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Abstract. Nonlinear dynamics of the Farley-Buneman modes is investigated. It
is shown that, in the nonlinear regime, there exists a secondary nonlinear instability
leading to excitation of low frequency, long wavelength modes that corresponds to
the inverse energy cascade toward the longer wavelengths. The growth rate of the
secondary instability is proportional to the squared amplitude of primary electron

density fluctuations.
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1. Introduction

The Farley-Buneman (F-B) instability [Farley, 1963; Buneman, 1963] is one of the
mechanisms for excitation of F region electrojet irregularities. These irregularities have
been intensively studied using VHF coherent radars [Fejer and Kelley, 1980; Sahr and
Fejer, 1996]. The theoretical framework for the linear theory of the F-B instability
is well established [e.g., Dimant and Sudan, 1995; Sahr and Fejer, 1996; Kissack and
St-Maurice, 2000] while there remains a number of issues within the non-linear theory
that are now actively investigated [e.g., Hamza and St-Maurice, 1993; Sahr and Farley,
1995, Sudan et al., 1997; Dimant, 1999]. Analytical studies have been complemented
by computer simulations [Ronchi et al., 1991; Schlegel and Thiemann, 1994; Janhunen,
1994; Oppenheim et al., 1996]. Despite significant progress in understanding the
F-B instability evolution, there are still significant discrepancies between theoretical
predictions and observations, as reviewed by Sahr and Fejer [1996]. This urges further
development of the theory for this instability.

One of the features identified in the equatorial VHF observations is that coherent

echoes (scatter from meter-scale irregularities) are often modulated by the low frequency,



long wavelength perturbations [Farley et al., 1994]. These measurements suggest that
the evolution of the F-B instability at equatorial latitudes may be controlled by the
large-scale dynamics [Farley et al., 1994] rather than by the interactions among the
short-wave modes themselves even though the F-B instability is most efficiently excited
at short (meter) wavelengths.

Ronchi et al. [1991] have investigated the evolution of large-scale structures
and their role in the dynamics of the meter scale irregularities for the case of the
gradient-drift instability. For the pure F-B instability computer simulations by
Oppenheim et al. [1996] have shown that excitation of the smaller scale secondary waves
plays an important role in the nonlinear saturation of this instability. This result means
that there is an energy flow toward smaller scales, i.e. in the standard direction of the
energy flow (forward cascade). On the other hand, one might think that the small-scale
ionospheric turbulence can provide energy for support of large-scale irregularities. Since
F-B waves are excited only at scales shorter than ~100 m [Schelgel and St-Maurice,
1983], their support of significantly larger scale fluctuations would require an energy
flow toward larger scales/smaller wavenumbers, i.e. an inverse cascade. Migration of
energy to larger scales in the process of the electrojet instability evolution has been
noticed by Ronchi et al. [1991]. One should mention that in the past, the growth of
large-scale perturbations has been addressed within the framework of nonlocal linear
theory [e.g., Kudeki et al., 1982; Huba and Lee, 1983; Fu et al., 1986].

In this paper we explore a possibility of energy transfer from small to large scales

in the course of the F-B instability. In this respect, Sharma and Kaw [1986] considered



modification of the large-scale gradient-drift (G-D) modes in a presence of the small-scale
F-B waves and predicted that the effect can be significant under some conditions. Our
goal is somewhat similar; we study the dynamics of long wavelength perturbations that
are coupled to and modified by the primary (small-scale) F-B fluctuations. A related
problem was also considered by Sahr and Farley [1995], who analyzed excitation of
secondary waves via the three-wave coupling mechanism.

The paper is organized as follows. In Section 2 we review basic nonlinear equations
describing the F-B modes. Then (Section 3) we derive a wave kinetic equation for the
background fluctuations in a presence of low frequency perturbations. Coupled dynamics
of these perturbations and the background fluctuations is considered in Section 4, where
we derive the final nonlinear dispersion equation. This equation is then analyzed in

Section 5.

