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Nonlinear current and potential oscillations in low pressure inductively coupled plasmas are
analyzed within the framework of electron magnetohydrodynamics. It is shown that both current
and potential oscillations can be attributed, respectively, to the solenoidal and potential components
of nonlinear Lorentz and inertial forces. Scaling of the nonlinear force with the phase shift between
the electric current and the electric field is analyzed. It is demonstrated that the solenoidal part of the
force that provides a source of nonlinear current vanishes in neglect of collisions and collisionless
absorption, while oscillations of the electrostatic potential remain finite. It is shown that these
oscillations are the result of plasma polarization due to Hall drifts.2@0 American Institute of
Physics[S1070-664X00)01311-3

I. INTRODUCTION frequency of the oscillationss=B~19B/dt by an order of
magnitude. At low frequencies, the nonlinear Lorentz force
Low pressure inductively coupled discharges have reacting on electrons may become much larger than the force
cently emerged as promising plasma sources for materidtom the inductive electric field® Under these conditions
processing and lighting technologi€$.The operation of plasmas are in the regime of electrtiall) magnetohydro-
such plasma sources in low frequency and low pressure rejynamicstEMHD),?® which has been traditionally applied to
gimes reveals a number of interesting properties of such dissigh-density high-frequency phenomena in plasmas typical
charges. The effects of anomalous electromagnetic field peqg, high power pulsed systems. The low pressure ICP turns
etration, collisionless heating, and negative energyt to be even more complex because of the effects of ther-
absorption have recently attracted a great deal of experimenyg) particle motion, which are important for ICP but were
tal and theoretical investigatiods?? One of the main rea- typically neglected in EMHDB®
sons for such rich .under!ying physics is the nonlocal_nature In this paper we concentrate on nonlinear effects due to
of low pressure mduptlvely coupled plasnéCP) dis-  the modification of Ohm’s law by the Lorentz force and non-
charges. In particular, it turns out that such plasmas are a|iear inertia. Nonlinear electron inertia is important when
most collisionless, with the electron mean free path exceedne characteristic length scale ! becomes comparable to
ing the Iength of a systgm. In such situations, electronye collisionless electron skin depllhz,czlmf,ezl (this con-
thermal motion becomes important and leads to such phgsiion js typically satisfied in ICP Both types of nonlinear-
nomena as the anomalous skin effect and collisionless aly, (| orentz force and nonlinear inerizontribute to the
sorption. Recent experiments have also shown that nonline@jonjinear force acting on the plasma due to the fluctuating rf
effects are important in such a plasma and_g|2\2e rise 10 NOMg|q, |t has been shown recenith?°that ponderomotive and
linear harmonics in currerit, plasma poterlt|81 and en-  gecond harmonic plasma potentials are nonlinearly excited
hanced penetration of the electromagnetic ﬁ,_’eqa'“j‘ this  que to the action of nonlinear forces associated with the rf
paper we analyze possible sources of nonlinearity of lowyagnetic field. We show in this paper, that both, the nonlin-
pressure ICP. Note that the effects considered in this papfyr potential and the nonlinear current are produced as a
are due to electron dynamics and thus are complementary fagyt of nonlinear forces. We also investigate the structure

nonlinear effects of ions dynamics, such as those in Ref. 2% these forces and analyze their scaling with respect to the
A modern low pressure ICP is characterized by a uniqueg)jision frequency.

set of operating parameters. In addition to the above noted \ye gescribe the electron component by the following
collisionless (nonloca) nature of the electron component ,omentum equation:

[when inequalitiesv= v, kv,=(v,w) are satisfief] the in-

fluence of the induced rfradio frequency magnetic fieldB

becomes important. The effective electron cyclotron fre-

n mc, in the in magnetic fiel may ex v e 1
quency,eB/mc, in the 'dgced agnetic fiel® may e cgepl V- W=— —|E+=vXB| -, (1)
the electron-neutral collisional frequengyand characteristic ot m C
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wherev is the collisional frequencies due to electron-neutralvectors, so that no nonlinear terms occur in E).for the

