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Nonlinear current and potential oscillations in low pressure inductively coupled plasmas are
analyzed within the framework of electron magnetohydrodynamics. It is shown that both current
and potential oscillations can be attributed, respectively, to the solenoidal and potential components
of nonlinear Lorentz and inertial forces. Scaling of the nonlinear force with the phase shift between
the electric current and the electric field is analyzed. It is demonstrated that the solenoidal part of the
force that provides a source of nonlinear current vanishes in neglect of collisions and collisionless
absorption, while oscillations of the electrostatic potential remain finite. It is shown that these
oscillations are the result of plasma polarization due to Hall drifts. ©2000 American Institute of
Physics.@S1070-664X~00!01311-2#
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I. INTRODUCTION

Low pressure inductively coupled discharges have
cently emerged as promising plasma sources for mate
processing and lighting technologies.1,2 The operation of
such plasma sources in low frequency and low pressure
gimes reveals a number of interesting properties of such
charges. The effects of anomalous electromagnetic field p
etration, collisionless heating, and negative ene
absorption have recently attracted a great deal of experim
tal and theoretical investigations.3–22 One of the main rea-
sons for such rich underlying physics is the nonlocal nat
of low pressure inductively coupled plasma~ICP! dis-
charges. In particular, it turns out that such plasmas are
most collisionless, with the electron mean free path exce
ing the length of a system. In such situations, elect
thermal motion becomes important and leads to such p
nomena as the anomalous skin effect and collisionless
sorption. Recent experiments have also shown that nonli
effects are important in such a plasma and give rise to n
linear harmonics in current,23 plasma potential6,24 and en-
hanced penetration of the electromagnetic field.5,8,9 In this
paper we analyze possible sources of nonlinearity of
pressure ICP. Note that the effects considered in this pa
are due to electron dynamics and thus are complementa
nonlinear effects of ions dynamics, such as those in Ref.

A modern low pressure ICP is characterized by a uniq
set of operating parameters. In addition to the above no
collisionless ~nonlocal! nature of the electron compone
@when inequalitiesv*n, kv th*(n,v) are satisfied#, the in-
fluence of the induced rf~radio frequency! magnetic fieldB
becomes important. The effective electron cyclotron f
quency,eB/mc, in the induced magnetic fieldB may exceed
the electron-neutral collisional frequencyn and characteristic
4751070-664X/2000/7(11)/4755/8/$17.00
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frequency of the oscillationsv.B21]B/]t by an order of
magnitude. At low frequencies, the nonlinear Lorentz for
acting on electrons may become much larger than the fo
from the inductive electric field.23 Under these conditions
plasmas are in the regime of electron~Hall! magnetohydro-
dynamics~EMHD!,26 which has been traditionally applied t
high-density high-frequency phenomena in plasmas typ
for high power pulsed systems. The low pressure ICP tu
out to be even more complex because of the effects of t
mal particle motion, which are important for ICP but we
typically neglected in EMHD.26

In this paper we concentrate on nonlinear effects due
the modification of Ohm’s law by the Lorentz force and no
linear inertia. Nonlinear electron inertia is important wh
the characteristic length scalek21 becomes comparable t
the collisionless electron skin depth,k2c2/vpe

2 .1 ~this con-
dition is typically satisfied in ICP!. Both types of nonlinear-
ity ~Lorentz force and nonlinear inertia! contribute to the
nonlinear force acting on the plasma due to the fluctuatin
field. It has been shown recently19,20 that ponderomotive and
second harmonic plasma potentials are nonlinearly exc
due to the action of nonlinear forces associated with the
magnetic field. We show in this paper, that both, the non
ear potential and the nonlinear current are produced a
result of nonlinear forces. We also investigate the struct
of these forces and analyze their scaling with respect to
collision frequency.

We describe the electron component by the followi
momentum equation:

]v

]t
1v•¹v52

e

m FE1
1

c
v3BG2nv, ~1!
5 © 2000 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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wheren is the collisional frequencies due to electron-neut
interaction,e.0.

We assume that ions are immobile so that the elec
current is due to the electron motion only:

¹3B5
4p

c
J52

4p

c
env. ~2!

These two coupled equations~1! and ~2! form a nonlin-
ear electron magnetohydrodynamic system. It is often c
venient to write the electron equation of motion~1! in the
form of the conservation of the generalized momentump
5mv2eAÕc, whereA is the magnetic vector potential,B
5¹3A. Taking the curl of~1!, one obtains identically26

]

]t
¹3p2¹3~v3¹3p!52m¹3~nv!. ~3!

