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Zonal flow generation by parametric instability in magnetized plasmas
and geostrophic fluids
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Two-dimensional magnetized plasmas and geostrophic fluids exhibit a common nonlinearity due to
the advection of vorticity. It is shown here that due to this nonlinearity, the propagation of small
scale wave packets is accompanied by instability of a low frequency, long wavelength component.
This instability is the coherent hydrodynamic generalization of the resonant type mean flow
instability identified recently@P. H. Diamond, M. N. Rosenbluth, F. L. Hinton, M. Malkov, J.
Fleischer, and A. Smolyakov, 17th IAEA Fusion Energy Conference, IAEA-CN-69/TH3/1,
Yokohama, 1998~to be published, International Atomic Energy Agency, Vienna!#. The mechanism
discussed here, along with the resonant type, constitutes the ‘‘hydrodynamic’’ and ‘‘kinetic’’
regimes of the same process, similar to the case of plasma-beam instabilities. It is suggested that this
generic mechanism is responsible for the generation of mean flow in atmospheres of rotating planets
and magnetized plasmas. ©2000 American Institute of Physics.@S1070-664X~00!03605-3#

Development of anisotropic large scale structures, such
as convective cells, zonal flows and jets, is a problem which
has attracted a great deal of interest both in plasmas1,2 and in
geophysical fluid dynamics@e.g., see Refs. 3 and 4 and ref-
erences therein#. Recently it has been realized that zonal
flows play a crucial role in the regulation of the anomalous
transport in a tokamak.5–8 Scaling arguments show that, in
general, transport of energy toward large scales is a result of
the inverse energy cascade guaranteed in two-dimensional
turbulence by the conservation of energy and enstrophy.9 A
specific form of this mechanism can vary depending on con-
ditions. For a number of physical situations, spontaneous ex-
citation of large scale structures from small scale turbulence
can be described as a negative eddy viscosity,10–14so that the
large scale perturbation with a wave numberq will grow
with a rate proportional toq2 ~or q4 for other models!.15 It
has been shown8,16 that such an instability can be interpreted
as a result of the resonant interaction between zonal flow and
modulations of the small scale turbulence. In this letter we
show that small scale wave packets can be subject to a more
general instability leading to excitation of zonal flows. The
latter instability manifests itself as a hydrodynamic, rather
than kinetic, type interaction between the zonal flow and
small scale fluctuations. Depending on a model, the instabil-
ity has a larger growth rate which is proportional touqu or
uquq2. This instability is somewhat similar to a parametric
instability of a pump wave.2,17 The instability is generic to a
wide variety of drift wave systems, such as plasma drift
waves and Rossby waves in rotating fluids.

First, we consider drift waves in sheared magnetic field
such as in a tokamak. We use a simple two-dimensional~in
r , u plane! model for electron drift waves18
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Here,rs
2 is the ion-sound Larmor radius andV* 5 ûV* is the

electron diamagnetic drift velocity. The nonlinear equation
~1! is similar to the Hasegawa-Mima model except for the
term V0•¹(ef̃/Te), which is retained because the plasma
density does not follow the Boltzmann distribution for large
scale modes16 ~a similar situation occurs in the sheared mag-
netic field for modes withki→0 at the rational surface!. The
coupled dynamics of large scale flow and small scale turbu-
lence are considered, so that the electrostatic potentialf is a
sum of fluctuating f̃ and mean f̄ quantities, V05cb
3¹f̄/B0 , ṼE5cb3¹f̃/B0 . The mean potential is the av-
erage of the total potential over fast, small scale variables
and depends only on slow variablesX andT, f̄5f̄(X,T).
The fluctuating part is a function of slow and fast, small
scale (x,t) variablesf̃5f̃(x,t,X,T). Averaging~1! over the
fast, small scales, we obtain the evolution equation for the
mean flow,
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which shows that the large scale flow is driven by small scale
fluctuations via Reynolds stress forces. Here,$a,b%
5] ra]ub2]ua] rb is the Poisson bracket, andB0 is the
equilibrium magnetic field.

Coupling of small scale fluctuations to the mean flow is
described by the kinetic equation for wave packets19
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whereNk5Nk(X,T) is the adiabatic action invariant, and the
exact form ofNk is model dependent. For the model given
by Eq. ~1!, the wave frequency isvk5kuV01vk

l , where
vk

l 5kuV* /(11k'
2 r2) is the local wave frequency, and the

mean flowV0 enters the total frequencyvk as a simple Dop-
pler shift. The drift wave1 zonal flows system described by
Eq. ~1! has the adiabatic action invariant18,20
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whereE is the wave energy,rs
25Te /mivci

2 .
The source term in~3! describes the wave growth and

damping due to linear and nonlinear mechanisms. Symboli-
cally, one can represent it asS5gkNk2nvkNk

2 , wheregk

is the linear growth rate, andnvkNk
2 is the damping term

due to nonlinear broadening effects. We assume that small
scale turbulence is close to a stationary state, so thatS→0.