interaction,e>0. magnetic fieldB, after applyingV X to Eq.(1). From Eq.(3)
We assume that ions are immobile so that the electrione finds a linear equation f&,
current is due to the electron motion only: ) )
J 19( ce 0B, 1 0 (wvceoB, @
4 4 | Bz | 5t =— = > |
VXB= %J:_Twem,_ ) at| % ror wge ar ror wge ar

wherewf,e(r)=47re2n(r)/m, is the local value of the elec-

These two coupled equatiofi®) and(2) form a nonlin- ., y1asma frequencyy(r) is the plasma density, and is
ear electron magnetohydrodynamic system. It is often CONfe electron mass

venient to write the electron equation of moti¢h in the
form of the conservation of the generalized momentom
=mv—eA/c, whereA is the magnetic vector potentidah
=VXA. Taking the curl of(1), one obtains identicalfy

In the one-dimensional ICP discharge, the only nonlinear
effect is plasma potential oscillations that occur due to
plasma polarization from the action of a nonlinear for¢é?
Note that the nonlinear polarization field will be accompa-
P nied by a modification of the plasma density profilé®
EVX p—VX(VXVXPp)=—mVX(wv). (3)  Plasma chargéand electric fieldl arise to compensate the

_ _ . o nonlinear force applied in the radial direction. The equation
The left-hand side of this equation has a structure similar tgor the nonlinear polarization fiel&?= — V&P is obtained

the equation for vorticity conservation in an ideal fluid. In py taking the divergence dfl):
our case, the vorticity/ X p of the generalized momentum is

conserved in the absence of dissipative effeatsQ). In VZ(Dp:V.(TV_VV_i_ lva
other words, forw=0, the vorticityVX p is simply convected c

by electron flow so that the flux of the vorticity through any

closed contour that moves with the electron fluid remains __¢ lir iB_g_ Tﬁ)

constant, i.e., the vorticity is “frozen-in” the electron fluid. Mwj I r \or 2 e r

In the limit k?c?/ w},<1, when the electron inertia is not

important, mv<eA/c, the generalized vorticity is propor- e 19 (4 B§ c® 1(4B,\? 5
tional to the magnetic fieldy x p=—eB/c. Then, Eq.(3) B ng?ﬁr a 2 w_geF o) | ®

describes the convection of the magnetic field by electron ] ) S )
flow (second term on the left-hand sjdend the diffusion of The first term on the right-hand side is a Lorentz or magnetic

the magnetic field through the plasma due to finitfthe ~ Pressure force, and the second is an inertentrifuga)
right-hand side of Eq(3)]. force. We note that the centrifugal force was included in the

calculation of ponderomotive forces in Ref. 27. It is easy to
see that the second term is operative only when there is cur-
vature of the electric field which yields the curvature of the

Il. NONLINEAR EFFECTS IN CYLINDRICAL ICP electron flow; this term vanishes in the slab approximation
A. Magnetic field and nonlinear polarization electric when the electric field lines are straight. The first term, due
field to the magnetic pressure, is present even in the slab approxi-

The excitation of oscillatory and dc components of thematlon when the wave amplitude varies in the radialdi-

electric field due to the nonlinear effects of an rf magneticrecuon' The curvature term always reduces the magnitude of

field was analyzed in Refs. 19 and 20 for a semi-infinite slak;[he magnetic pressure gradiéftssuming harmonic time
. ) dependence oB,, B,~exp(wt), one can see from Ed5)

model of ICP. In this section we demonstrate that the dynam; A . X

. . g - that the polarization field has time averag@nderomotive

ics of an axial rf magnetic field are not affected by nonlin- .

o . ) S ._and second harmonic components.
earity in one-dimensional cylindrical ICP, and the generation
of the radial polarization field which has time average)

and second harmonic components is the only nonlinear ef3- Nature of the polarization electric field in
fect. cylindrical ICP