The left-hand side of this equation has a structure simila
the equation for vorticity conservation in an ideal fluid.
our case, the vorticity¹3p of the generalized momentum
conserved in the absence of dissipative effects (n50). In
other words, forn50, the vorticity¹3p is simply convected
by electron flow so that the flux of the vorticity through an
closed contour that moves with the electron fluid rema
constant, i.e., the vorticity is ‘‘frozen-in’’ the electron fluid
In the limit k2c2/vpe

2 !1, when the electron inertia is no
important, mv!eAÕc, the generalized vorticity is propor
tional to the magnetic field,¹3p.2eB/c. Then, Eq.~3!
describes the convection of the magnetic field by elect
flow ~second term on the left-hand side! and the diffusion of
the magnetic field through the plasma due to finiten @the
right-hand side of Eq.~3!#.

II. NONLINEAR EFFECTS IN CYLINDRICAL ICP

A. Magnetic field and nonlinear polarization electric
field

The excitation of oscillatory and dc components of t
electric field due to the nonlinear effects of an rf magne
field was analyzed in Refs. 19 and 20 for a semi-infinite s
model of ICP. In this section we demonstrate that the dyna
ics of an axial rf magnetic field are not affected by nonl
earity in one-dimensional cylindrical ICP, and the generat
of the radial polarization field which has time average~dc!
and second harmonic components is the only nonlinear
fect.

We consider an infinitely long cylindrical plasma wit
an applied external rf magnetic field in the axial directio
B5Bz(r ) ẑ. The inductive electric fieldE and the electron
velocity are both in the azimuthal direction,E5Eff̂, v
5vff̂, whereẑ and f̂ are respective unit vectors. We als
assume axial]/]z50, and azimuthal]/]f50 symmetries
for all parameters. The plasma density and magnetic fi
may vary in the radial direction. Under such conditions,
equation forBz remains linear and no other components
the magnetic field are excited in a one-dimensional cylind
cal ICP. This is easily shown by noting that in this geomet
both nonlinear terms in~1!, v•¹v and v3B, are curl-free
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vectors, so that no nonlinear terms occur in Eq.~3! for the
magnetic fieldBz after applying¹3 to Eq.~1!. From Eq.~3!
one finds a linear equation forBz

]

]t FBz2
1

r

]

]r S c2

vpe
2

r
]Bz

]r D G5
1

r

]

]r S nc2

vpe
2

]Bz

]r D , ~4!

wherevpe
2 (r )54pe2n(r )/m, is the local value of the elec

tron plasma frequency,n(r ) is the plasma density, andm is
the electron mass.

In the one-dimensional ICP discharge, the only nonlin
effect is plasma potential oscillations that occur due
plasma polarization from the action of a nonlinear force.19,20

Note that the nonlinear polarization field will be accomp
nied by a modification of the plasma density profile.27,28

Plasma charge~and electric field! arise to compensate th
nonlinear force applied in the radial direction. The equat
for the nonlinear polarization fieldEp52¹Fp is obtained
by taking the divergence of~1!:

¹2Fp5¹•S m

e
v•¹v1

1

c
v3BD

5
e

mvpe
2

1

r

]

]r
r S ]

]r

Bz
2

2
2

m

e

vf
2

r D
5

e

mvpe
2

1

r

]

]r
r S ]

]r

Bz
2

2
2

c2

vpe
2

1

r S ]Bz

]r D 2D . ~5!

The first term on the right-hand side is a Lorentz or magne
pressure force, and the second is an inertial~centrifugal!
force. We note that the centrifugal force was included in
calculation of ponderomotive forces in Ref. 27. It is easy
see that the second term is operative only when there is
vature of the electric field which yields the curvature of t
electron flow; this term vanishes in the slab approximat
when the electric field lines are straight. The first term, d
to the magnetic pressure, is present even in the slab app
mation when the wave amplitude varies in the radial~r! di-
rection. The curvature term always reduces the magnitud
the magnetic pressure gradient.27 Assuming harmonic time
dependence ofBz , Bz;exp(ivt), one can see from Eq.~5!
that the polarization field has time average~ponderomotive!
and second harmonic components.

B. Nature of the polarization electric field in
cylindrical ICP

The nature of nonlinear polarization fields in inductive
coupled plasma is closely related to the Hall drift of ele
trons in the rf magnetic field. It also bears upon the intere
ing fact that the penetration of the external electromagn
wave into the one-dimensional ICP is not affected by a
magnetic field. To analyze this in greater detail, it is instru
tive to consider the penetration of electromagnetic fields i
a one-dimensional cylindrical ICP with an external stationa
~dc! axial magnetic fieldB0 in the z direction. The rf mag-
netic field Bz is also applied in thez direction, so the total
magnetic field isB5(B01Bz) ẑ, and the inductive electric
field ~generated by the external rf magnetic field! is in thef̂
o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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direction, E5Eff̂. This field configuration corresponds t
the polarization in the extraordinary electromagnetic wav

The polarization effect already occurs in the linear ca
In this section, we consider electron motion in the line
approximation and neglect effects of the oscillating magn
field:

ivmvf52
e

m
Ef1

e

mc
v rB02nvf , ~6!

ivmv r52
e

m
Er2

e

mc
vfB02nv r . ~7!