2. Basic equations

We use the fluid two-dimensional equations for a collisional plasma [Sudan et al.,
1973]. We first review basic assumptions and present the main equations following
Sudan et al. [1973] (see also Sudan, 1983; Sahr, 1990; Hamza and St-Maurice, 1993;
Sahr and Farley, 1995).

We start from the ion continuity equation for the charge density n and velocity V;
in a form

on

S+ V- (V) =0, (1)



The ion fluid velocity V; can be found from the ion momentum equation. We assume
unmagnetized ions since the collision frequency of ions, v;, is larger than the ion

cyclotron frequency wg;, v; > we. Then, the ion momentum equation is

. T
mi@ =eE——Vn —v;m;V,. (2)
dt N

Here m; and e are the ion mass and charge, E is the total electric field, T; is the ion
temperature. For the F-B modes, the electron fluid velocity is much larger than the
ion velocity, V, > V;. As a result, the main source of nonlinear effects is contained in
the electron momentum equation so that the ion equation (2) can be linearized. After

linearization of equations (1) and (2) and exclusion of the ion velocity V;, one obtains

<%+m>an+v-<iE— L Vﬁ):O. (3)

ot ng ™m; m;no

Here we assumed that the total plasma density n is a sum of the equilibrium ng and
perturbed n quantities, and the plasma background is uniform, Vng = 0.

Electrons are magnetized, because the electron cyclotron frequency w,. is larger
than the electron collision frequency, we > .. For the low frequency oscillations

w < I, the electron momentum equation is

T
0= —eB—SV, x B-25Vii — ym,V.. (4)
C No

Excluding the electric field from (3) and (4), one obtains

<<2 + Vi) g _ C’SQV2> E N chwciv . Ve _ 07 (5)

where Cs = /(T + T;) /m; is the ion-acoustic speed of the medium. Excluding V -V,

from (5) with the help of the electron continuity equation, we obtain the basic nonlinear



equation [Sudan et al., 1973; Sudan, 1983; Sudan and Keskinnen, 1977; Hamza and

St-Maurice, 1993; Sahr, 1990; Sahr and Farley, 1995]

0 1 -
1 1Y (8 L,
) — T = =0. 6
Ve Vn+ui1+1/1<8t2 C2V2 | =0 (6)
Here
Vel
w_wcewci7 <7)

and Vo = cEqgxB/ B? is the electric drift in the equilibrium electric and magnetic fields
Eo and B, and Vg = —cV¢pxB/ B? is the drift velocity in the perturbed electric field
E = —V¢ (¢ is electrostatic potential). In the nonlinear term (the third term in (6))
we retain only the lowest order electron velocity given by the electric drift, V., ~ V.

Making the Fourier transformation in space, we rewrite equation (6) in a form

0 .
E’I‘Lk —+ wng + /dklvkl,k,klnklnk,kl =0. (8)

Here the nonlinear coupling matrix is given by

1 v; z’wkl
1+ ¢ Wes nok%

Vil k—k, = b x ki - (k — k), 9)

where b = B/B is the unit vector along the equilibrium magnetic field.
By neglecting the nonlinear terms, one obtains from (6) the linear eigenfrequency
Wk
W = Wy + 1k, (10)

where the real part of the frequency is given by an expression

(11)

Wrk =



and the instability growth rate is defined by

1 v

=T (wp, —#*C2) . (12)

Vi

The instability occurs for fluctuations with
wr2*k > k2082, (13)

that defines the threshold for the phase velocity on unstable waves.
It is convenient to write equation (6) by using a new variable F' introduced by the

relation [Sudan et al., 1997].