We consider an infinitely long cylindrical plasma with The nature of nonlinear polarization fields in inductively
an applied external rf magnetic field in the axial direction,coupled plasma is closely related to the Hall drift of elec-
B=B,(r)z. The inductive electric field and the electron trons in the rf magnetic field. It also bears upon the interest-
velocity are both in the azimuthal directioE= E¢§¢, v ing fagt that the pengtratiqn of the e.xternal electromagnetic
=v,¢, wherez and ¢ are respective unit vectors. We also Wave Into the one-dimensional ICP is not affected by a dc
assume axiab/az=0, and azimuthab/d¢=0 symmetries magnetlc fle_ld. To analyze thls in greater detail, |_t is mstr_uc-
for all parameters. The plasma density and magnetic fieldive to c_onS|d(_ar the pe_netratlon of e!ectromagnehc flek_js into
may vary in the radial direction. Under such conditions, the? ©n€-dimensional cylindrical ICP with an external stationary
equation forB, remains linear and no other components of(dc) axial magnetic field, in the z direction. The rf mag-
the magnetic field are excited in a one-dimensional cylindri-netic field B, is also applied in the direction, so the total
cal ICP. This is easily shown by noting that in this geometry,magnetic field isB=(B,+B,)z, and the inductive electric
both nonlinear terms irf1), v-Vv and vx B, are curl-free field (generated by the external rf magnetic figlslin the ¢
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direction, E=E 4¢. This field configuration corresponds to due to thek,, field and thus make, =0, a finite radial elec-
tric field E, must be generated. This is the polarization field.

the polarization in the extraordinary electromagnetic wave. - A :
The polarization effect already occurs in the linear case'Ve can find it from(8) by taking into account that, = 0:

In this section, we consider electron motion in the linear E(io+v)—E Q.=0. (13
approximation and neglect effects of the oscillating magnetic , , . . _—
field: Using this expression for the radial electric field(B),

one obtains that the net current in ti direction is not

e e : o
oMy y=——E,+ —uv,Bg—1vy, 6) changed in the presence of a dc magnetic field
¢ m ¢ mc ¢
e E,j,(l(l)"‘ V)+E|—QC e E¢
) e e VsT T > 5 :_E(i ) (14
'wmvr:_EEr_m_CUd)Bo_er- (7) Qect+(iotv) 0TV

As a result, the penetration of the rf magnetic field into the
plasma(skin-effec} is not affected by the dc magnetic field,
e E(io+v)—E 0, because the Pedersen modification of the azimuthal current

Solving (7) and (6) one obtains

v, = > 5 (8) due to the dc magnetic field is cancelled by the Hall current
M Qet+(ioty) from the induced radial polarization fief, .
e E (io+v)+EQ In an ICP, wherg the electric fieE¢_anq magnetic field
vy=—— 4 r-e (9) B, are coupled, the induced rf magnetic field can play a role

m Q§+(iw+ )2 of the dc field in the above arguments. Then, the radial po-
larization electric field becomes nonlinear. Quantitatively,
\pne can estimate the magnitude of the polarization field from
él4) and(13) by replacing(}. with its counterpart due to the

rf magnetic field,).—eB,/mc:

where().=eBy/mc. The first terms in Eq98) and (9) are

due to the Pedersen conductivity representing the conducti
ity along the electric field, the second terms are due to th
Hall conductivity describing the electric current in the direc-

tion perpendicular to both the electric field and the magnetic 1 eB, 1 1 9 B§

field. The electric current can be written in a vector f6tm E=ro i Eeme BT " Zmenar 2 (19
J=0opE+ oyEXD, (10 wherev y=c/(4men)dB,/dr was used in the last step.

whereb=B/B is the unit vector along the magnetic field; it In fact, Eq.(13) corresponds to the radial component of

is assumed irf10) thatELb. In the low frequency casey  the equation of motioitl) which reads

<(v,Q.), the standard expressions for the Pedersen and e

Hall conductivities2 are op= 00/(1+Q§/v2)., and o m&—tr +m(v-Vv),=—eE — EU¢BZ— vmo, . (16)

=0o(Qc/v)I(1+Q%v?), where op=e?n/mv is the colli-

sional plasma conductivity. One might expect that the modiUsing the condition of zero radial current,=0, one obtains

fication of plasma conductivity by the dc magnetic field mayfor the radial polarization fielficompare ta(5)]

modify the skin-effect. In what follows we show that the 2 ) 5
( 9 B2 ¢ 1(552) )

external dc magnetic field does not modify the penetration of g _
the rf field into the plasma because of the mutual compensa-
tion of Pedersen and Hall effects in the azimuthal direction.