Solving ~7! and ~6! one obtains

v r52
e

m

Er~ iv1n!2EfVc

Vc
21~ iv1n!2

, ~8!

vf52
e

m

Ef~ iv1n!1ErVc

Vc
21~ iv1n!2

, ~9!

whereVc5eB0 /mc. The first terms in Eqs.~8! and ~9! are
due to the Pedersen conductivity representing the condu
ity along the electric field, the second terms are due to
Hall conductivity describing the electric current in the dire
tion perpendicular to both the electric field and the magn
field. The electric current can be written in a vector form29

J5sPE1sHE3b, ~10!

whereb5B/B is the unit vector along the magnetic field;
is assumed in~10! that E'b. In the low frequency case,v
!(n,Vc), the standard expressions for the Pedersen
Hall conductivities are sP5s0 /(11Vc

2/n2), and sH

5s0(Vc /n)/(11Vc
2/n2), wheres05e2n/mn is the colli-

sional plasma conductivity. One might expect that the mo
fication of plasma conductivity by the dc magnetic field m
modify the skin-effect. In what follows we show that th
external dc magnetic field does not modify the penetration
the rf field into the plasma because of the mutual compen
tion of Pedersen and Hall effects in the azimuthal directi

In our calculations we neglect the displacement curre
This assumption, which is critical for our conclusions, is w
justified for typical ICP parameters. Then, from Maxwe
equations one obtains

¹~¹•E!2¹2E52
4p

c2

]

]t
J. ~11!

Taking the radial component of this equation one finds t
the left-hand side vanishes identically,

¹~¹•E!2¹2E5
]

]r F1

r

]

]r
~rEr !G2F¹2Er2

Er

r 2G50,

~12!

where ¹2(•••)5r 21](r (•••)/]r ). Equations~11! and ~12!
imply that the radial current on the right-hand side of~11!
must be equal to zero,Jr50. The absence of radial current
quite an obvious result for the one-dimensional~with azi-
muthal and axial symmetry! configuration when there is n
displacement current. To compensate the radial Hall cur
Downloaded 14 Mar 2001 to 157.111.156.138. Redistribution subject t
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due to theEf field and thus makeJr50, a finite radial elec-
tric field Er must be generated. This is the polarization fie
We can find it from~8! by taking into account thatJr50:

Er~ iv1n!2EfVc50. ~13!

Using this expression for the radial electric field in~9!,
one obtains that the net current in thef̂ direction is not
changed in the presence of a dc magnetic field

vf52
e

m

Ef~ iv1n!1ErVc

Vc
21~ iv1n!2

52
e

m

Ef

~ iv1n!
. ~14!

As a result, the penetration of the rf magnetic field into t
plasma~skin-effect! is not affected by the dc magnetic field
because the Pedersen modification of the azimuthal cur
due to the dc magnetic field is cancelled by the Hall curr
from the induced radial polarization fieldEr .

In an ICP, where the electric fieldEf and magnetic field
Bz are coupled, the induced rf magnetic field can play a r
of the dc field in the above arguments. Then, the radial
larization electric field becomes nonlinear. Quantitative
one can estimate the magnitude of the polarization field fr
~14! and~13! by replacingVc with its counterpart due to the
rf magnetic field,Vc→eBz /mc:

Er5
1

iv1n
Ef

eBz

mc
52

1

c
Bzvf52

1

4pen

]

]r

Bz
2

2
, ~15!

wherevf5c/(4pen)]Bz /]r was used in the last step.
In fact, Eq.~13! corresponds to the radial component

the equation of motion~1! which reads

m
]v r

]t
1m~v•¹v!r52eEr2

e

c
vfBz2nmv r . ~16!

Using the condition of zero radial current,v r50, one obtains
for the radial polarization field@compare to~5!#

Er52
e

mvpe
2 S ]

]r

Bz
2

2
2

c2

vpe
2

1

r S ]Bz

]r D 2D . ~17!

The last term here is due to nonlinear inertia which h
been neglected in~13!. The radial polarization field has tim
average~dc! and second harmonic components. In Sec.
we show, that more generally, the induced polarization fi
can be viewed as the potential part of the Lorentz and ine
forces.