OF

where ¢ is electrostatic potential. From the ion continuity equation (1) one gets, in the

lowest order, the relation between the density and potential fluctuations

unz k-Vym,uy;
k2 _ T]f 1) _ 1) 1
Pr = i enonk Zl—i-w enon (15)
In real space, it takes the form
mv; 1 0
~Vp=—""——V;-—17 16
¢ eng 1+ ° ox " (16)
where Vo = Ve, is the electron drift velocity (assumed along y-axis).
Then we can write
m;v; 1
—V?F = ———V,,fi. 17
eno L+ " (17)
With this new variable, the nonlinear equation (6) can be written as
0 ~ OF
SN2+ IVAF + —— bxV—  VV2F =0 (18)

ot Bo(1+ 1) dy



The linear operator L describes the real part of the wave frequency and the growth

rate. In Fourier representation, this operator takes the form

~

L—1 (wrk + Z")//C) . (19)

3. Multiple scale separation and wave kinetic equation

We assume that the background primary fluctuations have reached their steady-
state. We do not consider in details how the saturation was achieved. In general, the
steady-state is established as a result of a competition between the linear instability and
nonlinear damping due to mode interaction [Hamza and St-Maurice, 1993b].

We consider now a perturbation of the background equilibrium turbulence due
to the secondary, low frequency, long wavelength modes. Thus, we assume the scale
separation between the background fluctuations and the secondary waves. This approach
allows us to use averaging over the small-scale fluctuations.

We present fluctuations as a sum of fast and slow parts

F=F+F. (20)

The fast part F = ﬁ’(x,t, X, T) depends on fast (x,t) and slow (X,T") variables while
the slow part F' = F(X,T) is a function of variables (X, 7T') only; the slow variables are
formally introduced by X = ex, T' = et, where € < 1 is the small parameter of the scale
separation.

Equations for F and F are derived from the nonlinear equation (18). The equation

for the evolution of the mean function F' is obtained from (18) by averaging over small
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scale fluctuations

—V°F+ ILV°F+ ————— - | bxV—V?2F| =0. 21
o ETIVE T T aX < “Vay Y ) (21)
The equation for the small-scale component is
—V*F+ LV*F+ ———bxV— - F
8tv + LV +BO(1+¢) XVOY \YAY
¢ v gveE o (22)

Bt by
The last term in this formula describes the self-interaction of small-scale perturbations.
This self-interaction is important to establish the equilibrium steady state.

The interaction of small-scale fluctuations with the mean flow is described by the
third term in (22). In general, the coupling of small-scale fluctuations to the mean flow
can be described by the kinetic equation for wave packets, which is the conservation law
for the wave action invariant Ny. The standard form [Kadomtsev, 1964; Vedenov et al.,

1967] for such an equation is

oT " ok 90X 00X 0k

= Sk, (23)

where wyy is the real part of the wave eigenfrequency, and Ny = Ni(X,T') is the
generalized wave action density, which is a slow function in time and space.
The coupling of the intensity of small-scale fluctuations Ny with the slow component
F is provided via the variations of the wave eigenfrequency by the slow component of
the electric field, w,; = w,,(X,T), where w,, is the wave frequency taking into account
the contribution of the slow component. From equation (6) one can easily find that
/ c 1 1 b oF

— c
SIS S VL <7 SRS S N vLCe 24
ok = Wk T B T PXVO = Wikt B XV (24)
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where wy, is the wave eigenfrequency in the stationary plasma.
As shown in the Appendix, the generalized wave action NV in our case is given by

~ 2
the expression N, = k* ‘Fk ,

so that the wave kinetic equation for the wave packets in

the presence of a slow, long wavelength component takes the form
0 [ 41=2
a7 (© 1)
8 c OF 0
e + =————bxV— -k YE )
"ok <‘”’“+ Bl 9) Yoy ) X (k | ’“‘

c oF 0 (4 B

The right hand side of equation (25) describes the wave growth due to the linear
instability and the nonlinear wave damping due to the self-interaction of small scales. In
the equilibrium, the self-interaction of small scales balances the linear growth rate. This
balance can symbolically be represented as Sy, = v, N}, — Awy, N2, where 7 is the linear
growth rate, and Awy,N? describes the nonlinear self-interaction leading to the damping

of small-scale perturbations, Awy is the nonlinear decrement. In the stationary state

4. Coupled dynamics of short- and long-wavelength
components and secondary instability

Equations (21) and (25) describe coupled dynamics of the slow varying field
F(X,T) and the wave action density N;(X,T). Now we can investigate the stability
of this system with respect to slow deviations from the stationary turbulent state.