Coupled equations~2! and~3! can be solved to show that
the modulations of the wave packets and zonal flowV0 are
unstable.8 We consider equations~2! and ~3! linearized for
small perturbations (Ñk ,f̄);exp(2iVT1iqr), whereq[qr

52 i ]/]r is the radial wave vector of the large scale pertur-
bation. Then, Eq.~2! takes the form
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The modulation ofÑk is calculated from~3!,
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whereVg5]v/]kr . Using~7! in ~6! we obtain the following
equation8:
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The resonant type instability is obtained from~7! by us-
ing the resonant functionR5 i /(V2qVg)→pd(V2qVg) or
its broadened counterparti /(V2qVg1Dvk) ~for a white
noise source, this can be taken as 1/Dvk , where Dvk is
nonlinear broadening due to the wave-wave interaction!.
This instability may be interpreted as a result of the resonant
interaction of the wave packet with slow modulations of the
mean flow. For the case of the narrow resonant function
approximated by a delta function, the growth rate of the reso-
nant instability is
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The condition]Nk
0/]kr,0 is required for instability.

In this letter we show that Eq.~8! also describes another
type of the instability that is not of the resonant type, but
rather of the hydrodynamic variety. When the growth rate of
the instability becomes large compared to the characteristic
frequency spread for the background fluctuations, individual
Nk components contribute to the instability coherently. In-
sight into this mechanism can be provided by a simple case
of a monochromatic wave packet withNk

05N0d(k2k0),
with k05(kr0 ,ku0).

Performing integration by parts in~8! we reduce it to
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Noting that for drift waves
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we rewrite equation~10! in the form
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Note that the criterion for the instability is thus
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Calculating the derivative of the group velocity we obtain
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This equation describes a growth of the large scale zonal
flow as a result of the instability. Note that the instability is
stabilized for shorter wavelengths, provided that 123kr0

2 rs
2

1ku
2rs

2,0. It can readily be seen that the coherent~hydro-
dynamic! instability has a larger growth rate compared to
that of the resonant instability~9!.

We have considered a specific example of drift waves in
plasmas, but, similar arguments can be made for Rossby-
type waves in fluids. For the systems of interest~magnetized
plasma and geostrophic fluids of rotating planets!, the con-
servation of potential vorticity is an essential characteristic
of wave dynamics. In all cases, nonlinear advection of the
potential vorticity remains a source of large scale motion,
though the exact form for the potential vorticity conservation
for different types of waves in plasma and rotating fluids
may vary. One of the most general forms for the vorticity
conservation is the Hasegawa-Mima or Charney-Obukhov
equation

] t~c2¹'
2 c!1]uc2$c,¹'

2 c%50, ~16!

where the details of various normalizations for different
types of plasma and Rossby waves are given in Refs. 21–23
and references therein. Herec is the stream-function for two-
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dimensional velocity in theu, r -plane~b-plane!, and is as a
sum of the mean flow and small scale fluctuations,c5c̄

1c̃. The system given by Eq.~16! has an adiabatic
invariant13,24,20,25 Nk5k'

2 (11k'
2 )ucku2 and the wave fre-

quencyvk5ku /(11k'
2 )1kuV0k'

2 /(11k'
2 ). Then Eqs.~6!

and ~7! are replaced with the following equations:
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Solving these equations, instead of~13!, we obtain
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It is interesting to note that despite different definitions of the
wave action and different contribution of the mean flow to
the eigenfrequency, the criterion for the instability~14! re-
mains the same. It is interesting to note that in the model for
drift waves given by Eq.~1!, zonal flow dynamics is similar
to that of two-dimensional Euler fluid. In other models, such
as the Hasegawa-Mima equation and the Charney-Obukhov
equation for Rossby waves, the equation for a driven zonal
flow has different structure@see Eq.~17!#, and, as a result,
zonal flow should have different spectral distribution.

As follows from the above analysis, the small scale wave
packets in magnetized plasmas and geostrophic fluids are
unstable with respect to the long wavelength perturbations.
These perturbations are accompanied by the excitation of the
long wavelength modes of the velocity, i.e., zonal flows.
This robust instability is the coherent hydrodynamic gener-
alization of the resonant type mean flow instability recently
considered.8 This mechanism, along with the resonant type,
constitutes the ‘‘hydrodynamic’’ and ‘‘kinetic’’ regimes of
the same process, similar to the case of plasma-beam insta-
bilities. Relative importance of these two regimes will be
determined by the relation between the nonlinear growth rate
gq @given by either Eq.~9! or ~15!# and the spectral width of
the background turbulence,dvk . The instability is of the
resonant type, when the instability growth rategq is smaller
than the spectral widthdvk of the small scale fluctuations.
The instability becomes the coherent hydrodynamic type if
gq.dvk , so that all harmonics grow coherently. In the sim-
plest case of weak wave-wave interaction, the spectral width
dvk is merely the width of the wave packet of small scale
fluctuations. The finite wave-wave interaction will further
broaden the spectrum and the nonlinear broadeningnvk

must be taken into account in the estimate for the spectrum
width.