III. NONLINEAR MAGNETIC FIELD AND
POLARIZATION ELECTRIC FIELD IN A PLANAR ICP

In a planar two-dimensional ICP discharge~pancake ge-
ometry! we have two magnetic field components created
the external coil,B5Br(r ,z) r̂1Bz(r ,z) ẑ. The primary in-
ductive electric field is in the azimuthal direction,E5Ef̂.
We show in this section that nonlinear effects result in
azimuthal magnetic fieldBf(r ,z) and polarization potentia
Fp(r ,z) that are generated at the second harmonic of a d
ing frequency.

The equation for the magnetic field~3! can be written as
o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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]

]t
B1

]

]t
¹3S c2

vpe
2

¹3BD 1¹3S c2

vpe
2

¹3BD
5¹3~v3B!1

mec

e
¹3~~v•¹!v!. ~18!

As one can observe from this equation, there are two p
sible sources of nonlinear effects here: the Lorentz forcev
3B, and the nonlinear inertial force associated with elect
flow along curved trajectories~centrifugal force!, mv•¹v.
The last term on the left-hand side describes the resis
diffusion of the magnetic field, and the second term on
left-hand side is associated with linear electron inertia
fects.

Taking thef component of~19! one obtains

]

]t
Bf2

c2

vpe
2 S ]

]t
1n D S ¹2Bf2

Bf

r 2 D
1

c2

vpe
2 S ]

]t
1n D S kz

]Bf

]z
1k r

]~rBf!

r ]r D
5

c

8pen0
f̂•k3~¹B2/22K !1

c

4pen0

3S ]

]z
Kr2

]

]r
Kz2

c2

vpe
2

]

]z

1

r F ]

]z
Br2

]

]r
BzG2D .

~19!

Herek[¹n/n5k r r̂1kzẑ is a vector characterizing th
plasma density gradient,k;L21, whereL is the character-
istic length scale of plasma density variation, andK
[(B•¹)B is a vector characterizing the curvature of t
magnetic field:

K5Kr r̂1Kzẑ

5S 1

2

]

]r
Br

21Bz

]

]z
Br D r̂1S 1

2

]

]z
Bz

21Br

]

]r
BzD ẑ. ~20!

Note thatK50 in the one-dimensional cylindrical ICP.
The right-hand side of Eq.~20! is given by nonlinear

terms due to the Lorentz force~represented here by the com
ponents of the magnetic stress tensor¹B2 and curvatureK )
and the inertial~centrifugal! term vf

2 /r written here as the
electric current in terms of the magnetic field gradient. All
these terms are quadratic in the amplitude of the primar
magnetic field (Br and Bz components! at the fundamenta
driving frequency. Thus, these terms provide direct sour
of the dc and second harmonic components of the azimu
magnetic fieldBf . Note that plasma inhomogeneity pro
vides additional nonlinear terms to the equation forBf field.
The linear terms in~19! ~on the left-hand side! define the
time dependence and spatial structure of theBf field.

TheBr andBz components of the magnetic field are n
generated in the second order, i.e., the equations for t
components remain linear in neglect of the nonlinearly g
eratedBf field. In this approximation, equations forBr and
Downloaded 14 Mar 2001 to 157.111.156.138. Redistribution subject t
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Bz can be obtained by taking appropriate components of~18!
and neglectingBf . These equations have the form

]

]t
Bz1

]

]t

]

]r S c2

vpe
2 S ]Br

]z
2

]Bz

]r D D 1
]

]r S c2n

vpe
2 S ]Br

]z
2

]Bz

]r D D
50, ~21!

]

]t
Br2

]

]t

]

]z S c2

vpe
2 S ]Br

]z
2

]Bz

]r D D 2
]

]z S c2n

vpe
2 S ]Br

]z
2

]Bz

]r D D
50. ~22!

When solved with appropriate boundary conditions, the
equations will give the distribution of the linear magne
field in the planar ICP. In fact, these equations are equiva
to a single equation for the azimuthal electric fieldEf @see
Eq. ~B1!#.

When the nonlinear second order azimuthal fieldBf

;O(Br
2 ,Bz

2), is present in the ICP, theBr and Bz compo-
nents will be modified in the third order. Effectively,Bf

produces the terms of the order ofO(Br
3 ,Bz

3) in the equa-
tions for Br and Bz . Retaining in~18! terms withBf , one
obtains the following nonlinear equations describing the
teraction ofBr andBz with the nonlinear azimuthal fieldBf :

]

]t
Bz1

]

]t

]

]r S c2

vpe
2 S ]Br

]z
2

]Bz

]r D D 1
]

]r S c2n

vpe
2 S ]Br

]z
2

]Bz

]r D D
52

1

r

]

]r
r

ce2

mvpe
2 FBr

r

]

]r
rBf1Bz

]

]z
BfG , ~23!