We assume that the steady state fluctuation spectrum NP is maintained through
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competition of the linear growth and nonlinear damping due to interactions among

small scales (this balance is described by the last term in equation (25), which is thus
zero in the equilibrium, Sy = 0). We assume that there is a small deviation §Vy from
this equilibrium, Ny = NP + §N,. This deviation is related to the slow perturbation in
the F field which is thus a slow field F. The system is linear with respect to 6 N, and

F'; one can use the Fourier representation to analyze it
((SNk, F) o exp(—iQT + iq - X). (26)

We consider small perturbations with a wave vector q along the equilibrium flow

Vo = W,¥, 4 =q¥y. Linearizing equations (25) with respect to .V}, we obtain

c Y ON}
By(1+1)" Ok,

—i (2 —qVy) 6Ny — iq =0, (27)

where V,, = Ow,/0k, is the group velocity of the primary (small-scale) F-B waves.
From (21) we find

_ ~ 12
OPF + ——— g S ko ke k2 | E = 0. 9
i€g +BO<1+¢)MJZ 2| Fe[ =0 (28)

~ 2
Perturbations of the spectrum ‘Fk‘ can be related to the wave action perturbations by

the relation

kok,

kol | B = =5

ON. (29)

The sum in (28) is taken over the spectrum of small-scale fluctuations. It occurs as a
result of averaging of the last term in equation (21).

Excluding F' and §N; from equations (27) and (28), we obtain the dispersion
relation

Q(Q—qV,,)+T2=0. (30)
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The nonlinear growth rate I'y is defined by

2 K2k, ON?
2 o 2
Lo = ( (1+¢> 2 k2 Ok, (31)

As follows from the analysis below, the parameter I'Z defines the growth rate of the long

wavelength instability. To evaluate the magnitude of this parameter, we use an estimate

from (17)

muv;

k2F ~

Voyi. (32)

€Ny

~ 2
Using also N, = k* ‘F k‘ and assuming a roughly isotropic spectrum of the turbulence, we

obtain for I'Z the following order of magnitude estimate in terms of density fluctuations

~ 2
V; n
o =¢" (wc) Yoy (m) ' (33)

0
Note that %—IZ& < 0 is required for the instability. This is a typical condition for the
Y

saturated turbulence.

5. Analysis of the nonlinear dispersion equation

In this section we analyze dispersion equation (30). One can see that nonlinear
effects of small-scale fluctuations given by the term I'} are destabilizing while the effects
of finite packet width (the term with group velocity ¢V,,) are stabilizing. The latter

term provides a finite amplitude threshold for the instability. From (30) we obtain

Var Vir)®
Nonlinear instability occurs for
Vo )?
r2 5 (Vr) (35)

4
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or

y\2/n\2 1
(@) &) =3 %
In the limit Ty — 0, the dispersion equation (34) simply describes the oscillating wave
packets that move with the group velocity of the F-B mode.
As a matter of fact, in (34) we have neglected the linear dynamics of the secondary

mode, that is given by the linear operator Lin equation (21). Restoring these effects,

we obtain for the general case
(2 — wrg —17g) (2 — qVyr) + Fg =0, (37)

where wyq + i, is the real frequency and growth rate of the F-B fluctuations with the
wave vector q. They are given by expressions (11) and (12) with the wave number ¢
substituted for k.