In our calculations we neglect the displacement current
This assumption, which is critical for our conclusions, is well
justified for typical ICP parameters. Then, from Maxwell
equations one obtains

17

The last term here is due to nonlinear inertia which has
been neglected ifi.3). The radial polarization field has time
average(dc) and second harmonic components. In Sec. IV
we show, that more generally, the induced polarization field
can be viewed as the potential part of the Lorentz and inertial

) 4 d forces.
V(V-E)-V E——? E‘]' (11)
Taking the radial component of this equation one finds thahl NONLINEAR MAGNETIC FIELD AND
the left-hand side vanishes identically, POLARIZATION ELECTRIC FIELD IN A PLANAR ICP
V(V-E)—V2E= Ak i(rEr) —| v2E, - E_zr =0, In a planar two-dimensiopal .ICP dischar@gmncake ge-
arror r ometry) we have two magnetic field components created by

(12 the external coil B=B,(r,z)r +B,(r,z)z. The primary in-
where V2(---)=r"19(r(--+)/ar). Equations(11) and (12)  ductive electric field is in the azimuthal directioB=E ¢.
imply that the radial current on the right-hand side(bl) = We show in this section that nonlinear effects result in the
must be equal to zerd, =0. The absence of radial current is azimuthal magnetic fiel@,(r,z) and polarization potential
quite an obvious result for the one-dimensioaith azi-  ®P(r,z) that are generated at the second harmonic of a driv-
muthal and axial symmetyyconfiguration when there is no ing frequency.
displacement current. To compensate the radial Hall current The equation for the magnetic fie{@) can be written as
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9 9 c2 c2 B, can be obtained by taking appropriate component& &f
ﬁB'f’ EVX — VXB|+VX| —VXB and neglectind3,. These equations have the form
Wpe Wpe
mC d B+ Jd d JB, B N J 0B oB

= VX(VXB)+ == VX((v-V)V). 18  #o atar 2 9z ar o\ w2\ 9z or
As one can observe from this equation, there are two pos- =0, (21)
sible sources of nonlinear effects here: the Lorentz fovce, )
X B, and the nonlinear inertial force associated with electron’. J 4 C_<07_Br_ &BZ) 9 C_V(‘;_Br ‘952)
flow along curved trajectoriegcentrifugal force, mv- Vv. gt ot az\ w2 \ oz ar Jz\ w2 \ dz  or
The last term on the left-hand side describes the resistive
diffusion of the magnetic field, and the second term on the =0. (22)
left-hand side is associated with linear electron inertia ef-

When solved with appropriate boundary conditions, these
equations will give the distribution of the linear magnetic
field in the planar ICP. In fact, these equations are equivalent

fects.
Taking the¢p component 0f19) one obtains

P 2 B to a single equation for the azimuthal electric fiélg [see
By | = V2B ——¢’) Eq. (B1)].

o=’ w5e at v 2 When the nonlinear second order azimuthal fiélg

) ~O(B ) is present in the ICP, thB, and B, compo-

LN ﬁﬂ( 3(rB</>)) nents will be modified in the third order. Effectlveljad,

w3\ Ot 2oz " ror produces the terms of the order 6XB2,B3) in the equa-

tions for B, andB,. Retaining in(18) terms withB,, one
obtains the following nonlinear equations describing the in-

Cc ~
= ¢ kX (VB?2—K)+

8men 4meny teraction ofB, andB, with the nonlinear azimuthal field ; :
d d c® 9 1[4 a 12 2 2
S Fo- W I N PO Al ) Y i
9z ar wpe 92 1102 ar gt 2 gtar\ w2\ gz or o\ w2\ oz or
pe pe
19
(19 19 cé B,aB+BaB 23
Y . =T — o — By,
Here k=Vn/n=k,r+ k,z is a vector characterizing the ror mwge roor ¢ TZoz?

plasma density gradienk~L !, whereL is the character-

istic length scale of plasma density variation, akd  ; 9 9 c?(oB, B, 9 [c?v(oB, 4B,
=(B-V)B is a vector characterizing the curvature of the B - —(———) - —(———)

taz\ w2 \ gz or 0z gz ar
magnetic field:
s 9 c€ [B, 9 J
K=K,r+K,z = | _yB,+B.—
r z (?Z mwze r (?r I’B¢ BZ(?Z B¢ (24)
(1 _, 4 10 0 0 70| P
=2 rBrt Bz ;B T+ 25252 7By B |2 (20 The azimuthal magnetic fiel@,, enters Egs(23) and