]

]t
Br2

]

]t

]

]z S c2

vpe
2 S ]Br

]z
2

]Bz

]r D D 2
]

]z S c2n

vpe
2 S ]Br

]z
2

]Bz

]r D D
5

]

]z

ce2

mvpe
2 FBr

r

]

]r
rBf1Bz

]

]z
BfG . ~24!

The azimuthal magnetic fieldBf enters Eqs.~23! and
~24! in combination with the first spatial derivatives ofBr

andBz . It means thatBf gives rise to convective~wavelike!
effects in the dynamics ofBr andBz , contrary to the diffu-
sive behavior described in Eqs.~23! and ~24! by the second
order spatial derivatives ofBr andBz . Note that the gradien
of plasma density may also modify the magnetic field pe
etration compared to a simple diffusive regime with a co
stant diffusion coefficient. Such effects were observed in
periments reported in Ref. 22.

Thus, as follows from~19!, in the leading order, dc and
second harmonic components ofBf are generated. Coupling
to the second harmonic ofBf in Eqs.~23! and~24! leads to
chain generation of odd~3rd, 5th, ...! Br andBz higher order
harmonics. Backward coupling of higher order harmonics
Br andBz in ~19! will generate higher order even harmoni
of Bf ~2nd, 4th, ...!.

The nonlinear azimuthal magnetic fieldBf(r ,z) corre-
sponds to two components of the nonlinear currentJr and
Jz . These components can be found from Ampere equat
o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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Jr5
c

4p

]Bf

]z
, ~25!

Jz52
c

4p

1

r

]rBf

]r
. ~26!

For bounded inductive plasma surrounded by a low cond
ing wall sheath, nonlinear currents are closed within
plasma volume.23

To obtain the equation for the polarization field, we ta
the divergence of the equation of electron motion~1!. Taking
into account that¹•v50 and neglecting the effects o
plasma inhomogeneities, we obtain for the polarization
tential

¹2Fp5
1

4penS ¹2
B2

2
2¹•K2

c2

vpe
2

1

r

]

]r
r F]Bz

]r
2

]Br

]z G2D .

~27!

This expression reduces to~5! in the case of a one
dimensional cylindrical ICP.

IV. NONLINEAR POLARIZATION FIELD AND
NONLINEAR CURRENT AS A MANIFESTATION OF
NONLINEAR FORCES

In this section we show that the nonlinear current a
nonlinear polarization field represent two different parts~so-
lenoidal and potential! of the nonlinear magnetic~Lorentz!
and inertial forces and consider some general characteri
of these components.

We rewrite the momentum equation~1! in the form

m
]v

]t
2nv1eE5F, ~28!

whereF represents a total nonlinear force,

F[2
e

c
v3B2m~v•¹!v

52
e

c
v3B2mS ¹

v2

2
2v3¹3vD . ~29!

In general, this force has potential and solenoidal pa
~any vector can be represented as a sum of a solenoida
potential part!:

F5e“F1¹3G. ~30!

It will be shown below that, with this normalization,F be-
comes simply a polarization potential;G is some vector
function playing the role of the vector potential forF. One
can also show that only the azimuthal component ofG is
required to describe the nonlinearBf field, however, it is
more convenient to work directly with¹3F5¹3¹3G
rather than withG.

By taking ¹3F and ¹•F one can decouple solenoid
and potential parts. The potential part is responsible for
generation of the polarization field while the solenoidal p
gives rise to the nonlinear current. By taking the curl of~28!
Downloaded 14 Mar 2001 to 157.111.156.138. Redistribution subject t
t-
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we obtain equations for the magnetic field that are equiva
to ~19!, ~23!, and~24!. The most interesting component is th
azimuthal component,

]

]t
Bf2

c2

vpe
2 S ]

]t
1n D S ¹2Bf2

Bf

r 2 D 52
c

e
f̂•¹3F.

~31!

Thus,c/ef̂•¹3F represents the nonlinear source of the a
muthal magnetic field.

The equation for nonlinear polarization potentialFp is
obtained by taking the divergence of~28!:

e¹2Fp5¹•F. ~32!

Thus,¹•F/e gives a source of nonlinear polarization fiel
Ep52¹Fp. The nonlinear force associated with the pola
ation field enters the momentum balance equation. It can
measured30 as an imbalance force between the ambipolar
tential and the pressure gradient force

Fp[2eEp5eEa1T¹ ln n, ~33!

whereEa is the ambipolar electric field.
The potential and solenoidal parts ofF have different

scaling with collision frequencyn. In fact, the solenoidal
part vanishes forn50. Indeed, in the absence of collision
we have

]v

]t
52

e

me
E ~34!

or

¹3v5
e

mc
B. ~35!