Nonlinear dispersion equation (37) describes two branches of fluctuations: the
regular F-B mode with a wave number ¢ and €2 = w,, + 147, and the modes with 2 = ¢V,
that correspond to the long wave-length modulations of the background turbulence
moving with the group velocity of the F-B mode. In the presence of nonlinear effects,
these two modes are coupled via the nonlinear interaction described by the I'} term.
The result is the nonlinear instability that produces long wavelength perturbations.

A simple analysis can be made taking into account that w,, ~ ¢V,,. Then the

dispersion equation (37) can be rewritten as

(2 —iy,) @ +T5 =0, (38)



15

where Q' = Q — ¢V, is the mode frequency in the reference frame moving with the

group velocity. The dispersion equation (38) yields

’_% _l‘?_P2
Q = 2i 1 5- (39)

One remarkable property of this expression is that the instability occurs for any
sign of 7,. This means that (due to nonlinear effects for the longer wavelengths) there
is no ion-acoustic threshold for the secondary instability development contrary to what
is known for the primary F-B instability as one can infer from equation (13). This

conclusion also holds in a more general case where w,, # ¢V,,. In the latter case we have

Vi » ) 1
Q= Lor T¥ Dy 2/ (40)
2 2 2
where
D = (ing + qVgr + wrg)® — 4(i74qVgr + T + wrgqVir). (41)

The imaginary part of the frequency is given by the following expression

Im Q = % + % d ; ¢
Here
r = (Ve = wrg)® = 7] = AT)" + 4(gVr — wrg)*35,
and

0= (qVyr — wrg)? — 2 — T2, (42)

After simple algebra, one can show that

r> 73 + (Q%r - qu)2 - 41—%, (43)



16

and hence
(r—a)/2>~2.
The latter inequality means that for any sign of +y,, one of the two roots

Y , 1 [r—a
ImQ=—+-
N> ()

is positive that corresponds to the instability. For stable F-B modes with v; < 0, the
growth rate is proportional to the amplitude of the background turbulence. From (39),

in the regime of I'y < ~7/4, one can find

ImQ >~ —T2/~,. (44)

6. Discussion and Conclusions

In the present paper we have considered the dynamics of the long wavelength
perturbations of the turbulent background made up by small-scale F-B (primary) waves.
We have shown that the F-B waves that reached the equilibrium state are unstable with
respect to the long wavelength perturbations propagating along the background plasma
flow with the velocity approximately equal to the group velocity of the F-B modes. The
growth of the large-scale structures can be interpreted as the inverse energy cascade
with the energy flow toward longer wavelengths.

The mechanism of the secondary instability considered in our paper is related
to the wave coupling between the small-scale fluctuations and the long-wavelength
modes (a parametric process somewhat similar to that considered by Sharma and

Kaw [1986]). The secondary mode generation is related to the nonlinear terms in the
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electron continuity equation. The main source of the nonlinearity is the advection of the
perturbed plasma density by the E x B drift [Oppenheim, 1996]. The small scales are
affected by the induced slow mode due to refraction in the shear E x B flow associated
with the slow mode. Essentially, the source of this refraction is the modification of the
phase velocity of small-scale fluctuations by the electric field of the slow mode.

We used the wave kinetic equation to describe the modulations of the background
small-scale turbulence. It should be noted that the primary small-scale fluctuations
must be excited before the secondary instability takes place. We did not consider the
mechanism for the primary F-B wave saturation. It was assumed that primary wave
reach their saturated state and that then they interact with secondary large-scale
modes. This approach is similar to that used in the theory of zonal flow generation in
geostrophic fluids such as the atmospheres of rotating planets [Busse and Or, 1986;
Smolyakov et al., 2000]. An interesting feature of the secondary instability considered in
our work is that it does not have the ion-acoustic threshold typical for the primary F-B
modes. The growth rate of secondary large-scale modes is determined by the intensity
of the primary fluctuations. Certainly, the growth of the secondary instability will be
evetually slowed down, and the saturation of the whole primary-secondary wave system
will be reached due to the back influence of the large-scale modes on the small scales
and the nonlinear interaction between the secondary modes. Quantitative analysis of
these processes requires a nonlinear theory for the secondary modes that is beyond the
scope of the present study.