(24) in combination with the first spatial derivatives Bf

Note thatk =0 in the one-dimensional cylindrical ICP. andB,. It means thaB, gives rise to convectivevavelike

The right-hand side of Eq(20) is given by nonlinear effects in the dynamics d8, andB,, contrary to the diffu-
terms due to the Lorentz fordeepresented here by the com- sive behavior described in EqR3) and (24) by the second
ponents of the magnetic stress tenS@? and curvature<) order spatial derivatives @&, andB,. Note that the gradient
and the inertial(centrifuga) term vfﬁ/r written here as the of plasma density may also modify the magnetic field pen-
electric current in terms of the magnetic field gradient. All of etration compared to a simple diffusive regime with a con-
these terms are quadratic in the amplitude of the primary rktant diffusion coefficient. Such effects were observed in ex-
magnetic field B, and B, componentsat the fundamental periments reported in Ref. 22.
driving frequency. Thus, these terms provide direct sources Thus, as follows fron{19), in the leading order, dc and
of the dc and second harmonic components of the azimuthaecond harmonic components®j are generated. Coupling
magnetic fieldB,. Note that plasma inhomogeneity pro- to the second harmonic &, in Egs.(23) and(24) leads to
vides additional nonlinear terms to the equationBgrfield.  chain generation of od(Brd, 5th, ..) B, andB, higher order
The linear terms in(19) (on the left-hand sidedefine the  harmonics. Backward coupling of higher order harmonics of
time dependence and spatial structure of Biefield. B, andB, in (19) will generate higher order even harmonics

The B, andB, components of the magnetic field are not of B, (2nd, 4th, .).
generated in the second order, i.e., the equations for these The nonlinear azimuthal magnetic fiek,(r,z) corre-
components remain linear in neglect of the nonlinearly gensponds to two components of the nonlinear curr&ntand
eratedB, field. In this approximation, equations f& and J,. These components can be found from Ampere equations
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c By we obtain equations for the magnetic field that are equivalent
\]r:E a7 (25 to (19), (23), and(24). The most interesting component is the
azimuthal component,
c 1B
J=— 2 (26) J c?

vig,— 2| =~ SguxE
wpe ! It ¢ 2] ed). '
For bounded inductive plasma surrounded by a low conduct- P (32)
ing wall sheath, nonlinear currents are closed within the N ) )
plasma volumé3 Thus,c/ed- VXF represents the nonlinear source of the azi-

To obtain the equation for the polarization field, we takeMuthal magnetic field. o _

the divergence of the equation of electron motibh Taking The equation for nonlinear polarization potentif is
into account thatV-v=0 and neglecting the effects of obtained by taking the divergence (@8):
plas_mla inhomogeneities, we obtain for the polarization po- ey2¢P=V.F, (32
tential

+v

Thus, V-F/e gives a source of nonlinear polarization field,

2) EP= —V®P. The nonlinear force associated with the polari-

V2—-—V.K

V2PpP= -
4men 2 wger ar

ar 9z ation field enters the momentum balance equation. It can be

measuretf as an imbalance force between the ambipolar po-
tential and the pressure gradient force

FP=—eEP=eE?+TVInn, (33

whereE? is the ambipolar electric field.
The potential and solenoidal parts Bf have different
scaling with collision frequency. In fact, the solenoidal

B2 214 [aBZ 9B,

(27)

This expression reduces tb) in the case of a one-
dimensional cylindrical ICP.