Using it in Eq.~30!, we obtain

F[2
e

c
v3B2m~v•¹!v52¹S m

v2

2 D . ~36!

This is a purely potential force which does not produce a
nonlinear current. The polarization potential in this case
Fp52mv2/2, and the nonlinear force is the gradient
electron oscillatory energy. Thus any contribution to the no
linear current solely occurs due to collisions, or more gen
ally, due to a finite phase shift between the time derivative
the electron velocity and the electric field. Such a phase s
is produced either due to collisions or due to collisionle
absorption mechanisms. As noted in Appendix B, collisio
less absorption can be described as a viscosity effect in
momentum balance,15,31 so one can use a representation
the form

ivv52
e

m
E2neffv, ~37!

whereneff5n1k2hzf includes the contribution of collision
less absorption processes. One has to remember thatneff is in
fact a nonlocal operator and, in general, also has an im
nary part.

As a way of approximation we will use~37! to investi-
gate the scaling of the nonlinear sources¹3F and¹•F with
effective collision frequencyneff assuming that it is local.
o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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Using ~37! we obtain forF5F̄1F̃:

F̄5
1

4

e2

m

1

v21uneffu2 F¹~E•E* !

1
1

c
~neffE3B* 1neff* E* 3B!G , ~38!

F̃5
1

4

e2

m F ineff

v~ iv1neff!
2

E•¹E

2
i

v~ iv1neff!
¹

E2

2
À

ineff*

v~2 iv1neff* !2
E* •¹E*

1
i

v~2 iv1neff* !
¹

E* 2

2 G , ~39!

where X* means complex conjugate ofX; F̄ represent the
time average~dc! value of the force, andF̃ is oscillating part
at the second harmonic. The second term in~38! is due to the
damping of the wave momentum and corresponds to
variation of the phase of the electromagnetic field.32

Formally, nonlinear sources¹3F and¹•F, with F writ-
ten in terms of the electric field via~38! and~39!, are equiva-
lent to the nonlinear sources in Eqs.~19! and~27! which are
written in terms of the magnetic fieldBr andBz . It may be
advantageous to use expressions in terms of the mag
field if the experimental profiles ofBr andBz ~including the
relative phase information! are available. One can also us
directly the definition ofF in ~29! if the information onv
52J/en0 andB and their relative phase is available. In th
way, the effects of nonlocal absorption will be effective
taken into account through profiles and phase of the m
netic field and the electric current. Thus, the expressions
nonlinear sources in~19! and ~27! are preferred in nonloca
regimes. Expressions~38! and ~39! derived in the local ap-
proximation could be used withneff as an approximation to a
nonlocal operator.

V. SUMMARY AND CONCLUSIONS

We have investigated mechanisms for the generatio
nonlinear currents and nonlinear polarization fields in ind
tively coupled plasmas. The curvature of the magnetic fi
in planar ICP and nonlinear electron inertia are identified
direct sources of nonlinear poloidal currents (Jr andJz) and
the azimuthal magnetic fieldBf . Both the time average an
the second harmonics ofBf may be generated by these cu
rents. The amplitude of nonlinear current may become co
parable with the amplitude of the primary current at the fu
damental driving frequency.30 Finite Bf may lead to
enhanced penetration of the magnetic field due to secon
nonlinear effects~due to the dc part ofBf) and generation of
odd harmonics ofBr and Bz ~due to coupling to the even
harmonics of theBf). Expressions forBf are obtained in
terms ofBz and Br . The generation ofBf is only possible in
two-dimensional configurations, so that the enhanced p
etration of the external magnetic field in the one-dimensio
approximation5 cannot be explained by this mechanis
Downloaded 14 Mar 2001 to 157.111.156.138. Redistribution subject t
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Note that the approximation of infinite length,]/]z50, may
not be applicable to the ICP discharge in Ref. 5.

We have also shown that the models of enhan
resistivity5,12 such as those due to Pedersen conductiv
@e.g., given by Eq.~A4!# are incorrect in applications to one
dimensional cylindrical ICP. Any modifications in the dy
namics ofBr and Bz fields should come only through gen
eration of the nonlinear azimuthal fieldBf which occurs
only in two-dimensional geometry. It is important to no
that effects of finiteBf on the evolution of theBr and Bz

magnetic field in planar ICP appear as nonlinear convec
~wavelike! rather than diffusion phenomena. The present t
oretical analysis of nonlinear dynamics in ICP confirms t
experimental observations in Refs. 6 and 30.