Our approach to the analysis of the F-B instability differs from previous studies
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in several aspects. The major difference is that we assume the energy transfer to the
longer perturbations, outside the linear instability range for the primary F-B waves
(to scales, say, of a kilometer size). Traditionally, the energy transfer to shorter scales
was considered, starting from the work by Sudan et al. [1973], see also Moiseev et al.,
2000). Our analysis is closely related to the work by Sharma and Kaw [1986] who
have suggested that the dynamics of secondary G-D waves can be strongly modified
in the presence of small-scale F-B fluctuations. These authors have also anticipated a
possiblity of nonlinear instability supported by the primary fluctuations. Contrary to
this work, we considered perturbations propagating along the background flow, the most
favorable direction for the F-B instability. Though technically different, our analysis is
somewhat similar to that of Sahr and Farley [1995]. Analogously to that work, the long
wavelength modes in our model originate from three-wave coupling processes. These
long wavelength modes are excited by “beating” of small-scale fluctuations.

Implication of our scenario of the F-B instability evolution is that the long
wavelength secondary waves (at scales that cannot be excited linearly, namely more
than ~100 m) should be observed along the electrojet. Since the group velocity of the
F-B fluctuations is close to their phase velocity, the nonlinearly generated large-scale
modes should move with the velocity of the background fluctuations. These predictions
seem to agree with radar observations at equatorial latitudes [Farley et al., 1994]. We
are not aware of any experiments that would support this scenario of the large-scale

wave excitation in the auroral ionosphere.
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Appendix A: Wave kinetic equation

Dynamics of a wave packet in an inhomogeneous plasma is described by the wave
kinetic equation for the wave action density [Kadomtsev, 1964; Vedenov et al., 1967].
Here, we review the derivation of the wave kinetic equation that considers the interaction
of small-scale fluctuations with a slow-varying mean flow, following to Smolyakov and
Diamond [1999] (see also Dubrulle et al., 1997). We consider a generic equation for

fluctuating field Fj in a form

oF, .
a_tk + tw Fl, + / deMp,k,prFk,p =0, (A1)

where wy = w(k) is the frequency of the linear mode with a wave vector k (the frequency
may include an imaginary part corresponding to the wave growth or decay). From

equation (22) we find the coupling matrix M,

ic py(k — p)?
My k—p _—Bo(l—kw)bxp'(k_p) y =
ic p2(k‘—p)
"Bt P kTP T - (A2)

To keep track of the scale separation explicitly it is convenient to introduce new
notations for the large-scale F;~ and small-scale F;; components; Fi= = 0 for | k |> k.,
and Fy = Ofor | k |< k., where k. = koe defines a boundary of the scale separation,
e < 1 is a scale separation parameter, and kg is the characteristic wave number; F;=
corresponds to F in the real space, F;= — F.

For a near stationary case of an anisotropic drift-wave type turbulence the

interaction of small scales with a long wave-length component is dominant [Balk et al.,
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1990], so the self-interaction of small-scale fields can be neglected. Such interaction is
important however to establish the stationary spectrum that is formed by balancing the
linear growth rate with the nonlinear damping. These effects are described by the right
hand side of equation (23).