IV. NONLINEAR POLARIZATION FIELD AND

NONLINEAR CURRENT AS A MANIFESTATION OF part vanishes for=_0. Indeed, in the absence of collisions,
NONLINEAR FORCES we have

In this section we show that the nonlinear current and &_V: — iE (34)
nonlinear polarization field represent two different pasts- at Me

lenoidal and potentialof the nonlinear magnetid_orent2 or
and inertial forces and consider some general characteristics

of these components. V><v=iB. (35)
We rewrite the momentum equatiéh) in the form mc
v Using it in Eq.(30), we obtain
mE —vv+eE=F, (28 o V2
E—Ev><B—m(v~V)v=—V m> /. (36

whereF represents a total nonlinear force,
e This is a purely potential force which does not produce any
F=——-vXB—m(v-V)v nonlinear current. The polarization potential in this case is
¢ ®P=—-mv?2, and the nonlinear force is the gradient of
electron oscillatory energy. Thus any contribution to the non-
. (29 linear current solely occurs due to collisions, or more gener-
ally, due to a finite phase shift between the time derivative of
In general, this force has potential and solenoidal partshe electron velocity and the electric field. Such a phase shift
(any vector can be represented as a sum of a solenoidal aigl produced either due to collisions or due to collisionless
potential park absorption mechanisms. As noted in Appendix B, collision-
less absorption can be described as a viscosity effect in the
momentum balanc®:*! so one can use a representation in

It will be shown below that, with this normalizatio®? be-  the form

comes simply a polarization potentiaB is some vector e

function playing the role of the vector potential f6r One ioV=——E—vepV, (37)

can also show that only the azimuthal componeniGofs m

required to describe the nonlineBr, field, however, it is  whereves=v+ kznz(/, includes the contribution of collision-

more convenient to work directly wittVXF=VXVXG  less absorption processes. One has to rememberheg in

rather than withG. fact a nonlocal operator and, in general, also has an imagi-
By taking VXF and V-F one can decouple solenoidal nary part.

and potential parts. The potential part is responsible for the As a way of approximation we will us€s7) to investi-

generation of the polarization field while the solenoidal partgate the scaling of the nonlinear sourd&s F andV- F with

gives rise to the nonlinear current. By taking the cur(28) effective collision frequency4 assuming that it is local.

e v2
=——vX B—m(V——vXVXv
c 2

F=eVd+VXG. (30)
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Using (37) we obtain forE=F+F: Note that the approximation of infinite lengt,0z= 0, may

not be applicable to the ICP discharge in Ref. 5.
We have also shown that the models of enhanced

resistivity’? such as those due to Pedersen conductivity
[e.g., given by Eq(A4)] are incorrect in applications to one-

’ (38) dimensional cylindrical ICP. Any modifications in the dy-
namics ofB, and B, fields should come only through gen-
eration of the nonlinear azimuthal field, which occurs

_ 1¢€?

=—————|V(E-E¥)
4m w2+|Veff|2

1
+ E(VeffEx B* + viE* XB)

E= Ee_z ! Vetf E.VE only in two-dimensional geometry. It is important to note
4 M| o(iwt ve)? that effects of finiteB, on the evolution of theB, and B,
. . magnetic field in planar ICP appear as nonlinear convection
B I VE_Z I Vgt E*. VE* (wavelike rather than diffusion phenomena. The present the-
oiotver) 2 o(—iw+ ,,;ﬁ)Z oretical analysis of nonlinear dynamics in ICP confirms the
experimental observations in Refs. 6 and 30.
i E*2 We have investigated the structure of nonlinear forces
+ m 2 | (39 \which consist of Lorentz and inertial force contributions. It

o was shown that the generation of tBg field is due to the
where X* means complex conjugate & F represent the solenoidal part of the nonlinear force, while the potential part
time averagedc) value of the force, ané is oscillating part  is responsible for the generation of the nonlinear polarization
at the second harmonic. The second terrt88) is due to the field. Potential and solenoidal parts have different scalings
damping of the wave momentum and corresponds to thwith the collision frequency; moreover, the solenoidal part
variation of the phase of the electromagnetic fi&ld. vanishes in the limitv— 0. The nonlinear polarization field
Formally, nonlinear sourcééx F andV-F, with F writ- occurs with predominantly dc and second harmonic compo-
ten in terms of the electric field vi@8) and(39), are equiva- nents. In the absence of a phase shift, the dc and second
lent to the nonlinear sources in Eq$9) and(27) which are  harmonic components have equal amplitudes. Thus, the dif-
written in terms of the magnetic field, andB,. It may be  ference in amplitude of these components could be used as
advantageous to use expressions in terms of the magnetim effective measure of the phase shift which could be asso-
field if the experimental profiles d, andB, (including the  ciated with collisional and collisionless absorption mecha-
relative phase informatignare available. One can also use nisms.
directly the definition ofF in (29) if the information onv It should be noted that our results are obtained neglect-
=—J/eny andB and their relative phase is available. In this ing the nonlocal effects of electron thermal motion such as
way, the effects of nonlocal absorption will be effectively the anomalous skin effect. The anomalous skin effect is
taken into account through profiles and phase of the magknown to significantly modify the penetration and structure
netic field and the electric current. Thus, the expressions fosf the electric and magnetic field inside the plagh@ur
nonlinear sources ifl9) and(27) are preferred in nonlocal equations for nonlinear magnetic fieR, and polarization
regimes. Expression@8) and (39) derived in the local ap- potential ® are based on a hydrodynamic approach. The
proximation could be used withe; as an approximation to a  structure of these nonlinear terms is not affected by the pres-