We have investigated the structure of nonlinear forc
which consist of Lorentz and inertial force contributions.
was shown that the generation of theBf field is due to the
solenoidal part of the nonlinear force, while the potential p
is responsible for the generation of the nonlinear polarizat
field. Potential and solenoidal parts have different scalin
with the collision frequency; moreover, the solenoidal p
vanishes in the limitn→0. The nonlinear polarization field
occurs with predominantly dc and second harmonic com
nents. In the absence of a phase shift, the dc and se
harmonic components have equal amplitudes. Thus, the
ference in amplitude of these components could be use
an effective measure of the phase shift which could be a
ciated with collisional and collisionless absorption mech
nisms.

It should be noted that our results are obtained negl
ing the nonlocal effects of electron thermal motion such
the anomalous skin effect. The anomalous skin effec
known to significantly modify the penetration and structu
of the electric and magnetic field inside the plasma.6 Our
equations for nonlinear magnetic fieldBf and polarization
potential F are based on a hydrodynamic approach. T
structure of these nonlinear terms is not affected by the p
ence of collisionless nonlocal effects. Thus, the express
in Eqs.~19! and~27! for nonlinear sources of magnetic fiel
and polarization potential can also be used in collisionl
regimes as long as the linear fieldsBz , Br , and electron
velocity vf , are determined from more complicated equ
tions which include nonlocal effects of thermal motion~or
are found experimentally!. As an approximation, general ex
pressions for the nonlinear forces in terms of the electric fi
Ef can be used in nonlocal regimes with a modified value
the effective collision frequency as described in Appendix
Alternatively, using Eq.~37!, one can estimate the effectiv
collision frequencyneff ~37! from experimental values of the
phase shift between the electric field and electric curre
Then nonlinear expressions~38! and ~39! can be used to
evaluate the nonlinear forces in~31! and ~32! in nonlocal
regimes.

Nonlinear effects due to the rf field may also modify th
electron stress tensor33 that give nonlinear terms similar to
those considered in this paper. We have neglected here
effects of the stress tensor modification that will be cons
ered separately.
o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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APPENDIX A: A NOTE ON MODELS OF THE
MAGNETIC FIELD ENHANCED RESISTIVITY

It has been recently suggested that the enhanced pen
tion of magnetic fields observed experimentally5 can be ex-
plained by the reduction of the plasma conductivity due
the induced magnetic field using the model of enhan
resistivity.5,8,9,12For v!vc , this model can be written in the
following form:

sP5
s0

11vc
2/n2

, ~A1!

wherevc5eB/mc is the electron cyclotron frequency due
the induced magnetic field. Forvc

2/n2.1 the resistivity is
enhanced and one may think that this leads to the enha
penetration of the magnetic field.5,8,9,12 We have already
noted that this conclusion is incorrect for the on
dimensional cylindrical ICP considered in Sec. II A: Eq.~4!
derived for such a configuration has no nonlinear terms
the dynamics ofBz are strictly linear. As was explained i
Sec. II B, the reduction of electric current due to the P
ersen conductivity is exactly compensated by the Hall c
rent due to the polarization field. In what follows we sho
that in neglect of electron inertia, this result can be obtain
for arbitrary two-dimensional situation,]/]z50, ]/]xÞ0,
]/]yÞ0; B5Bz(x,y)z; for the cylindrical discharge,x
→r , y→f.

It is instructive to first review the derivation of Eq.~A1!.
We use the electron equation of motion neglecting effect
electron inertia

Jx1vc /nJy5s0Ex , ~A2!

2vc /nJx1Jy5s0Ey . ~A3!

Herevc5eBz /mc.
The usual reasoning is as follows:34,35 from symmetry

one assumesEx50. Then from ~A2! one finds Jx

52vc /nJy . Using it in ~A3! one obtains

Jy5
s0

11vc
2/n2

Ey5sPEy . ~A4!

Then from Ampere’s law]Ey /]x52(1/c)]Bz /]t and~A4!
we derive a nonlinear equation34,35

]

]t
Bz5

]

]x S S c2

4ps0
~11vc

2/n2! D ]

]x
BzD , ~A5!

which seemingly suggests an enhanced nonlinear diffu
due to the enhanced diffusion coefficientDP5(c2/4ps0)
3(11vc

2/n2). A similar model was also used in Refs. 5,
and 9 with additional time averaging ofsP in ~A5!.

As was noted above, Eq.~A5! contradicts Eq.~4! which
shows no nonlinear effects and was derived under the s
Downloaded 14 Mar 2001 to 157.111.156.138. Redistribution subject t
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assumptions and in the same geometry. To understand
discrepancy, let us remove the symmetry assumption,Ex

50, and write the more general equation

2
1

c

]

]t
Bz5

]

]x
Ey2

]

]x
Ex . ~A6!