We suggest that the generic mechanism discussed in this
paper is responsible for generation of mean flow in atmo-
spheres of rotating planets and magnetized plasmas. It is in-
teresting to note that the criterion for the instability given by
Eq. ~14! is somewhat similar to a general Lighthill criterion

for modulational instability.26 Note that the existence of the
eigenmodes in the wave dynamics is essential for the dis-
cussed instability mechanism. We would like to note that
large scale perturbations with a nonzero longitudinal number
qu could also be unstable.13 The instability withquÞ0 and
qr50 corresponds to a more conventional modulational in-
stability of one-dimensional wave packets~i.e., the large
scale instability develops in the direction of the wave propa-
gation of the small scale packet27! ~see also Ref. 28 and
references therein!. The discussed mechanism of the zonal
flow instability can be extended to the general casequÞ0;
however, such theory is somewhat more complicated and
beyond the scope of the present letter.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada and U.S. Depart-
ment of Energy Grant No. FG03-88ER53275.

1A. Hasegawa, C. G. Maclennan, and Y. Kodama, Phys. Fluids22, 2122
~1979!.

2R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, Sov. J. Plasma Phys.
4, 551 ~1978!.

3F. H. Busse, Chaos4, 123 ~1994!.
4P. B. Rhines, Chaos4, 315 ~1994!.
5M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett.80, 724 ~1998!.
6Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science
281, 1835~1998!.

7T. S. Hahm, M. A. Beer, Z. Lin, G. W. Hammett, W. W. Lee, and W. M.
Tang, Phys. Plasmas6, 922 ~1999!.

8P. H. Diamond, M. N. Rosenbluth, F. L. Hinton, M. Malkov, J. Fleischer,
and A. Smolyakov, 17th IAEA Fusion Energy Conference, IAEA-CN-69/
TH3/1 ~International Atomic Energy Agency, Vienna, 1998!.

9J. C. Charney, J. Atmos. Sci.28, 1087~1971!.
10V. Yakhot and G. Sivashinsky, Phys. Rev. A35, 815 ~1985!.
11S. Gama, M. Vergassola, and U. Frish, Fluid Mech.260, 95 ~1994!.
12A. V. Gruzinov, P. H. Diamond, and V. B. Lebedev, Phys. Plasmas1,

3148 ~1994!.
13A. Muhm, A. M. Pukhov, K. H. Spatchek, and V. N. Tsytovich, Phys.

Fluids B 4, 336 ~1992!.
14E. A. Fedutenko, Phys. Lett. A200, 134 ~1995!.
15A. V. Tur, A. V. Chechkin, and V. V. Yanovsky, Phys. Fluids B4, 3513

~1992!.
16A. I. Smolyakov, P. H. Diamond, and M. Malkov, Phys. Rev. Lett.84, 491

~2000!.
17V. D. Shapiro, P. H. Diamond, V. B. Lebedev, G. I. Soloviev, and V. I.

Shevchenko, Plasma Phys. Controlled Fusion35, 1033~1993!.
18N. Mattor and P. H. Diamond, Phys. Plasmas1, 4002~1994!.
19A. A. Vedenov, A. V. Gordeev, and L. I. Rudakov, Plasma Phys.9, 719

~1967!.
20A. I. Smolyakov and P. H. Diamond, Phys. Plasmas6, 4410~1999!.
21M. V. Nezlin and E. N. Snezkin,Rossby Vortices, Spiral Structures, Soli-

tons ~Springer-Verlag, Berlin, 1993!.
22W. Horton and A. Hasegawa, Chaos4, 227 ~1994!.
23F. Busse and A. C. Or, J. Fluid Mech.166, 173 ~1986!.
24V. B. Lebedev, P. H. Diamond, V. D. Shapiro, and G. I. Soloviev, Phys.

Plasmas2, 4420~1995!.
25A. I. Dyachenko, S. V. Nazarenko, and V. E. Zakharov, Phys. Lett. A165,

330 ~1992!.
26M. J. Lighthill, J. Inst. Math. Appl.1, 269 ~1965!.
27K. Mima and Y. C. Lee, Phys. Fluids23, 105 ~1980!.
28P. K. Shukla, M. Y. Yu, H. U. Rahman, and K. H. Spatchek, Phys. Rep.

105, 229 ~1984!.

3Phys. Plasmas, Vol. 7, No. 5, May 2000 Zonal flow generation by parametric instability in . . .


