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Zonal flow generation by parametric instability in magnetized plasmas
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Two-dimensional magnetized plasmas and geostrophic fluids exhibit a common nonlinearity due to
the advection of vorticity. It is shown here that due to this nonlinearity, the propagation of small
scale wave packets is accompanied by instability of a low frequency, long wavelength component.
This instability is the coherent hydrodynamic generalization of the resonant type mean flow
instability identified recentlyfP. H. Diamond, M. N. Rosenbluth, F. L. Hinton, M. Malkov, J.
Fleischer, and A. Smolyakov, 17th IAEA Fusion Energy Conference, IAEA-CN-69/TH3/1,
Yokohama, 1998to be published, International Atomic Energy Agency, Vienahe mechanism
discussed here, along with the resonant type, constitutes the “hydrodynamic” and “kinetic”
regimes of the same process, similar to the case of plasma-beam instabilities. It is suggested that this
generic mechanism is responsible for the generation of mean flow in atmospheres of rotating planets
and magnetized plasmas. 2000 American Institute of Physids$$1070-664X00)03605-3

Development of anisotropic large scale structures, such 4 ed ed
as convective cells, zonal flows and jets, is a problem whic?{% + V- V)T—

has attracted a great deal of interest both in plasfasd in ¢
geophysical fluid dynamicke.g., see Refs. 3 and 4 and ref-
erences therein Recently it has been realized that zonal
flows play a crucial role in the regulation of the anomalous
transport in a tokamak:® Scaling arguments show that, in Here,p? is the ion-sound Larmor radius aiw] = 6V, is the
general, transport of energy toward large scales is a result éfectron diamagnetic drift velocity. The nonlinear equation
the inverse energy cascade guaranteed in two-dimensiongd) is similar to the Hasegawa-Mima model except for the
turbulence by the conservation of energy and enstr8phy. term Vo-V(e@/T,), which is retained because the plasma
specific form of this mechanism can vary depending on condensity does not follow the Boltzmann distribution for large
ditions. For a number of physical situations, spontaneous ex3ca/e _modé'§’ (@ similar situation occurs in the sheared mag-
citation of large scale structures from small scale turbulenc@€!ic field for modes wittk;—0 at the rational surfageThe

can be described as a negative eddy viscdSitlfso that the coupled dynamics of large scale flow and small scale turbu-
. . . lence are considered, so that the electrostatic potefiisla
large scale perturbation with a wave numlupmwill grow

with a rate proportional t@? (or q* for other models®® It sum_of fluctuating$ and mean¢ quantities, Vo=cb

has been showirt® that such an instability can be interpreted XV‘ﬁ/B(f” r\]/E:CbIXV‘ﬁ/B.O | The nf1ean pote”ntial iIS the .a\é'l
as a result of the resonant interaction between zonal flow and 29¢ © the total potentia ov_er ast, small scale varables
modulations of the small scale turbulence. In this letter Weand depends only on slow variabl¥sandT, ¢=¢(X,T).

show that small scale wave packets can be subject to a mo;@e fluctuat|r?g paE s a piigmo of SIOW and fast, small
general instability leading to excitation of zonal flows. The SCal€ &) variablesp=¢(x,t,X,T). Averaging(1) over the

latter instability manifests itself as a hydrodynamic, ratherfazgns;roa\‘ll\: scales, we obtain the evolution equation for the

than kinetic, type interaction between the zonal flow and"

small scale fluctuations. Depending on a model, the instabil- - c

ity has a larger growth rate which is proportional |t or —V2¢p=——{9,V?¢}, 2
5 I iy . aT Bo

|g/g?. This instability is somewhat similar to a parametric

. g ’17 . e . .
instapility of a pump wavé:'" The instability is generic to @ which shows that the large scale flow is driven by small scale
wide variety of drift wave systems, such as plasma drifty,ctyations  via Reynolds stress forces. Herfg,b}

Vf:_—(b =0. (1)

of @ ~
_pS E+VOV+VEV

waves and Rossby waves in rotating fluids. =d,ad,b—d,adb is the Poisson bracket, and, is the
First, we consider drift waves in sheared magnetic fieldequilibrium magnetic field.

such as in a tokamak. We use a simple two-dimensignal Coupling of small scale fluctuations to the mean flow is

r, 6 plang@ model for electron drift wave$ described by the kinetic equation for wave packets
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In this letter we show that E8) also describes another
type of the instability that is not of the resonant type, but
rather of the hydrodynamic variety. When the growth rate of
whereN, =N (X,T) is the adiabatic action invariant, and the the instability becomes large compared to the characteristic
exact form ofN, is model dependent. For the model given frequency spread for the background fluctuations, individual
by Eq. (1), the wave frequency is=Kk,Vo+ o, where N, components contribute to the instability coherently. In-
wy =KoV, /(1+k?p?) is the local wave frequency, and the sight into this mechanism can be provided by a simple case
mean flowV, enters the total frequenay, as a simple Dop- of a monochromatic wave packet Wimg:Noa(k—ko),
pler shift. The drift wavet zonal flows system described by with ko= (k

(7Nk ﬂwk (9Nk (?wk F7Nk
TR X X ko ®

Eq. (1) has the adiabatic action invaridht®

edy|?
T (48

Ni=E&lwy=(1+K2 p2)?

where€ is the wave energyp2=To/mw?; .