nonlocal operator. ence of collisionless nonlocal effects. Thus, the expressions
in Egs.(19) and(27) for nonlinear sources of magnetic field
V. SUMMARY AND CONCLUSIONS and polarization potential can also be used in collisionless

We have investigated mechanisms for the generation diégimes as long as the linear fielé, B,, and electron
nonlinear currents and nonlinear polarization fields in inducVeloCity v, are determined from more complicated equa-
tively coupled plasmas. The curvature of the magnetic fieldions which include nonlocal effects of thermal moticor
in planar ICP and nonlinear electron inertia are identified ag"e found experimentallyAs an approximation, general ex-
direct sources of nonlinear poloidal currens @ndJ,) and  Pressions for the nonlinear forces in terms of the electric field
the azimuthal magnetic field,. Both the time average and Eg can be used in nonlocal regimes with a modified value of
the second harmonics &, may be generated by these cur- the effective collision frequency as described in Appendix B.
rents. The amplitude of nonlinear current may become comAlternatively, using Eq(37), one can estimate the effective
parable with the amplitude of the primary current at the fun-collision frequencyv (37) from experimental values of the
damental driving frequenc§9. Finite B, may lead to phase shift between the electric field and electric current.
enhanced penetration of the magnetic field due to secondayhen nonlinear expressior(88) and (39) can be used to
nonlinear effect¢due to the dc part d8,) and generation of evaluate the nonlinear forces {81) and (32) in nonlocal
odd harmonics oB, and B, (due to coupling to the even regimes.
harmonics of theB,). Expressions foB, are obtained in Nonlinear effects due to the rf field may also modify the
terms ofB, and B, . The generation dB is only possible in  electron stress tensSrthat give nonlinear terms similar to
two-dimensional configurations, so that the enhanced perthose considered in this paper. We have neglected here such
etration of the external magnetic field in the one-dimensionaéffects of the stress tensor modification that will be consid-
approximatiof cannot be explained by this mechanism. ered separately.
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— < B=2 E,~—E,. (A6)

The E, andE, components of the electric field can be found
from (A2) and (A3). Substituting them ifA6) we have

It has been recently suggested that the enhanced penetra% %Bfi (;iX(Jy— wclvdy)— i ;(JxﬂL wclvdy).
tion of magnetic fields observed experimentaltan be ex- 70 To %Y (A7)
plained by the reduction of the plasma conductivity due to
the induced magnetic field using the model of enhancea—he enhancement of the diffusion coefficient Originates from
resistivity>®°'?For w< ., this model can be written in the the second term in first brackets on the right-hand side of

APPENDIX A: A NOTE ON MODELS OF THE
MAGNETIC FIELD ENHANCED RESISTIVITY

following form: (A7). It can be readily be seen, however, that this term is
exactly cancelled by the terms in the second brackets on the
0o right-hand side. Indeed, opening bracketgAT) we have
op= 5, (AL)
1+ welv 19 1(a a ) 19
wherew.=eB/mcis the electron cyclotron frequency due to c b oo X &yJX oo &X(wC/V)JX
the induced magnetic field. F(wg/y2>1 the resistivity is 9 1 9
enhanced and one may think that this leads to the enhanced — —(welv)Iy— we/v——Jy
penetration of the magnetic field:*'? We have already J ao IX
noted that this conclusion is incorrect for the one- 1 9
dimensional cylindrical ICP considered in Sec. Il A: E4) —oJv——1J,. (A8)