TheEx andEy components of the electric field can be foun
from ~A2! and ~A3!. Substituting them in~A6! we have

2
1

c

]

]t
Bz5

1

s0

]

]x
~Jy2vc /nJx!2

1

s0

]

]y
~Jx1vc /nJy!.

~A7!

The enhancement of the diffusion coefficient originates fr
the second term in first brackets on the right-hand side
~A7!. It can be readily be seen, however, that this term
exactly cancelled by the terms in the second brackets on
right-hand side. Indeed, opening brackets in~A7! we have

2
1

c

]

]t
Bz5

1

s0
S ]

]x
Jy2

]

]y
JxD2

1

s0

]

]x
~vc /n!Jx

2
]

]y
~ve /n!Jy2vc /n

1

s0

]

]x
Jx

2vc /n
1

s0

]

]y
Jy . ~A8!

Two last term cancel each other because of the quasista
arity condition¹•J50. The second term and third terms
~A8! also cancel each other if one takes into account tha

Jy52
c

4p

]

]x
Bz , ~A9!

Jx5
c

4p

]

]y
Bz . ~A10!

Thus, from~A8! we obtain an exact consequence of Eq
~A2! and ~A3! which is

2
1

c

]

]t
Bz5

1

s0
S ]

]x
Jy2

]

]y
JxD

5
c2

4ps0
S ]2

]x2
1

]2

]y2D Bz , ~A11!

and no effects of the enhanced penetration are present
The incorrect Eq.~A5! is obtained because of the use of
incomplete electric current~A4! where the Hall current is
neglected. Here, we have neglected electron inertia tha
troduces nonlinear convection of¹2Bz with the electron flow
velocity. In the general case of]/]xÞ0, ]/]yÞ0 such non-
linear effects are finite; for a symmetrical case with]/]f
50, the contribution of this convection to equation forBz is
identically zero as was shown in Eq.~4!.

APPENDIX B: LINEAR FIELDS IN THE CYLINDRICAL
ICP

Linear fields in ICP are described by Eqs.~21! and~22!.
It is convenient to use instead a single equation for the
muthal electric fieldEf

22
o AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html
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2
]2

]z2
Ef2

]2

]r 2
Ef1

Ef

r 2
2

1

r

]

]r
Ef52

4p

c2
ivŝEf ,

~B1!

where ŝ is the plasma conductivity introduced viaJf5ŝ

Ef , ŝ 5e2n0 /( iv1n)m. Equation~B1! has a solution

Ef5E0 exp~ ikz!J1~m1r /a!, ~B2!

where

2k25
m1

2

a2
1

vpe
2

c2

1

12 in/v
, ~B3!

and m153.8 is the first root of the Bessel functionJ1(m1)
50. The magnetic field is determined via relations

Br5
ic

v

]

]z
Ef , ~B4!

Bz52
ic

v

1

r

]

]r
~rEf!. ~B5!

Equations~B1!, ~B4!, and ~B5! are equivalent to the linea
part of Eqs.~23! and ~24!.

When the second term in~B3! can be neglected, th
electromagnetic field becomes close to the vacuum field
subcritical waveguide with the exponential decay factok
.m1 /a. The second term in~B3! is small in low density
and/or low frequency regimes and finite collisions,n/v@1.
It is interesting to note that a similar situation may occur
the strongly nonlocal case whenkv th@(v,n).30 In this case,
effects of the thermal motion can be described in terms
plasma viscosity,15,31,36so that the generalized conductivi
is written as36

ŝ5
e2n0

m

1

iv1n1k2hzf

, ~B6!

where hzf is the viscosity coefficient introduced aspzf

52hzfmn0( ikVf). In the nonlocal regime,kv th@(v,n),
and the viscosity coefficient ishzf5v th /(Apk),36 and

2k25
m1

2

a2
1

vpe
2

c2

1

12 in/v2 ikv th /Apv
. ~B7!

In the strongly nonlocal regime,kv th /v@n/v, one obtains
from ~B7! a standard expression for the anomalous sk
depth in the slab approximation,

d5
1

k
5S c2

vpe
2

v th

Apv
D 1/3

, ~B8!

wherev th5A2T/m. This is exactly the same expression
obtained from kinetic theory.37

In nonlocal regimes the second term can be neglecte
Eq. ~B7! when

m1
2

a2
@

vpe
2

c2

1

kv th /Apv
, ~B9!
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which leads to the vacuum electromagnetic field. It is imp
tant to remember though, that a small but finite phase s
due to dissipation~either collisional, related ton, or colli-
sionless, related tokv th) is important for calculations of the
source terms for the nonlinear current and polarization fi
as noted in Sec. V. This finite phase shift yields an imagin
part of thek parameter found from~B7! that is important for
energy absorption even when the electromagnetic field
close to the vacuum field.
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