The source term ir{3) describes the wave growth and Noting that for drift waves
damping due to linear and nonlinear mechanisms. Symboli- K v
r

cally, one can represent it &= yka—AwkNﬁ, where y,

is the linear growth rate, andwkNﬁ is the damping term

due to nonlinear broadening effects. We assume that smalle rewrite equatiorf10) in the form

scale turbulence is close to a stationary state, soShad.

Coupled equation&) and(3) can be solved to show that

the modulations of the wave packets and zonal fiyvare
unstabléé We consider equation®) and (3) linearized for

small perturbationsN , ¢) ~exp(—iQT+iqgr), whereq=q,

= —idlar is the radial wave vector of the large scale pertur-

bation. Then, Eq(2) takes the form

J o— C e
(7_TVJ.¢:B_OVr(Vr¢V0¢)1 5)
and
O A c 242
—106= g | kikil i’ (6)
The modulation oﬁlk is calculated from3),
L OND .
k= B—OQ¢a&er_—qu, (7

whereV,= dw/dk, . Using(7) in (6) we obtain the following
equation:

Kips Nk i

(1+KZpD)2™" dk: O =V,

—iQ=—qzc§J d?k (8)

The resonant type instability is obtained frdif) by us-
ing the resonant functioR=1i/( —qVy) — 7 5( —qV,) or
its broadened counterpait({—qVy+Aw,) (for a white
noise source, this can be taken ad &/, where Awy is

Kgo) -
r0: ™60
Performing integration by parts it8) we reduce it to
d 1 k
— 0 =0q2c2 21 1,2 2N0 r
2=d CSfd kk(’pSNkakr(Q—qu (1+KpD)?)
(10)
(AIp27 2KV p2 (0
1=q2c2 f e Ne Mo 1 (12)
Ve ) TE2m10v, T (Q=aVen?
or
(Q_ V )2: 2C2k2N—(k) an (13)
Por = EH021,V, ok,
Note that the criterion for the instability is thus
N Vg 0 14
2KV, K, (14
Calculating the derivative of the group velocity we obtain
Q=aV. —i |k00Ps| N1/2\/1—4k2 2 k2 2
=0 Vgr ||Q|Cs—rm 0 roPs T K ops:
(1+K7psg)

(15

This equation describes a growth of the large scale zonal
flow as a result of the instability. Note that the instability is
stabilized for shorter wavelengths, provided that 3k?,p2
+k2p2<0. It can readily be seen that the coherémydro-
dynamig instability has a larger growth rate compared to
that of the resonant instabilit§9).

We have considered a specific example of drift waves in
plasmas, but, similar arguments can be made for Rossby-
type waves in fluids. For the systems of inter@sagnetized
plasma and geostrophic fluids of rotating plahetse con-
servation of potential vorticity is an essential characteristic
of wave dynamics. In all cases, nonlinear advection of the

nonlinear broadening due to the wave-wave interagtion notential vorticity remains a source of large scale motion,
Thls |n§tablllty may be mterpreteq as a result of the resonanhough the exact form for the potential vorticity conservation
interaction of the wave packet with slow modulations of thefoy gifferent types of waves in plasma and rotating fluids

approximated by a delta function, the growth rate of the resoggnservation is the Hasegawa-Mima or Charney-Obukhov
nant instability is

equation
Kgps N W P—V2 )+ dgp— (V2 =0 16
,}/q:_qZCgJ‘ dzk(1+|i232)2kra_k775(0_qvg)' t(l;b Llr/l) 6‘/’ {d/’ Llp} ’ ( )
1Ps r ) where the details of various normalizations for different

types of plasma and Rossby waves are given in Refs. 21-23

The conditionaNE/akr<O is required for instability. and references therein. Hegas the stream-function for two-
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dimensional velocity in the, r-plane(B-plane, and is as a for modulational instability?® Note that the existence of the
sum of the mean flow and small scale f|uctuatio¢$J eigenmodes in the wave dynamics is essential for the dis-
+3%. The system given by Eq(16) has an adiabatic cussed instability mechanism. We would like to note that
invariant324:20.25 Nk:kf(1+kf)|¢k|2 and the wave fre- large scale perturbations with a nonzero longitudinal number
quencywk=k9/(1+kf)+kﬁvokf/(1+kf). Then Egs.(6) q, could also be unstablé. The instability withq,#0 and

and (7) are replaced with the following equations: g,=0 corresponds to a more conventional modulational in-
stability of one-dimensional wave packetise., the large

o L= 2J 2.2 sca_le instability develops in the direction of the wave propa-
(19 y=a" | kekolyd"dk, (17 gation of the small scale packét (see also Ref. 28 and
references therejn The discussed mechanism of the zonal

2 0 -
Ny = —qZEkg K . ‘Q_N" ! ) (18) flow instability can be extended to the general cgg&0;
1+kT dke Q—qVy however, such theory is somewhat more complicated and
Solving these equations, instead(@B), we obtain beyond the scope of the present letter.
(Q—qV,,)?%= q° kzl(k) Wg’. (199 ACKNOWLEDGMENTS
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