Retaining only the dominant interaction term we write from (A1) the following
equation for the small-scale fluctuations

OF7
ot

i F + / dpM, 4 FSFZ =0, (A3)

To derive the equation for the evolution of the wave spectrum we multiply equation (A3)

by F k>, and then add it with a similar equation obtained by reversing k and k', yielding

0 .
o (FPFZ) +i(wy +wy) FPFS

+F [ My B, + B [ M,

& _pr<Fk>,7p =0. (A4)
The small-scale turbulence is described by the spectral function (Wigner function)

I (x,t) and defined as follows

/ d2q (F7 7 Y explia - x) = Ii(x,t). (A5)

Hereafter, the dependence on fast variables is suppressed, and (x,t) is used for slow
variables. The slow time and spatial dependence in [ (x,t) corresponds to modulations
with a “slow” wavevector q < k. Angle brackets in (A5) stand for ensemble average,
which is equivalent to a time average with appropriate ergodic assumptions.

The evolution equation for I(x,t) is derived from (A4) by averaging it over fast

scales and by taking the Fourier transform over the slow variable x. Setting k' = —k +q
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and applying the operator [ d%qexp(iq - x), we obtain

9, . :
—Ip(x,t) +1 / d*qexp(iq - x) (Wk + W_kiqg) <F,€>F_>,€+q>

ot

+S; + 8, =0, (AG)

S, = //d2pd2q exp(iq - x) <F_>k+qF,€>_p> Mp,k,pF;, (A7)
Sy = //ded2q exp(iq - x) <F—>k+q—ka>> Mp,7k+q7pr<- (A8)

The second term in (A4) gives

i/d2q exp(iq - x) (W + W_ktq) <F§ka+q>

. &x)k 8
T ok &I’ﬂ(xa t) = 2vkly, (A9)

where 7 is the linear growth rate, and only the real part of the frequency is presumed
for wy, on the right hand side of this equation.

The ensemble average in S; can be transformed by using the inverse of (A5)

<F—>k+qu>—p> - <Fk>—pF—>(k—p)+q—p> - /d%llk—p(xl) exp(—i(q—p) - x ). (A10)

By using (A10) and expanding in p < k, the expression for S; is transformed to

Sp = /d2pexp(ip - X) M k—p <Ik(x) —p- 8{;—1({X)> ES. (A11)

Similarly, by using the identity analogous to (A10) and expanding the interaction

coefficient M, ;_, in p < k, we transform S, to the form

| oM, _
SQ _ //ded2lep(Zq . X) <Mp,k + (q - p) . a(_p7k)k> Fp<
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x [’ exp(=i(a - p)x ) u(x)

: : . oM, 01
= Ik(x)/dzpexp(zp - X) M), 1 F — z/d2pexp(zp - X) 8(—pk)k : 8_;Fp< . (A12)
Combining expressions (A11l) and (A12) one obtains
S1+ Sy = Ix(z) /de exp(ip - X) (Mpp—p + My,_1) Fiy (A13)
: 0l (x
- / d*pexp(ip - X) My 4P - 51({ )Fp< (A14)
oM,  OI
—i | d? p-x)—2k Tk p<
z/d pexp(ip - X) Ak Ox Fy (A15)
Using (A2) we obtain
ic 4k - p
Mp,k—p + Mp,—k = mb XPp- kTPy <A16)

By making Fourier transformation and using (A16), the first term in (A14) becomes

(1+7)0x oy k?
(A17)

F 4k
Iie(x) / (Mp k—p + My, i) d*pexp(ip - x)Fy = —B;ﬂ <b X Va—k) -1
0

Similarly, the second term in (A14) takes the form

LX) . . c 9 OF |\ oI,
/p S Mo pep(ip X)FT = gt a (b x VoK) S (ALS)

and the last term in (A14) transforms to

d*pexp(ip - X)Fy = ;% (b X V8—F-k> Ol (A19)

My Ol on
By(1+ ) Jy ox

') oK) ox

Finally, combining all terms we have

9 /1~ Oww O =12\ Ows O (1=
5 UF) + 5 5 (A7) — %2 5 (1)
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9 /i~
e (A])

4k ~‘2

-0z | B

9 (1) = 5w

— (A20)

Multiplying this equation by k* and combining the two last terms we obtain the

wave-kinetic equation (25).
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