, \ . . oo dy
derived for such a configuration has no nonlinear terms and

the dynamics oB, are strictly linear. As was explained in Two last term cancel each other because of the quasistation-
Sec. I B, the reduction of electric current due to the Ped-arity conditionV-J=0. The second term and third terms in
ersen conductivity is exactly compensated by the Hall cur{A8) also cancel each other if one takes into account that

rent due to the polarization field. In what follows we show c g

that in neglect of electron inertia, this result can be obtained Jy=— =B, (A9)
for arbitrary two-dimensional situatiory)/9z=0, d/dx+0, 4m X

dlay+#0; B=B,(x,y)z, for the cylindrical dischargex c o

—r, Yy—o. JXZE WBZ. (A10)

It is instructive to first review the derivation of EGAL).
We use the electron equation of motion neglecting effects of ~ Thus, from(A8) we obtain an exact consequence of Egs.

electron inertia (A2) and(A3) which is
Iyt oc/vdy=ooEy, (A2) 19 1(9 d
TCa g x> oy
—wc/vd+Jy=0gE,. (A3) 0
Here w,=eB,/mc. A
The usual reasoning is as follows* from symmetry - 4w00(§+ a_yz) B2, (ALD)
one assumeskE,=0. Then from (A2) one finds J, )
= —w/vJ,. Using it in (A3) one obtains and no effects of the gnhanc_ed penetration are present here.
The incorrect Eq(A5) is obtained because of the use of an
o incomplete electric currentA4) where the Hall current is
Jy:1+w§/v2 Ey=0pEy. (A4) neglected. Here, we have neglected electron inertia that in-

troduces nonlinear convection BfB, with the electron flow
Then from Ampere’s lawE, /dx= —(1/c)dB,/dt and(A4)  velocity. In the general case 6f9x+0, d/dy+0 such non-

we derive a nonlinear equatiti™® linear effects are finite; for a symmetrical case with)¢
P P c2 P =0, the contribution of this convection to equation Ry is
—B,=— 1+ wi/1?) | —B A identically zer was shown in E@f).
Bz &x((4mro( wC/V))ax Z), (A5) dentically zero as was sho (¢)]

which seemingly suggests an enhanced nonlinear diffusio
due to the enhanced diffusion coefficieRi=(c?/4moy)
X(1+ w?/v?). A similar model was also used in Refs. 5, 8,
and 9 with additional time averaging of, in (A5). Linear fields in ICP are described by Eg21) and(22).

As was noted above, EGA5) contradicts Eq(4) which It is convenient to use instead a single equation for the azi-
shows no nonlinear effects and was derived under the sanmauthal electric field5¢22

RPPENDIX B: LINEAR FIELDS IN THE CYLINDRICAL
ICP
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(B1)

where o is the plasma conductivity introduced vig,= o
Ey, o =e?ny/(iw+ v)m. Equation(B1) has a solution

E,=Eoexp(ikz)J;(usr/a), (B2
where
2 2
w 1
ezt Pee (B3)

a2 C2 1_iV/(l),

and u,= 3.8 is the first root of the Bessel functial (1)
=0. The magnetic field is determined via relations

ic d
B icl o £ B5
z— o r (9r(r ¢)- ( )

Equations(B1), (B4), and (B5) are equivalent to the linear
part of Eqs.(23) and (24).

When the second term ifB3) can be neglected, the
electromagnetic field becomes close to the vacuum field in
subcritical waveguide with the exponential decay fadtor
=pu4/a. The second term ifB3) is small in low density
and/or low frequency regimes and finite collisiongw>1.

Smolyakov, Godyak, and Duffy

which leads to the vacuum electromagnetic field. It is impor-
tant to remember though, that a small but finite phase shift
due to dissipatior(either collisional, related to, or colli-
sionless, related tkvy,) is important for calculations of the
source terms for the nonlinear current and polarization field
as noted in Sec. V. This finite phase shift yields an imaginary
part of thek parameter found fronB7) that is important for
energy absorption even when the electromagnetic field is
close to the vacuum field.
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