3D plasma turbulence 

 
Fig. VII.34. Density oscillation in a nonlinear 
drift wave. The arrow on the left corresponds 

to zero plasma density.  Reproduced with 
permission from [15], ©  Springer 1967. 

 
Fig. (VII.35) Comparison of experimental data 

and simulation results on the parallel Mach 
number of the plasma flow in the SOL of the 

COMPASS tokamak. Here HFS and LFS stand 
for the high- and low- field sides of the torus.  
Reproduced with permission from [143], © 

IAEA 2017, experimental data from Asakura 
N. et al,  J. Nucl. Mater. 365 41–51. 
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codes is related to the simulation of the width, λq , of the part of the SOL, where the heat flux is 

transported to the divertor target. This parameter is of particular importance for ITER because it 
largely determines the heat load on the divertor target. Recently established experimental scaling 

predicts that in H-mode in between ELMs, λq ∝ Ip
−1∝Bpol

−1 , where Ip  is the tokamak plasma 

current and Bpol  is the strength of the poloidal magnetic field [146]. 

In [147] this scaling was attributed to ion drifts in 
the tokamak magnetic field (with no turbulent 
impact on the ion dynamics) so that λq  becomes 

of the order of the poloidal gyroradius of ions. 
Recently, this scaling was reproduced for current 
tokamaks by the fluid BOUT++ and gyrokinetic 
XGC1 plasma turbulence codes (see Fig. VII.37). 
 Interestingly, both codes predict a large 
departure of λq  from the experimental scaling for 

ITER (see Fig. (VII.37). However, the physics of 
this is not clear yet and further studies are needed 
to confirm these results. In [149] it was speculated 
that the transition from drift- to turbulence-
dominated processes that set λq  occurs in next 

step tokamaks due to the larger size and stronger magnetic field strength.  

 
 

Fig. (VII.37). Predictions of λq  for different existing tokamaks and ITER found (left) with the 

BOUT++ (Reproduced with permission from [148], © IAEA 2018) and (right) XGC1 
(Reproduced with permission from [108], © IAEA 2013) plasma turbulence codes.  

 
 
Conclusions for Chapter VII 
In this chapter, we reviewed the basic theory of plasma waves responsible for anomalous plasma 
transport, considered their main destabilizing mechanisms and presented some experimental data 
confirming the theoretical and simulation results. The situation with theoretical analysis and 

 
Fig. (VII.36). Probability density 
functions for density fluctuations.  

Reproduced with permission from [110], 
© AIP Publishing 2019. 
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predictions of anomalous cross-field transport is more complex and as of today, we only have a 
basic theoretical understanding of the processes governing anomalous plasma transport, although 
there is a large amount of experimental data and simulation results supporting these ideas. 
Nonetheless, at present, practically all results of edge plasma transport simulation performed 
with 2D codes such as SOLPS or UEDGE, are based either on the usage of the anomalous 
transport coefficients fitting the edge plasma parameter profiles observed in experiments or on 
the scoping studies of an impact of the transport coefficients on edge plasma performance for the 
cases where there is no available data yet (e.g. ITER simulations, see Chapter IX).  
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